

ADT AC-Dipole mode: results of parameter validation measurements

Björn Lindström (TE-MPE-PE)

Acknowledgements: D. Wollmann, D.Valuch, P. Belanger, M. Valette,

149th MPP Meeting – June 23rd 2017

Motivation

- ADTs are strong transversally acting electric kickers
	- Damp injection oscillations
	- Stabilize beam
- ADTs have a few special modes; AC-Dipole mode allows resonant excitation of the beam
	- Requested to be used for tune measurements and x-y coupling measurements during standard operations, with full beam in

Motivation

- ADTs are strong transversally acting electric kickers
	- Damp injection oscillations
	- Stabilize beam
- ADTs have a few special modes; AC-Dipole mode allows resonant excitation of the beam
	- Requested to be used for tune measurements and x-y coupling measurements during standard operations, with full beam in

3

Goals of Experiment

Goals:

- Validation of the limits to put in place for the AC-Dipole mode
- Verify the equilibrium between excitation of beam and damping of beam
	- Damping is always active in the machine
- **EXE** Benchmarking of the simulation models against measurements

▪ **Parameters of Interest:**

- Kick amplitude/Excitation speed (voltage, number of turns, bandwidth of excitation signal)
	- Time from detection until potential damage
- Reproducibility of excitation (hor / ver, pilot /INDIV, re-excitation)
- **•** Intensity/number of bunches
- MD committed on 21/5/2017

Measured orbit excursion examples

Voltage Dependence

- **EXA** Kick strength is proportional to voltage
	- Measurements agree except for highest voltage (9.5 kV)
	- Power supply believed to be saturated actual max voltage around 7.5 kV

Turn dependence

• Analytical formula: OrbE x_{norm} $\frac{\sigma}{kV}$ $\left[\frac{b}{kV} \right] = a(1 - e^{-b\cdot n}),$

where $OrbEx_{norm}$ is the voltage-normalized orbit excursion vs n number of turns

Measurements vs Simulations

- Simulations currently underestimate the orbit excursion
	- To be understood
- For now, ADT parameters can be derived directly from the measurements instead

8

- Losses (as ratio of the excited bunches) are summarized with damage limits and BLM thresholds (TCPC / TCPD, 9.3 Gray/s)
- **Different voltage curves from 0.5 kV to 7.5 kV**
- 6.5 TeV

- Losses (as ratio of the excited bunches) are summarized with damage limits and BLM thresholds (TCPC / TCPD, 9.3 Gray/s)
- **Different voltage curves from 0.5 kV to 7.5 kV**
- 6.5 TeV

▪ Losses (as ratio of the excited bunches) are summarized with damage limits and BLM thresholds (TCPC / TCPD, 9.3 Gray/s)

Loss-induced dump

▪ Dump caused by losses at 6.5 TeV (7.5 kV excitation, dump on turn 47, two pilots) $\overline{}$ blm_blmlhc >> Version: 1.0.15 Responsible: Fabio Follin

Requested Parameters

- Normalized emittance 2.5 µm
- **Horizontal/Vertical excitation**
- 450 GeV, 6.5 TeV

▪ **Coupling measurements**:

- 50, 100 or 200 µm displacement (beta=174 m)
- 1x INDIV excitation
- 10000's turns (equilibrium)

▪ **Tune measurements**:

- 100 µm displacement (beta=174 m)
- 1-3 x INDIV excitation in parallell
- **3-10 turns**

ADT Settings Proposal

** During the MD a ~13 % stronger excitation was measured in the vertical plane, is possibly due to a lower damping*

*** Error margin derived from measurements, emittance increase not taken into account*

Conclusions

- The ADT AC-Dipole mode verification measurements were performed successfully
- Voltage and excitation length dependence as expected
	- => Orbit excursion can be extrapolated from the ADT settings
- From the MD, parameters for the tune and coupling measurements have been derived, pending approval by the MPP
- Excitation speed slow enough that dump should occur before losses reach dangerous levels
- Damping gives an inherent safety measure
	- => If damping lost for one bunch, coupling measurement would quickly excite the bunch into aperture
- **Measurements show good reproducibility**
- No apparent dependence on intensity was observed
- Emittance was blown up for all excited bunches by how much not known *(BSRT was not calibrated) to be taken into account for coupling and tune measurements*
- No difference was observed between on-tune and off-tune measurements (off-tune was 1.01*Q_frac), since the precision in the ADT excitation is not better than this

Unresolved Question

▪ Discrepancy between simulations and measurements (~factor 1.6)

Extra Slides

Emittance Growth

Example of emittance growth, exciting with 5 kV for 60 turns horizontally

Voltage dependence 450 GeV

Fit of 450 GeV measurements

- Losses (as ratio of the excited bunches) are summarized with damage limits and BLM thresholds (TCP.C / TCP.D, 9.3 Gray/s)
- Different voltage curves from 0.5 kV to 8 kV
- 450 GeV 288 bunches - $\frac{8}{28}$ kV
288 bunches - Damage 6 kV. 23 4 kV \cdot 2.3
2.3
0.23
0.23
0.0023
0.0023
0.0023 12 bunches - BLM Interlock 2808 bunches - Damage 2 kV \cdot 0.100 2.3 0.010 288 bunches Ratio lost Interlock 0.23 1 kV $0.001\overline{2808}$ 0.023 bunche: 0.5 kV 10^{-4} 0.0023 20 40 60 80 100 0 20 Excitation for n LHC turns