

Update on heat load estimates

P. Dijkstal, G. Iadarola and G. Skripka

Thanks to: G. Arduini, R. De Maria, L. Mether, E. Metral, G. Rumolo

HLLHC-WP2 Meeting, 3 October 2017

The goal is to have a complete survey of the beam-induced heat loads on all beam screens including the effect of impedance, synchrotron radiation and e-cloud effects

Present status

Machine part	Status
IR twin bore magnets	Estimates were made and documented in <u>CERN-ACC-2016-0112</u>
Inner triplets the four experimental IRs	Estimates were made and documented in a report presently being circulated (present version <u>here</u>)
Arcs	In progress (see next slides), to be completed and documented

Update on heat loads in the inner triplets (for previous work see <u>presentation given on 29 June</u>)

Simulations for the corrector package

- No significant heat load expected with the coating in place (SEY<1.1)
- Compared to the **corresponding drifts**:
 - Multipoles have slightly lower threshold
 - Multipoles show lower heat loads above threshold

- No significant heat load expected with the coating in place (SEY<1.1)
- Compared to the **corresponding drifts**:
 - Multipoles have slightly lower threshold
 - Multipoles show lower heat loads above threshold

- No significant heat load expected with the coating in place (SEY<1.1)
- Compared to the **corresponding drifts**:
 - Multipoles have slightly lower threshold
 - Multipoles show lower heat loads above threshold

- No significant heat load expected with the coating in place (SEY<1.1)
- Compared to the **corresponding drifts**:
 - Multipoles have slightly lower threshold
 - Multipoles show lower heat loads above threshold

Update on the triplets: heat load tables

Triplets in IR1&5

Changes	w.r.t. presentation
given on	29 June:

- Included corrector package
- New nominal bunch length (9 cm)

Effect on the total smaller than 10%

See also G. Skripka and G. Iadarola, "Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC", to be published, draft available <u>here</u>

Name	Length Field Chamber Impedan		Impedance	e-cloud	Total	
		config.		(T_BS=70 K)	(SEY=1.1/1.3(UncDrifts))	
ITQ1R5	11.6 m		BSHL_Q1	4.1 W	61.9 W	66.0 W
MQXFA.A1R5	4.2 m	quad	BSHL_Q1	1.5 W	19.0 W	
MQXFA.B1R5	4.2 m	quad	BSHL_Q1	1.5 W	24.7 W	
Drifts	1.7 m	drift	BSHL_Q1	0.6 W	0.1 W	
UncoatedDrifts	1.5 m	drift	BSHL_Q1	0.5 W	18.2 W	
ITQ2Q3R5	49.1 m		BSHL_Q23	15.3 W	338.0 W	353.3 W
MQXFB.A2R5	7.2 m	quad	BSHL_Q23	2.3 W	17.3 W	
MQXFB.B2R5	7.2 m	quad	BSHL_Q23	2.3 W	26.4 W	
MQXFA.A3R5	4.2 m	quad	BSHL_Q23	1.3 W	13.2 W	
MQXFA.B3R5	4.2 m	quad	BSHL_Q23	1.3 W	13.6 W	
MBXF.4R5	6.3 m	dip	BSHL_Q23	2.0 W	11.4 W	
MCBXFBV.A2R5	1.2 m	dip	BSHL_Q23	0.4 W	0.0 W	
MCBXFBH.A2R5						
MCBXFBV.B2R5	1.2 m	dip	BSHL_Q23	0.4 W	1.0 W	
MCBXFBH.B2R5						
MCBXFAV.3R5	2.2 m	dip	BSHL_Q23	0.7 W	1.5 W	
MCBXFAH.3R5						
MCTXF.3R5	0.4 m	dodecap	BSHL_Q23	0.1 W	0.0 W	
MCTSXF.3R5	0.1 m	skew dodecap	BSHL_Q23	0.0 W	0.0 W	
MCDXF.3R5	0.1 m	decap	BSHL_Q23	0.0 W	0.0 W	
MCDSXF.3R5	0.1 m	skew decap	BSHL_Q23	0.0 W	0.0 W	
MCOXF.3R5	0.1 m	oct	BSHL_Q23	0.0 W	0.0 W	
MCOSXF.3R5	0.1 m	skew oct	BSHL_Q23	0.0 W	0.0 W	
MCSXF.3R5	0.1 m	sext	BSHL_Q23	0.0 W	0.0 W	
MCSSXF.3R5	0.1 m	skew sext	BSHL_Q23	0.0 W	0.7 W	
Drifts	8.6 m	drift	BSHL_Q23	2.6 W	21.1 W	
UncoatedDrifts	5.9 m	drift	BSHL_Q23	1.8 W	232.5 W	
Total IT R5						419.4 W

