

ADT AC-Dipole mode: results of parameter validation measurements

Björn Lindström (TE-MPE-PE)

Acknowledgements: D. Wollmann, D.Valuch, P. Belanger, M. Valette,

149th MPP Meeting – June 23rd 2017

Motivation

- ADTs are strong transversally acting electric kickers
 - Damp injection oscillations
 - Stabilize beam
- ADTs have a few special modes; AC-Dipole mode allows resonant excitation of the beam
 - Requested to be used for tune measurements and x-y coupling measurements during standard operations, with full beam in

Motivation

- ADTs are strong transversally acting electric kickers
 - Damp injection oscillations
 - Stabilize beam
- ADTs have a few special modes; AC-Dipole mode allows resonant excitation of the beam
 - Requested to be used for tune measurements and x-y coupling measurements during standard operations, with full beam in

Goals of Experiment

Goals:

- Validation of the limits to put in place for the AC-Dipole mode
- Verify the equilibrium between excitation of beam and damping of beam
 - Damping is always active in the machine
- Benchmarking of the simulation models against measurements

Parameters of Interest:

- Kick amplitude/Excitation speed (voltage, number of turns, bandwidth of excitation signal)
 - Time from detection until potential damage
- Reproducibility of excitation (hor / ver, pilot /INDIV, re-excitation)
- Intensity/number of bunches
- MD committed on 21/5/2017

Measured orbit excursion examples

Voltage Dependence

- Kick strength is proportional to voltage
 - Measurements agree except for highest voltage (9.5 kV)
 - Power supply believed to be saturated actual max voltage around 7.5 kV

Turn dependence

- Analytical formula: $0rbEx_{norm}\left[\frac{\sigma}{kV}\right] = a(1 - e^{-b \cdot n}),$

where $0rbEx_{norm}$ is the voltage-normalized orbit excursion vs n number of turns

Measurements vs Simulations

- Simulations currently underestimate the orbit excursion
 - To be understood
- For now, ADT parameters can be derived directly from the measurements instead

- Losses (as ratio of the excited bunches) are summarized with damage limits and BLM thresholds (TCPC / TCPD, 9.3 Gray/s)
- Different voltage curves from 0.5 kV to 7.5 kV
- 6.5 TeV

- Losses (as ratio of the excited bunches) are summarized with damage limits and BLM thresholds (TCPC / TCPD, 9.3 Gray/s)
- Different voltage curves from 0.5 kV to 7.5 kV
- 6.5 TeV

 Losses (as ratio of the excited bunches) are summarized with damage limits and BLM thresholds (TCPC / TCPD, 9.3 Gray/s)

Loss-induced dump

Dump caused by losses at 6.5 TeV (7.5 kV excitation, dump on turn 47, two pilots)

Requested Parameters

- Normalized emittance 2.5 µm
- Horizontal/Vertical excitation
- 450 GeV, 6.5 TeV

Coupling measurements:

- 50, 100 or 200 μm displacement (beta=174 m)
- 1x INDIV excitation
- 10000's turns (equilibrium)

• Tune measurements:

- 100 µm displacement (beta=174 m)
- 1-3 x INDIV excitation in parallell
- 3-10 turns

ADT Settings Proposal

Measurement type	Version	Displacement (µm)	Voltage* (kV)	Turns	Expected orbit excursion (sigma)	Expected losses** (# protons per nominal bunch)
Tune, 450 GeV	1	100	0.8	10 3	0.4	1.4e6 ± 20 %
	2		2.5			
Tune, 6.5 TeV	1	100	2.4	10 3	0.4	6.7e6 ± 20 %
	2		7.5			
Coupling, 450 GeV	1	50	0.045	>400	0.2	5.6e5 ± 20 %
	2	100	0.09		0.4	1.4e6 ± 20 %
	3	200	0.18		0.8	4.5e6 ± 30 %
Coupling, 6.5 TeV	1	50	0.15	>400	0.2	2.8e6 ± 20 %
	2	100	0.3		0.4	6.7e6 ± 20 %
	3	200	0.6		0.8	2e7 ± 30 %

 * During the MD a ~13 % stronger excitation was measured in the vertical plane, is possibly due to a lower damping

** Error margin derived from measurements, emittance increase not taken into account

Conclusions

- The ADT AC-Dipole mode verification measurements were performed successfully
- Voltage and excitation length dependence as expected
 - => Orbit excursion can be extrapolated from the ADT settings
- From the MD, parameters for the tune and coupling measurements have been derived, pending approval by the MPP
- Excitation speed slow enough that dump should occur before losses reach dangerous levels
- Damping gives an inherent safety measure
 - => If damping lost for one bunch, coupling measurement would quickly excite the bunch into aperture
- Measurements show good reproducibility
- No apparent dependence on intensity was observed
- Emittance was blown up for all excited bunches by how much not known (BSRT was not calibrated) → to be taken into account for coupling and tune measurements
- No difference was observed between on-tune and off-tune measurements (off-tune was 1.01*Q_frac), since the precision in the ADT excitation is not better than this

Unresolved Question

Discrepancy between simulations and measurements (~factor 1.6)

Extra Slides

Emittance Growth

- Example of emittance growth, exciting with 5 kV for 60 turns horizontally

Voltage dependence 450 GeV

Fit of 450 GeV measurements

- Losses (as ratio of the excited bunches) are summarized with damage limits and BLM thresholds (TCP.C / TCP.D, 9.3 Gray/s)
- Different voltage curves from 0.5 kV to 8 kV
- 450 GeV

