Recommendation from impedance

B. Salvant

on behalf of BE-ABP/HSC section and impedance WG

With the help of Vincent Baglin

Summary of guidelines (extracted from vacuum CAS 2017)

- The impact of the in-vacuum elements on the beam strongly depends on bunch length
- To reduce resistive wall impedance
 - higher conductivity ($Z \sim \sqrt{\sigma}$)
 - higher radius (Z ~ 1/b or 1/b³)
 - lower length (Z~L)
 - use coating with good conductor
 - Thickness of bad conducting material on good conducting material has a much stronger impact on impedance than the conductivity of the coating
- Bellows:
 - no power loss if perfect conducting and no resonance excited
 - Z linear with number of convolution and convolution depth
 - Z linear with 1/b or 1/b³ if convolution is much smaller than radius b
- Cavities:
 - Inigher cavity radius → lower frequency
 - Cavity length should avoid the order of magnitude of the radius if possible
 - Tapering helps reducing the impedance
 - Shielding with fingers or beam screen is very efficient, but beware of non conformities
 - Use funneling for fingers

Main topics

- Triplet bellows → already agreed at WP2 and TCC for deformable bellow
- VAX area → more unshielded bellows
- Specification for 2.5 mm transverse displacement in the LSS → need for deformable RF bridge?
- 5th axis abandoned? → good news for some bellows!
- Baseline: amorphous carbon coating on triplets, corrector package, D1, D2 and Q4 (and maybe TAXS?) → already dealt with
- Is LESS an option? The impact there could be large due to the low conductivity (up to a factor 16 less compared to cold copper) and the large thickness (1 micron)
- More iterations needed

Triplet bellows

• Recommended for approval at TCC on Sept 2016

Conclusions from simulations with simple models so far

- Models are very simplified (in particular for the low frequency impedance) and results should be taken with care.
- The impedance contributions are significant, in particular in the transverse plane due to the large beta functions.
- These shielded bellows are representing ~ 5 m, i.e. ~0.02% of the full machine length

 \rightarrow would represent ~1% of the full impedance of LHC.

- \rightarrow not a great achievement for a device designed for impedance shielding!
- Increasing the angle makes impedance contributions worse and increase the risk of being wrong with the simplified simulations.
- Impact of transverse offset is not accounted for here.
- No identified showstopper so far.

Longitudinal low frequency impedance

- ightarrow Assuming 32 shieldings with 65 mm radius
- \rightarrow Large contribution compared to current shielding type (estimated a factor 3.5 increase)
- ightarrow Would amount to 0.3% of total impedance
- \rightarrow Going to 30 degrees for all shieldings would reach 1% of full HL-LHC impedance

Transverse low frequency impedance

- ightarrow Assuming 32 shieldings with 65 mm radius at 12 km beta function
- \rightarrow Large contribution compared to current shielding type (estimated a factor 3.5 increase)
- \rightarrow Would amount to 0.5% of the total LHC impedance
- ightarrow Increase to 30 degrees reaches 1.5 % of the full HL-LHC impedance
- \rightarrow Risk to increase beyond 15 degrees, in fact we already said it should be reduced.

Main topics

- Triplet bellows → already agreed at WP2 and TCC for deformable bellow
- VAX area → more unshielded bellows
- Specification for 2.5 mm transverse displacement in the LSS → need for deformable RF bridge?
- 5th axis abandoned? → good news for some bellows!
- Baseline: amorphous carbon coating on triplets, corrector package, D1, D2 and Q4 (and maybe TAXS?) → already dealt with
- Is LESS an option? The impact there could be large due to the low conductivity (up to a factor 16 less compared to cold copper) and the large thickness (1 micron)
- More iterations needed

VAX area

Unshielded bellows requested 12 bellows in total (3 per IP per side) Why step in radius? Is that "only" for standard valve?