Update on the triplets: heat load tables

Triplets in IR2&8

	Name	Length	Field	Chamber	Impedance	e-cloud	Total
			config.		(T_BS= 20 K)	(SEY=1.1/1.3 (UncDrifts))	
	ITQ1R8	9.8 m		BSMQ_Q1-R	5.2 W	9.5 W	14.7 W
	MQXA.1R8	6.4 m	quad	BSMQ_Q1-R	3.5 W	0.7 W	
gth	MCBXH.1R8						
	MCBXV.1R8	0.5 m	dip	BSMQ_Q1-R	0.2 W	0.0 W	
	Drifts	0.9 m	drift	BSMQ_Q1-R	0.4 W	0.0 W	
	UncoatedDrifts	2.1 m	drift	BSMQ_Q1-R	1.0 W	8.8 W	
	ITQ2Q3R8	23.7 m		BSMQ_2	9.3 W	43.1 W	52.4 W
	MQXB.A2R8	5.5 m	quad	BSMQ_2	2.3 W	3.9 W	
	MQXB.B2R8	5.5 m	quad	BSMQ_2	2.3 W	9.1 W	
	MQXA.3R8	6.4 m	quad	BSMQ_2	2.6 W	7.4 W	
	MCBXH.2R8						
	MCBXV.2R8	0.5 m	dip	BSMQ_2	0.2 W	0.0 W	
	MCBXH.3R8						
	MCBXV.3R8	0.5 m	dip	BSMQ_2	0.2 W	0.0 W	
	Drifts	2.9 m	drift	BSMQ_2	1.0 W	0.0 W	
	UncoatedDrifts	2.5 m	drift	BSMQ_2	0.8 W	22.7 W	
	ITD1R8	13.9 m		BSMB_1	4.2 W	10.4 W	14.6 W
	MBX.4R8	9.5 m	dip	BSMB_1	3.0 W	9.7 W	
	Drifts	4.4 m	drift	BSMB_1	1.2 W	0.8 W	
	UncoatedDrifts	0.0 m	drift	BSMB_1	0.0 W	0.0 W	
	Total IT R8						81.7 W

Changes w.r.t. presentation given on 29 June:

 New nominal bunch length (9 cm)

Effect on the total smaller than 10%

See also G. Skripka and G. Iadarola, "Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC", to be published, draft available <u>here</u>

Heat load on the arc beam screen: Status of ongoing work

25 ns (2556b)

Arc heat loads – 2017 status

8b+4e (1916b)

Estimates are **more delicate** than for IRs due to the important **role of photoelectrons** generated by the beam **synchrotron radiation**

Decided to focus on the present LHC at first to develop a **solid model** (to be then applied for HL-LHC predictions):

- Performed literature review to identify the best available knowledge on photoelectron yield for the LHC beam screens (correctly handling the effect of the saw-tooth)
- Defined the **correct "recipe"** to model the **effect of photoelectrons** from synchrotron radiation (implemented in a python tool):
 - Evaluate the **photon spectrum** for an arbitrary energy
 - Compute the number of **"direct" and reflected photoelectrons**
 - Translate the information into the input parameters required by PyECLOUD

Details in P. Dijkstal et al., "Simulation studies on the electron cloud build-up in the elements of the LHC Arcs at 6.5 TeV", to be published, draft available <u>here</u>

Arc heat loads – the model

Proton energy [GeV]

11500

7000 6500

3500

 W_{Cu} [eV]

450

4.0 <u>le-1</u>3

3.5

1.2 3.0 1.0 2.5 dn/dE dP/dE Synchrotron radiation 2.0 spectra 0.6 1.5 0.4 1.0 0.2 0.5 0.0 L 10⁰ 0.0 L 10° 10² 10² 10^{1} 10^{1} 10³ 10³ E_{γ} [eV] E_{γ} [eV] 3.5 <u>1e-</u>2 0.7 3.0 0.6 2.5 0.5 $n_{\gamma}(E > W_{Cu})/n_{\gamma}$ $\sum_{n}^{(n)} M_{Cn}$ 0.4 Number of photons above the Copper 0.3 **Work Function** 1.0 0.2 0.5 0.1 0.0 0.0 6 8 10 12 6 8 10 12 0 4 0 4 2 2 Proton energy [TeV] Proton energy [TeV]

1.6 <u>le-13</u>

1.4

CERN

Details in P. Dijkstal et al., "Simulation studies on the electron cloud build-up in the elements of the LHC Arcs at 6.5 TeV", to be published, draft available <u>here</u>

• Estimates on the number of photons has to be combined with information **photoelectron yield** and **reflectivity** from lab measurements

ightarrow Need to take into account the presence of the sawtooth

Available measurements show significant differences \rightarrow Decided to compare **two sets of parameters**:

