

Summary of heat load estimates

G. ladarola and G. Skripka

Thanks to: G. Arduini, P. Dijkstal, R. De Maria, L. Mether, E. Metral, G. Rumolo

HLLHC-WP2 Meeting, 29 June 2017

- Introduction and some reminders on previous results
- Heat load estimates for the Inner Triplets
 - $\circ~$ IR1 and IR5
 - \circ IR2 and IR8
- Progress status on arc heat loads
- Simulations for the TAXS absorber

- In 2017 we continued exchanging estimates on beam induced heat loads with WP9
 - HeatLoadCalculator tool used regularly to evaluate impedance and synchrotron radiation contribution
 - Agreed on conventions and file format
 - Heat loads are provided **per cryostat**, separating the different sources
 - For the arcs we provide the loads over the total length (first to last bend, including dispersion suppressors)

heat_loads_estimation_LSS_HL_LHC.txt ×	heat_loads_estimation_LSS_LHC_DesignReport.txt ×
1 # Heat load estimations for the LHC IR magnets	1 # Heat load estimations for the LHC IR magnets
2 # Evaluated scenario: HL-LHC	2 # Evaluated scenario: LHC DesignReport
3 # - Beam energy 7000.0 GeV	3 # - Beam energy 7000.0 GeV
4 # - Bunch intensity: 2.20e+11 p	4 # - Bunch intensity: 1.15e+11 p
5 # - Bunch length (4*sigma): 1.20 ns	5 # - Bunch length (4*sigma): 1.00 ns
6 # - N. bunches: 2748	6 # - N. bunches: 2808
7 # - T = 70K assumed for the beam screens in the inner triplets	7 # The following values are for TWO beams.
8 $\# - T = 20K$ assumed for the other beam screens	8 # Component, Heat Load Impedance [W], Heat Load Synchrotron Radiation [W]
9 # The following values are for TWO beams.	9 ITaL1,1.86e+00,0.00e+00
10 # Component, Heat Load Impedance [W], Heat Load Synchrotron Radiation [W]	10 ITbL1,3.46e+00,0.00e+00
11 ITaL1,4.08e+00,0.00e+00	11 D2L1,1.46e+00,0.00e+00
12 ITbL1,1.53e+01,0.00e+00	12 Q4L1,1.25e+00,0.00e+00
13 D2L1,2.72e+00,0.00e+00	13 Q5L1,1.73e+00,0.00e+00
14 Q4L1,2.36e+00,0.00e+00	14 Q6L1,1.73e+00,0.00e+00
15 Q5L1,3.20e+00,0.00e+00	15 ITaR1,1.86e+00,0.00e+00
16 Q6L1,4.01e+00,0.00e+00	16 ITbR1,3.46e+00,0.00e+00
17 ITaR1,4.08e+00,0.00e+00	17 D2R1,1.46e+00,0.00e+00
18 ITbR1,1.53e+01,0.00e+00	18 Q4R1,1.25e+00,0.00e+00
19 D2R1,2.72e+00,0.00e+00	19 Q5R1,1.73e+00,0.00e+00
20 Q4R1,2.36e+00,0.00e+00	20 Q6R1,1.73e+00,0.00e+00
21 Q5R1,3.20e+00,0.00e+00	21 ITaL2,1.86e+00,0.00e+00
22 Q6R1,4.01e+00,0.00e+00	22 ITbL2,3.30e+00,0.00e+00
23 ITaL2,5.08e+00,0.00e+00	23 ITcL2,1.54e+00,0.00e+00
24 ITbL2,9.00e+00,0.00e+00	24 Q4L2,1.74e+00,0.00e+00
25 ITcL2,4.19e+00,0.00e+00	25 D2L2,1.46e+00,0.00e+00
2b U4L2,4./4e+00,0.00e+00	26 Q5L2,1.78e+00,0.00e+00
2/ D2L2, 3. 998+00, 0. 008+00	27 Q6L2,2.55e+00,0.00e+00
28 U2L2,4.840+00,0.000+00	28 I1aR2,1.86e+00,0.00e+00
29 UDL2,0.940+00,0.000+00	29 II0H2,3.30e+00,0.00e+00
30 11dR2, 5.000+00, 0.000+00	30 11CH2,1.540+00,0.000+00
$\frac{51}{22} = \frac{110 k^2}{52} + \frac{310 k^2 k^2 k^2 k^2}{52} + \frac{310 k^2 k^2 k^2 k^2 k^2}{52} + \frac{310 k^2 k^2 k^2 k^2 k^2 k^2}{52} + \frac{310 k^2 k^2 k^2 k^2 k^2 k^2 k^2 k^2}{52} + 310 k^2 k^2 k^2 k^2 k^2 k^2 k^2 k^2 k^2 k^2$	31 DZKZ, 1.40E+00, 0.00E+00
32 $11CR2, 4.19000, 0.00000000000000000000000000000000$	32 Q4K2,11.746+00,0.000+00
	33 U2K2,2.140,0.000-00