Impedance cost of bellows (formula of K. Ng)

inner bellow radius	0.05	m			
bellow corrugation	0.006	m			
for 1 bellows at average beta					
longitudinal impedance Im(Z/n)	0.00024	Ohm			
transverse impedance Im(Zt)	1460.238	Ohm/m			
for 1 bellows at average beta					
average beta in LHC	70	m			
beta at TAS	2430	m			
longitudinal impedance Im(Z/n)	0.00024	Ohm			
transverse impedance Im(Zt)	50691.14	Ohm/m			
for N bellows					
N	12		percentage of	f total	impedance
longitudinal impedance Im(Z/n)	0.002885	Ohm		3.2%	
transverse impedance Im(Zt)	608293.6	Ohm/m		3.0%	
total LHC impedance					
	0.09	Ohm			
	2.00E+07	MOhm/m			

- \rightarrow Expensive in terms of impedance
- ightarrow Management should decide

Main topics

- Triplet bellows → already agreed at WP2 and TCC for deformable bellow
- VAX area → more unshielded bellows
- Specification for 2.5 mm transverse displacement in the LSS → need for deformable RF bridge?
- 5th axis abandoned? → good news for some bellows!
- Baseline: amorphous carbon coating on triplets, corrector package, D1, D2 and Q4 (and maybe TAXS?) → already dealt with
- Is LESS an option? The impact there could be large due to the low conductivity (up to a factor 16 less compared to cold copper) and the large thickness (1 micron)
- More iterations needed

Different transitions

 \rightarrow 11 additional bellows with deformable fingers

Deformable fingers everywhere???

Avoid cavity!

Different transitions

Preliminary vacuum module application map along LSS5R

- \rightarrow 11 additional bellows with deformable fingers per IP per side?
- \rightarrow Is expected to be very expensive in terms of impedance if the angle can not be kept flat

Main topics

- Triplet bellows → already agreed at WP2 and TCC for deformable bellow
- VAX area → more unshielded bellows
- Specification for 2.5 mm transverse displacement in the LSS → need for deformable RF bridge?
- 5th axis abandoned? → good news for some bellows!
- Baseline: amorphous carbon coating on triplets, corrector package, D1, D2 and Q4 (and maybe TAXS?) → already dealt with
- Is LESS an option? The impact there could be large due to the low conductivity (up to a factor 16 less compared to cold copper) and the large thickness (1 micron)
- More iterations needed

Carbon coating

- Carbon coating: 500 nm
- IT, CP, D1, D2 and Q4. Also maybe on TAXS
- Same copper thickness as LHC.

Update on new triplet beam screen impedance

B. Salvant, N. Wang, C. Zannini 14th December 2015

Acknowledgments: N. Biancacci, R. de Maria, E. Métral, N. Mounet, N. Kos

Agenda:

- Impact of coating on the new triplet beam screen
- Impact of coating on the current beam screen
- Impact of various weld scenarios of weld of new triplets

Resistive wall impedance of the new beam screens

- With Coating
 - 5 layers structure
 - 1st layer (aC)
 - 2nd layer (Ti)
 - 3rd layer (Cu)
 - 4th layer (StSt)
 - 5th layer (Vacuum)

- Without Coating
 - 3 layers structure
 - 1st layer (Cu)
 - 2nd layer (StSt)
 - 3rd layer (Vacuum)

Material	σ _{el} [S/m]	ε _r	Thickness [µm]
aC coating	400	5.4	0.5
Titanium coating	4*105	1	0.1
Copper	10 ⁹	1	50
Stainless steel	1.35 10 ⁶	1	1000
Vacuum	0	1	Infinity

Updated Thanks to Nicolo Biancacci's measurements

Geometries of the Hi-Lumi IR1 and IR5 beam screens (triplet)

Magnet	Cold bore ID (mm)	Beam screen ID between flats (mm)	Beam screen length (m)
Q1	139	99.7/99.7	11
Q2a	139	119.7/111.7	10.2
Q2b	139	119.7/111.7	10.2
Q3	139	119.7/111.7	11
СР	139	119.7/111.7	7.3
D1	139	119.7/111.7	8.3
DFXJ	139	119.7/111.7	3.7
D2	95	87/78	13.5
Q4	80.8	73.8/63.8	9.5