	Chamber type			R_{i}	R_r	Y_i	Y_r	Y_i^*	Y_r^*	
	Cu co-lam. with sawtooth			10.0	82.0	5.2e-02	2.2e-02	5.8e-02	1.2e-01	
"Conservative"	Cu co-lam.		82.0	82.0	2.3e-02	2.3e-02	1.3e-01	1.3e-01		
	Chamber type			V_i	N_r	N_t	$ n_{\gamma} $	refl_frac	$c k_pe_st$	
	Cu co-lam. with sawtooth			e-02	1.2e-02	6.4e-02	1.1e-02	1.89e-0	1 7.00e-04	
	Cu co-l	am.	2.30	e-02	1.0e-01	1.3e-01	1.1e-02	8.20e-0	1 1.38e-03	
"Ontimistic"	Cha	mber type		$ R_i $	R_r	Y_i	Y_r	Y_i^*	Y_r^*	
Optimistic	Cu co-lam. with sawtooth			10.0	82.0	1.0e-02	4.6e-03	1.1e-02	2.6e-02	
(also accounting for	Cu co-lam.			82.0	82.0	4.6e-03	4.6e-03	2.6e-02	2.6e-02	
nhoton conditioning)	Chamber type			N_i	N_r	N_t	n_{γ}	refl_fra	ac k_pe_st	,
photon conditioning/	Cu co-lam. with sawtooth)e-02	2.6e-03	3 1.3e-02	2 1.1e-02	2 2.03e-0	11.39e-04	$\overline{4}$
	Cu co-lam. 4.			5e-03	2.1e-02	2 2.6e-02	$2 \mid 1.1e-02$	2 8.20e-0	2.81e-04	4
		Y_i, Y_i^*	Photoelectrons yields (defined by Eq. 20 and Eq. 21) in the region of							
		Y_{π}, Y^*	Control of the synchrotron radiation (e.g. sawtooth region).							
Details in P. Dijkstal et al., "Simulation studies on the electron cloud build-up in the		P P	Reflection rates in the region of direct synchrotron radiation impact							
	Symbols	n_i, n_r	and in the remaining part of the chamber, respectively.							
	Symbols.	N_i, N_r	Photoelectrons emitted in the region of direct impact of the synchrotron radiation							
		Nt	Tota	Total number of emitted photoelectrons						
elements of the LHC Arcs at 6.5		(E > W)	Nun	Number of photons with an energy above the copper work function,						
IeV", to be published, draft		$n_{\gamma}(E > W_{\rm Cu})$	emit	ted per	proton ar	nd per m in t	he LHC arc	bending ma	gnets (Eq. 16).	
available here										

The defined models have been used to simulate all the element of the arc half-cell

CERN

Details in P. Dijkstal et al., "Simulation studies on the electron cloud build-up in the elements of the LHC Arcs at 6.5 TeV", to be published, draft available <u>here</u>

Arc heat loads – results for LHC beam parameters

The defined models have been used to simulate all the element of the arc half-cell

The impact of the photoelectrons is very strong the drift sections:

 For the other elements, in the presence of a vertical magnetic field, only photoelectrons from reflected photons (<10%) can be accelerated by the beam and contribute to the heat load

Details in P. Dijkstal et al., "Simulation studies on the electron cloud build-up in the elements of the LHC Arcs at 6.5 TeV", to be published, draft available <u>here</u>

The defined models have been used to simulate all the element of the arc half-cell

Details in P. Dijkstal et al., "Simulation studies on the electron cloud build-up in the elements of the LHC Arcs at 6.5 TeV", to be published, draft available <u>here</u>

Arc heat loads – results for LHC beam parameters

Details in P. Dijkstal et al., "Simulation studies on the electron cloud build-up in the elements of the LHC Arcs at 6.5 TeV", to be published, draft available <u>here</u>

Arc heat loads: SEY estimate based on measurements

We started by using the **conservative** parameter set \rightarrow analysis will be repeated with the "optimistic" and cross-checked against measurements at injection energy...

Cell length 53.4 m
SR SR
Imp.
Drift 5.8 m
MB 42.9 m
MCBH 0.3 m
MCBV 0.3 m
MQ 3.3 m
MS 0.3 m
MS2 0.3 m
MO 0.1 m

Fill	6054	6054
Started on	07 Aug 2017 14:15	07 Aug 2017 14:15
T_sample [h]	2.58	3.10
Energy [GeV]	450	6499
N_bunches (B1/B2)	2556/2556	2556/2556
Intensity (B1/B2) [p]	2.94e14/3.03e14	2.91e14/3.01e14
Bun.len. (B1/B2) [ns]	1.27/1.29	1.07/1.07
H.L. exp. imped. [W]	6.47	10.15
H.L. exp. synrad [W]	0.00	12.61
H.L. exp. imp.+SR [W/p+]	1.08e-14	3.84e-14
T_nobeam [h]	1.90	1.90

ERN

Arc heat loads: SEY estimate based on measurements

We started by using the **conservative** parameter set \rightarrow analysis will be repeated with the "optimistic" and cross-checked against measurements at injection energy...

