

Effect of Pythia8 tunes on event shapes and tr reconstruction for CLICdb studies

S.Chekanov, M.Demarteau, A.Fisher

CLICdp WG Analysis Meeting July 13, 2017

with some comments from P.Skands and T.Sjostrand

Tunes in Pythia8

- Pythia8 team created a number of "tunes" for e+e-
- Choice of tune to e+e- data, mainly for the hadronization and timelike-showering aspects of PYTHIA. http://home.thep.lu.se/~torbjorn/pythia81html/Tunes.html
 - 1) option 0 : no values are overwritten during the initial setup = Option 7
 - option 1 : the original PYTHIA 8 parameter set, based on some very old flavour studies (with JETSET around 1990) and a simple tune of alpha_strong to three-jet shapes to the new pT-ordered shower. These were the default values before version 8.125.
 - 3) option 2 : a tune by M.Montull to the LEP 1 particle composition, as published in the RPP (August 2007). No related (re)tune to event shapes has been performed
 - option 3 : a tune to a wide selection of LEP1 data by H.Hoeth within the Rivet + Professor framework, both to hadronization and timelike-shower parameters (June 2009). These are the default values starting from version 8.125
 - 5) option 4 : a tune to LEP data by P.Skands, by hand, both to hadronization and timelike-shower parameters (September 2013). CMW convention for the shower alpha_s scale.
 - 6) option 5 : first tune to LEP data by N.Fischer (September 2013), based on the default flavourcomposition parameters. Input is event shapes (ALEPH and DELPHI), identified particle spectra (ALEPH), multiplicities (PDG), and B hadron fragmentation functions (ALEPH).
 - 7) option 6 : second tune to LEP data by Nadine Fischer (September 2013). Similar to the first one, but event shapes are weighted up significantly, and multiplicites not included.
 - 8) option 7 : the Monash 2013 tune by P.Skands [Ska14], to both e⁺+e⁻ and pp/pbarp data.
 Equivalent to option 0

See important resource related to tunes in MCPLOT (http://mcplots.cern.ch/)

Generated Pythia8 samples

- Pythia 8.226 (latest)
- e+e- 380 and 3000 GeV CM energy
- Event samples:
 - $Z^*/gamma \rightarrow all$
 - WeakSingleBoson:ffbar2gmZ=on
 - WeakZ0:gmZmode=0
 - All Z* decays are included
 - − Z^* /gamma $\rightarrow t \bar{t}$ (all decays)
 - ISR included (*)
- 2 M events per tune
- Stable particles with ctau>10
- No neutrinos
- Files can be downloaded from HepSim
- Convertible to MCParticles (LCIO files)
- No CLICdb FullSim

Show all $p \rightarrow \leftarrow p$	He Reposi	pS tory with	Monte Carl	o simulations for particle physics	,
8 TeV 13 TeV	Show	25 ~ e	ntries		
14 TeV 27 TeV	Id 🔺	$\rightarrow \leftarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Е [теV] [∲]	Dataset name	Generator
33 TeV	282	e+e-	0.5	gev500ee_pythia8_ttbar_tunes	PYTHIA8
100 TeV	281	e+e-	14	tev14pp_pythia8_ttbar_tunes	PYTHIA8
e [•] →←e [−] 250 GeV	280	e+e-	3	tev3ee_pythia8_ttbar_tunes	PYTHIA8
380 GeV 500 GeV	279	e+e-	0.38	gev380ee_pythia8_ttbar_tunes	PYTHIA8
1 TeV	278	e+e-	3	tev3ee_pythia8_qcdjets_tunes	PYTHIA8
3 TeV	277	e+e-	0.38	gev380ee_pythia8_qcdjets_tunes	PYTHIA8

http://atlaswww.hep.anl.gov/hepsim/

380 GeV: Particle multiplicity in $e^+e^- \rightarrow Z^*/\gamma$

- Charged and neutral particles. No pT and Eta cuts. Plots are normalized to 1
- Fraction of events with N<20 consistent with non-hadronic Z* decays

T2 ("Montull") and T5 show largest deviation from the default T0 ("Monash")

3 TeV: Particle multiplicity in $e^+e^- \rightarrow Z^*/\gamma$

• Charged and neutral particles. No pT and Eta cuts

Fraction of events with N<20 consistent with non-hadronic Z decays

T2 ("Montull") and T5 show largest deviation from the default T0 ("Monash")

Particle multiplicity in $e^+e^- \rightarrow Z^*/\gamma \rightarrow t\bar{t}$ (all decays)

T2 ("Montull") and T5 show largest deviation from the default T0 ("Monash")

Event shapes

• Thrust:
$$T = \max_{\vec{n}_T} \frac{\sum_i |\vec{p}_i \cdot \vec{n}_T|}{\sum_i |\vec{p}_i|}$$

In the limit of two narrow back-to-back jets $T \rightarrow 1$, while its minimum value of 1/2 corresponds to events with a uniform distribution of momentum flow in all directions.