Info from N. Kos

Longitudinal impedance of beam screen in triplets (IR1&IR5) (2D calculation with ImpedanceWake 2D – N. Mounet)

- → Significant impact of coating on imaginary part
- \rightarrow Longitudinal effective impedance of the beam screen multiplied by 3 because of the coating.
- → Still expected to be in the background of the total LHC impedance (~90 mOhm)

Transverse impedance of beam screen in triplets (IR1&IR5) (2D calculation with ImpedanceWake 2D – N. Mounet)

$$E = 6500 \ GeV$$
$$\Delta \left(Z_y \right)_{eff}^{triplets} \approx 24 \frac{k\Omega}{m} \approx 1.2 \times 10^{-3} \left(Z_y \right)_{eff}^{LHC}$$

For lattice version V1.2 beta*=15cm/15cm

- → Significant impact of coating on imaginary part
- \rightarrow Vertical effective impedance of the beam screen increased by 70% because of the coating.
- → Still expected to be in the background of the total LHC impedance (~20 MOhm/m)

Impact of coating on the current beam screen (IR2 and IR8)

Info from N. Kos

For lattice version V1.2 beta*=15cm/15cm

Magnet	Beam screen ID (mm)	Beam screen length (m)	Average betax (m)	Average betay (m)
Q1	40.4/50.0	7.9	181	132
Q2+Q3	50.4/60.0	23.9	300	340
CP+D1	61.0/70.6	2.7+10.9	328	309

- → Significant impact of coating on imaginary part
- \rightarrow Longitudinal effective impedance comparable with the impedance of the new beam screen.
- \rightarrow Transverse effective impedance is about 1/8 of the new beam screen impedance.

Impact of coating on the current beam screen (IR2 and IR8)

Info from N. Kos

For lattice version V1.2 beta*=15cm/15cm

Magnet	Beamscreen ID (mm)	Length (m)	Betax_ave (m)	Betay_ave (m)
Q1	40.4/50.0	7.9	181	132
Q2+Q3	50.4/60.0	23.9	300	340
CP+D1	61.0/70.6	2.7+10.9	328	309
D2	56.2/65.8	10.7	170	160
Q4	50.4/60.6	12.1	146	151
Q5 (2L & 8R)	50.4/60.0	12.1	93	132
Q5 (2R & 8L)	37.6/47.2	11.8	112	121
Q6	37.6/47.2	10.9	146	108
$\Delta \left(\frac{Z}{n}\right)_{eff}^{triplets} \approx$	$6.0 \times 10^{-5} \Omega \approx 6.0 \times 10^{-4} \left(\frac{Z}{n}\right)_{eff}^{LHC}$	$\Delta \left(\frac{Z}{n}\right)_{eff}^{trip}$	$\approx 1.3 \times 10^{-4} \Omega \approx 1.3$	$\times 10^{-3} \left(\frac{Z}{n}\right)_{eff}^{LHC}$
$\Delta(Z_y)_{eff}^{triplets}$	$\approx 3.1 \frac{k\Omega}{m} \approx 1.5 \times 10^{-4} (Z_y)_{eff}^{LHC}$	$\Delta(Z_y)_e^{th}$	$r_{ff}^{riplets} \approx 5.3 \frac{k\Omega}{m} \approx 2.6 \times 10^{-10}$	$0^{-4}(Z_y)_{eff}^{LHC}$

- \rightarrow Longitudinal effective impedance comparable with the impedance of the new beam screen.
- \rightarrow Transverse effective impedance is about 1/10 of the new beam screen impedance.

Conclusion for coating

- Small impact expected on impedance of coating the new beam screens or the whole LLS for IR1 and IR5.
- Same level of longitudinal impedance contribution by coating the current beam screen in IR2 and IR8. The transverse impedance contribution is much lower than the new beam screen impedance.