Best cells in the ring:

SEY = ~1.1

Arc heat loads: simulations for HL-LHC

• For high bunch intensity **significant heat load is observed already for low SEY** (from impedance, synchrotron radiation, photoelectrons in the drifts)

Arc heat loads: simulations for HL-LHC

• For high bunch intensity **significant heat load is observed already for low SEY** (from impedance, synchrotron radiation, photoelectrons in the drifts)

Arc heat loads: simulations for HL-LHC

• For high bunch intensity **significant heat load is observed already for low SEY** (from impedance, synchrotron radiation, photoelectrons in the drifts)

- For high bunch intensity **significant heat load is observed already for low SEY** (from impedance, synchrotron radiation, photoelectrons in the drifts)
- Present conditioning achieved in the low-load sectors is compatible with HL-LHC

- For high bunch intensity **significant heat load is observed already for low SEY** (from impedance, synchrotron radiation, photoelectrons in the drifts)
- Present conditioning achieved in the **low-load sectors** is **compatible with HL-LHC**

- For high bunch intensity **significant heat load is observed already for low SEY** (from impedance, synchrotron radiation, photoelectrons in the drifts)
- Present conditioning achieved in the **low-load sectors** is **compatible with HL-LHC**

- For high bunch intensity **significant heat load is observed already for low SEY** (from impedance, synchrotron radiation, photoelectrons in the drifts)
- Present conditioning achieved in the low-load sectors is compatible with HL-LHC
- Expected heat load for the high-load sectors is ~12 kW/arc!

- For high bunch intensity **significant heat load is observed already for low SEY** (from impedance, synchrotron radiation, photoelectrons in the drifts)
- Present conditioning achieved in the low-load sectors is compatible with HL-LHC
- Expected heat load for the high-load sectors is ~12 kW/arc!

- For high bunch intensity **significant heat load is observed already for low SEY** (from impedance, synchrotron radiation, photoelectrons in the drifts)
- Present conditioning achieved in the low-load sectors is compatible with HL-LHC
- Expected heat load for the high-load sectors is ~12 kW/arc!

- For high bunch intensity **significant heat load is observed already for low SEY** (from impedance, synchrotron radiation, photoelectrons in the drifts)
- Present conditioning achieved in the **low-load sectors** is **compatible with HL-LHC**
- Expected heat load for the high-load sectors is ~12 kW/arc!

- For high bunch intensity **significant heat load is observed already for low SEY** (from impedance, synchrotron radiation, photoelectrons in the drifts)
- Present conditioning achieved in the **low-load sectors** is **compatible with HL-LHC**
- Expected heat load for the high-load sectors is ~12 kW/arc!

- For high bunch intensity significant heat load is observed already for low SEY (from impedance, synchrotron radiation, photoelectrons in the drifts)
- Present conditioning achieved in the low-load sectors is compatible with HL-LHC ۲
- Expected heat load for the high-load sectors is ~12 kW/arc! ۲

- Heat load estimates for Inner Triplets and other magnets in the IR have been finalized including the effect of impedance and e-cloud effects
- Ongoing work to estimate HL-LHC heat loads on the arcs beam screens (more complicated due to the effect of photoelectrons generated by synchrotron radiation)
 - Developed a **detailed model** including all elements of the arc half-cell and taking into account the **effect of photoelectrons**
 - Simulations for LHC beam parameters compared with heat load measurements to quantify the present conditioning state of the machine (SEY values) → Large differences observed between different arcs
 - O With these values we made first extrapolations for HL-LHC (using a "conservative" parameter set for photoelectrons → to be refined):
 - For the low-load sectors, the present conditioning state would be sufficient to operate with HL-LHC beam parameters (with little margin...)
 - This is not the case for the high-load sectors, where the expected load goes beyond 10 kW/arc
 - It is necessary to identify and suppress source of large heat loads in S12, S23,
 S78, S81 in order to allow operation with HL-LHC beam parameters
 - Still margin on available cooling capacity will be quite limited
 - Heat load on LSS magnets in IR2 and IR8 will affect the neighboring arcs
 Low SEY coating of these matching sections is desirable

Thanks for your attention!

25 ns (2556b)

8b+4e (1916b)