• Thrust Major
$$T_M = \max_{\vec{n}_M} \frac{\sum_i |\vec{p}_i \cdot \vec{n}_M|}{\sum_i |\vec{p}_i|}, \quad \vec{n}_M \cdot \vec{n}_T = 0$$

• Thrust Minor
$$T_m = rac{\sum_i |\vec{p_i}.\vec{n}_m|}{\sum_i |\vec{p_i}|},$$

$$\vec{n}_m = \vec{n}_T \times \vec{n}_M$$

Recent overview: M.Dasgupta, G.Salam https://arxiv.org/pdf/hep-ph/0312283.pdf

7

- ThrustReconstruction package from: /cvmfs/clicdp.cern.ch/iLCSoft/builds/2017-05-15/x86_64-slc6-gcc62opt/MarlinReco/HEAD/Analysis/EventShapes/
- "Jetset" type event shapes

Oblateness=Major-Minor

380 GeV: Thrust values

- More "dijet-like" events for 3 TeV (1-T ~ 0) compared to 380 GeV
- T2 ("Montull") tune shows largest deviation for small 1-T
- Difficult to observe systematic trends for large value of 1-T

Thrust values in top-quark events

 $e^+ e^- \rightarrow Z^*/\gamma \rightarrow t\bar{t}$ (all decays)

- Significant difference compared to light-flavor QCD jets
- More "dijet-like" events for 3 TeV (1-T ~ 0) compared to 380 GeV
- Difficult to observe systematic trends for different tunes

380 GeV: Major, Minor, Oblateness $e^+e^- \rightarrow Z^*/\gamma \rightarrow q\overline{q}$ (q=u,d,s,c,b)

3 TeV: Major, Minor, Oblateness $e^+ e^- \rightarrow Z^*/\gamma \rightarrow q\overline{q}$ (q=u,d,s,c,b)

11

Top reconstruction in semileptonic decays

380 GeV: Resolved case. Semileptonic decay

- Identify and remove leptons from W decays
- Four kT jets with R=1.0 in exclusive mode using FastJet
- Input for jets: all final state particles (charged+neutral) but neutrino
- Identify b-jet using a cone algorithm with dR=R/2, matching b-quark with kT jet
- Identify 2 light-flavor jets for Mjj
- Constrain M(W)-20 GeV < Mjj < M(W)+20 GeV
- Calculate 3-jet mass

2 jet

3 jet

3 TeV: Boosted top reconstruction

- Remove leptons from W
- Force 2 jets using exclusive kT jets with R=1.2
- Calculate jet mass for leading jet

Resolved top reconstruction: 380 GeV CM energy

Boosted top reconstruction: 3 TeV CM energy

Note: "resolved" Mjjj reconstruction for the 3 TeV case has too small statistics to check the tunes

Pythia8 tunes for CLICdb S.Chekanov (ANL)

tune=0 peak=174.98 GeV tune=1 peak=175.05 GeV tune=2 peak=175.71 GeV tune=3 peak=174.87 GeV tune=4 peak=174.92 GeV tune=5 peak=174.73 GeV tune=6 peak=174.71 GeV

min shift: = 280 MeV max shift: = 710 MeV

Shift for T2 correlates with the corresponding increase in particle multiplicity (see before)

Tune 2: - a tune by M.Montull to the LEP 1 particle composition, as published in the RPP (August 2007). No related (re)tune to event shapes has been performed

Summary

- Effect of Pythia8 tunes on dijets QCD and tt has been studied without detector simulation. Differences from the default "Monash" were studied
- Tune 2 ("Monfull") shows significant change in particle multiplicity
- Some effect (<10%) was found for standard event shapes (Thrust, Major, Minor, Oblateness)
- Effect from the tunes on resolved top-mass reconstruction is < 80 MeV
- Significant effect on jet mass was observed in the boosted regime (3 TeV)
 - 700 MeV shift was observed for the top mass calculated from jet masses
 - T2 ("Montull") shows the largest effect (correlates with particle multiplicity)
- Future updates of these results will include Pythia8 setting without ISR and full CLICdb reconstruction

Backup

380 GeV: Major, Minor, Oblateness for top events

3 TeV: Major, Minor, Oblateness for top events