- In 2017 we continued exchanging estimates on beam induced heat loads with WP9
 - HeatLoadCalculator tool used regularly to evaluate impedance and synchrotron radiation contribution
 - Agreed on conventions and file format
 - Heat loads are provided **per cryostat**, separating the different sources
 - For the arcs we provide the loads over the total length (first to last bend, including dispersion suppressors)
- Strategy proposed by WP9
 - In a first iteration only estimates on impedance and synchrotron radiation are required. These are combined with other heat load sources to compute the remaining capacity available for e-cloud loads
 - On the WP2 side we prepare e-cloud estimates for the full machine for comparison with the available margins

- Presently a large difference beam induced heat load is observed on the beam screen the arcs, with some of them using a large fraction of the available capacity
- The source of this extra heat load (presently unknown) needs to be identified and suppressed in order to reach the target HL-LHC performance

The situation for HL-LHC will be **more critical as other heat load sources will be larger**

 Detailed heat load estimations have been made for twin-bore magnets all IRs. Results have been published in <u>https://cds.cern.ch/record/2217217?ln=en</u>

• Only experimental IRs have a significant impact

CERM

- In particular **S78 and S23 are the most critical** as they are cooled by less powerful cryoplants (ex-LEP)
- Additional margin for these arcs can be gained by coating the beams screens in the adjacent matching sections (i.e. L8 and R2)

For more info: S. Claudet and G. Iadarola @ 6th HL-LHC Collaboration Meeting, Paris

- Introduction and some reminders on previous results
- Heat load estimates for the Inner Triplets

$\circ~$ IR1 and IR5

- $\circ~$ IR2 and IR8
- Progress status on arc heat loads
- Simulations for the TAXS absorber

- Simulated the entire cryogenic length
- Relevant magnetic field map is used for main dipoles and quadrupoles and for dipole correctors. Other sections (e.g. multipole correctors) are simulated as drifts
- <u>Conclusion:</u> we rely on the presence of a low SEY coating to keep heat loads on cryogenics at reasonable values
 - **SEYmax < 1.1** assumed for the coatings

Distance from the IP [m]

HL-LHC inner triplets: IR1 and IR5

- To asses the impact of having short uncoated sections (bellows, BPMs) we simulated the case in which all sections outside the cold masses have SEY_{max} = 1.3
- The heat load increases by ~220 W with respect to the fully coated case
- Moreover, **impact on beam quality and stability needs to be assessed** as the effect on the beam is **amplified by the large beta functions**
- <u>Strategy proposed to WP12 (vacuum):</u>
 - Total length of **non-coated parts should be minimised** (as much as possible)
 - Once the the **"SEY profile" along the IR** is defined, we will perform detailed simulations to confirm that no problem is expected

- To asses the impact of having short uncoated sections (bellows, BPMs) we simulated the case in which all sections outside the cold masses have SEY_{max} = 1.3
- The heat load increases by ~220 W with respect to the fully coated case
- Moreover, impact on beam quality and stability needs to be assessed as the effect on the beam is amplified by the large beta functions
- <u>Strategy proposed to WP12 (vacuum):</u>
 - Total length of **non-coated parts should be minimised** (as much as possible)
 - Once the the **"SEY profile" along the IR** is defined, we will perform detailed simulations to confirm that no problem is expected

- A document has been drafted including detailed tables for the beam induced heat loads in the different components
- Impedance heating is included assuming that beam screens are operated at 70 K