	IP1	/IP5	IR2/IR8		
Element	Δ (ZL/n) [Ohm]	Δ Zy [kOhm/m]	Δ (ZL/n) [Ohm]	Δ Zy [kOhm/m]	
Triplets	6.0E-5	24.3	6.0E-5	3.1	
LSS	8.4E-5	27.7	1.3E-4	5.3	

New Y chamber

Larger diameters \rightarrow lower frequency for modes but also lower resistive wall

→ Lower frequencies and lower impact due to taper IN (and of course taper OUT – not shown).
→ No visible significant mode.

Im(Zeff_long/n) slightly higher (0.03 instead of 0.02 mOhm) \rightarrow still negligible

Conclusions

- Geometry of the Y chamber already well optimized
- No significant mode or effective contribution

Conclusions and next steps

• Significant amount of additional bellows without shielding and with deformable fingers, in addition to what was already approved

 \rightarrow large cost expected in terms of impedance

 \rightarrow need to know what is the operational angle of these fingers if significant transverse offsets are needed.

• More iterations are needed with all the information provided by Vincent

Compare between different Optics (IR1, IR5 new beam screens)

Element	Max betax/betay [m/m]	Z _{T,eff1} without aC coating [kOhm/m]	Z _{T, eff2} with aC coating [kOhm/m]	Z _{T,eff2} -Z _{T,eff1} [kOhm/m]
Collision Round	21758/21721	35.7	60.0	24.3
Collision Flat	43154/43281	45.5	76.4	30.9
Presqueeze optics	6776/6780	11.4	19.2	7.8
VDM optics 30m	618/599	0.6	1.0	0.4

Effect from coating all LSS (IR1, IR5)

For lattice version V1.2 beta*=15cm/15cm

	Eleme	ent	Lengtl	h [m]	Z _{l,eff1} w coating	ithout aC g [Ohm]	Z _{I, eff2} coatin	with aC Ig [Ohm]	Z _{l,eff}	_{f2} -Z _{l,eff1} [Ohm]	
	Tripl	ets	-	-	3.	6E-5	9	9.6E-5		6.0E-5	
	Q	5	8	.5	6.	8E-6		1.8E-5		1.1E-5	
	Q	6	7.1		7.	6E-6		2.0E-5	1.3E-5		
	LSS		5.	5.1E-5 13.5E-5		8.4E-5					
Elem	ent	Leng	th [m]	Beam	screen	betay_ave	e [m]	Z _{T,eff1} witho	ut	Z _{T, eff2} with aC	Z _{T,eff2} -Z _{T,eff1}
				ID bet flats (r	ween nm)			aC coating [kOhm/m]		coating [kOhm/m]	[kOhm/m]
Trip	olets			ID bet flats (r	ween nm)			aC coating [kOhm/m] 35.7		coating [kOhm/m] 60.0	[kOhm/m] 24.3
Trip C	o <mark>lets</mark> 25	8	 8.5	ID bet flats (r - 50.4	ween nm) - 1/60	 900		aC coating [kOhm/m] 35.7 2.8		coating [kOhm/m] 60.0 4.7	[kOhm/m] 24.3 1.9
Trip C	o <mark>lets</mark> 25 26	8	 3.5 7.1	1D bet flats (r 50.4 37.6	ween nm) - 1/60 /47.2	 900 345		aC coating [kOhm/m] 35.7 2.8 2.2		coating [kOhm/m] 60.0 4.7 3.7	[kOhm/m] 24.3 1.9 1.5

$$\Delta \left(\frac{Z}{n}\right)_{eff}^{triplets} \approx 8.4 \times 10^{-5} \,\Omega \approx 8.4 \times 10^{-4} \left(\frac{Z}{n}\right)_{eff}^{LHC}$$

 $\Delta \left(Z_{y} \right)_{eff}^{riplets} \approx 28 \frac{k\Omega}{m} \approx 1.4 \times 10^{-3} (Z_{y})_{eff}^{LHC}$

→ Longitudinal/transverse impedance of beam screen increased by 40%/14%
→ Still expected to be in the background of the total LHC impedance.