Name	Length	Field	Chamber	Impedance	e-cloud	Total
		config.		(T_BS=70 K)	(SEY=1.1/ UncDrifts1.3)	
ITQ1R5	11.6 m		BSHL_Q1	4.1 W	42.6 W	46.7 W
MQXFA.A1R5	4.2 m	quad	BSHL_Q1	1.5 W	4.8 W	
MQXFA.B1R5	4.2 m	quad	BSHL_Q1	1.5 W	25.9 W	
Drifts	1.7 m	drift	BSHL_Q1	0.6 W	0.2 W	
UncoatedDrifts	1.5 m	drift	BSHL_Q1	0.5 W	11.7 W	
ITQ2Q3R5	49.1 m		BSHL_Q23	15.3 W	330.9 W	346.2 W
MQXFB.A2R5	7.2 m	quad	BSHL_Q23	2.3 W	17.1 W	
MQXFB.B2R5	7.2 m	quad	BSHL_Q23	2.3 W	25.7 W	
MQXFA.A3R5	4.2 m	quad	BSHL_Q23	1.3 W	12.0 W	
MQXFA.B3R5	4.2 m	quad	BSHL_Q23	1.3 W	2.6 W	
MBXF.4R5	6.3 m	dip	BSHL_Q23	2.0 W	11.6 W	
MCBXFBV.A2R5	1.2 m	dip	BSHL_Q23	0.4 W	0.0 W	
MCBXFBH.A2R5						
MCBXFBV.B2R5	1.2 m	dip	BSHL_Q23	0.4 W	1.0 W	
MCBXFBH.B2R5						
MCBXFAV.3R5	2.2 m	dip	BSHL_Q23	0.7 W	1.5 W	
MCBXFAH.3R5						
Drifts	9.7 m	drift	BSHL_Q23	2.9 W	27.0 W	
UncoatedDrifts	5.9 m	drift	BSHL_Q23	1.8 W	232.5 W	
Total IT R5						392.9 W

- A document has been drafted including detailed tables for the beam induced heat loads in the different components
- Impedance heating is included assuming that beam screens are operated at 70 K

Name	Length	Field	Chamber	Impedance	e-cloud	Total
		config.		(T_BS=70 K)	(SEY=1.1/ UncDrifts1.3)	
ITQ1R5	11.6 m		BSHL_Q1	4.1 W	42.6 W	46.7 W
MQXFA.A1R5	4.2 m	quad	BSHL_Q1	1.5 W	4.8 W	
MQXFA.B1R5	4.2 m	quad	BSHL_Q1	1.5 W	25.9 W	
Drifts	17m	drift	RSHI O1	0.6 W	0.2 W	

Not exactly innocent... can this heat load be handled by the cryogenic system?

- If not, no panic \odot \rightarrow the estimate is based on rather conservative assumptions:
 - We can re-simulate using a more realistic "SEY vs s" profile to be provided by the vacuum team (see next slide...), guessing a gain of ~70W, to be verified
 - A feedback from Tuesday's meeting with the vacuum team is that SEY_{max}=1.1 is quite pessimistic → if needed we can tighten a bit this specification

MCBXFBV.B2R5 1.	.2 m d	lip	BSFIL_Q23	0.4 W	1.0 W	
MCBXFBH.B2R5						
MCBXFAV.3R5 2.	.2 m d	lip	BSHL_Q23	0.7 W	1.5 W	
MCBXFAH.3R5						
Drifts 9.	.7 m d	lrift	BSHL_Q23	2.9 W	27.0 W	
UncoatedDrifts 5.	.9 m d	lrift	BSHL_Q23	1.8 W	232.5 W	
Total IT R5					(392.9 W

HL-LHC inner triplets: assumptions on the interconnections

Simulation assumption

Preliminary design

1 m

- Introduction and some reminders on previous results
- Heat load estimates for the Inner Triplets
 - o IR1 and IR5

o IR2 and IR8

- Progress status on arc heat loads
- Simulations for the TAXS absorber

- Similar conclusions as for Inner Triplets in IR1 and IR5
- We rely on the presence of a **low SEY coating** to keep heat load on cryogenics at reasonable values (here the treatment will have to be performed in situ)
 - **SEYmax < 1.1** assumed in the estimates provided to WP9 (cryogenics)

- Similar conclusions as for Inner Triplets in IR1 and IR5
- We rely on the presence of a **low SEY coating** to keep heat load on cryogenics to reasonable values (here the treatment will have to be performed in situ)
 - SEYmax < 1.1 assumed in the estimates provided to WP9 (cryogenics)
- Impact of having **non coated drifts** has been evaluated also for these devices

• Less critical

- A document has been drafted including detailed tables for the beam induced heat loads in the different components (simulations of the high order correctors are ongoing)
- Impedance heating is included assuming that beam screens are operated at 20 K

Name	Length	Field	Chamber	Impedance	e-cloud	Total
		config.		(T_BS=20 K)	(SEY=1.1/ UncDrifts1.3)	
ITQ1R8	9.8 m		BSMQ_Q1-R	5.2 W	9.3 W	14.5 W
MQXA.1R8	6.4 m	quad	BSMQ_Q1-R	3.5 W	1.8 W	
MCBXH.1R8						
MCBXV.1R8	0.5 m	dip	BSMQ_Q1-R	0.2 W	0.0 W	
Drifts	0.9 m	drift	BSMQ_Q1-R	0.4 W	0.0 W	
UncoatedDrifts	2.1 m	drift	BSMQ_Q1-R	1.0 W	7.5 W	
ITQ2Q3R8	23.7 m		BSMQ_2	9.3 W	33.4 W	42.7 W
MQXB.A2R8	5.5 m	quad	BSMQ_2	2.3 W	2.9 W	
MQXB.B2R8	5.5 m	quad	BSMQ_2	2.3 W	5.8 W	
MQXA.3R8	6.4 m	quad	BSMQ_2	2.6 W	1.5 W	
MCBXH.2R8						
MCBXV.2R8	0.5 m	dip	BSMQ_2	0.2 W	0.0 W	
MCBXH.3R8						
MCBXV.3R8	0.5 m	dip	BSMQ_2	0.2 W	0.0 W	
Drifts	2.9 m	drift	BSMQ_2	1.0 W	0.0 W	
UncoatedDrifts	2.5 m	drift	BSMQ_2	0.8 W	23.1 W	
ITD1R8	13.9 m		BSMB_1	4.2 W	10.1 W	14.2 W
MBX.4R8	9.5 m	dip	BSMB_1	3.0 W	9.5 W	
Drifts	4.4 m	drift	BSMB_1	1.2 W	0.5 W	
UncoatedDrifts	0.0 m	drift	BSMB_1	0.0 W	0.0 W	
Total IT R8						71.4 W

Inner triplets in IR2&8:

- Introduction and some reminders on previous results
- Heat load estimates for the Inner Triplets
 - o IR1 and IR5
 - \circ IR2 and IR8
- Progress status on arc heat loads
- Simulations for the TAXS absorber

- Performed literature review to identify the best available knowledge on photoelectron yield for the LHC beam screens (correctly handling the effect of the saw-tooth)
- Defined the **correct "recipe"** to model the **effect of photoelectrons** from synchrotron radiation.
- Drafted a **document** and **prepared a python** tool to:
 - Evaluate the **photon spectrum** for an arbitrary energy
 - Compute the number of **"direct" and reflected photoelectrons**
 - Translate the information into the input parameters required by PyECLOUD

Inverted orientation

Work done together with P. Dijkstal, L. Mether and G. Rumolo

Arc heat loads: work in progress

Arc heat loads: work in progress

Simulating all components. Preliminary results for present LHC beam parameters:

Arc heat loads: work in progress

Simulating all components. <u>Preliminary</u> results for present LHC beam parameters:

- Introduction and some reminders on previous results
- Heat load estimates for the Inner Triplets
 - $\circ~$ IR1 and IR5
 - \circ IR2 and IR8
- Progress status on arc heat loads
- Simulations for the TAXS absorber

•

- Electron cloud build-up simulations have been performed for the TAXS absorber
- Two beam device → multipacting depends on the distance w.r.t. the long range encounters

Length = 1.8 m, circular chambers, diameter = 60 mm

- Electron cloud build-up simulations have been performed for the TAXS absorber
- Two beam device → multipacting depends on the distance w.r.t. the long range encounters
- Multipacting thresholds are above SEY_{max} = 1.2
- NEG coating not possible there, a-C coating under investigation

- "WP2-WP9 interface" for exchanging data on heat load estimates has been defined(conventions, requirements)
- Evaluations for twin bore magnets performed in 2016. Main outcomes:
 - Experimental IR are the most critical
 - o IR1 and IR5 will be equipped with dedicated cryoplants
 - Load IR2 and IR8 will affect the neighboring arcs → Low SEY coating of the matching sections is desirable
- Heat loads in the Inner Triplets have been estimated IR1&5 and for IR2&8
 - → We rely on low SEY surface treatments (SEY_{max}<1.1) to have reasonable heat loads on cryogenics
 - → A first analysis of the impact of having un-coated drift sections outside the cold masses has been performed
- Work for the definition of a detailed e-cloud model of the arc half-cell is almost complete→ soon to be applied to HL-LHC beam
- **TAXS simulations** are available to be folded in heat load and vacuum estimated

Thanks for your attention