

Level 1 Tracker Trigger for the CMS Phase-2 Upgrade

S. AHUJA, C. BERNARDES, A. M. CASCADAN, E. M. GREGORES, V. FINOTTI, S. F. NOVAES, <u>L. A. RAMALHO</u>, A. A. SHINODA, M. VAZ

Context: LHC and the CMS Experiment

Large Hadron Collider: Phase I

- CERN (Switzerland/France)
- 27 km length
- Proton-Proton Bunch Crossings (BX)
 - @ 40 MHz
 - 20-40 interactions per BX

LHC Upgrade – Phase II (2023)

- □ Increase interactions per BX
 - 140-200 interactions

CMS Detector

- Silicon Tracker, ECAL, HCAL, Muon Chamber
- 40 TB/s raw data
- Upgrade of L1 trigger system

CMS Trigger

Phase I (up to 2023)

□ L1 trigger from Calorimeters and Muon System

Phase II CMS (from 2023 on)

- □ Include Silicon Outer Tracker on L1 Trigger
- L1 Tracking Trigger
- Interesting track: high pT
- Process pre-trigger data ("stubs")
- Improve analysis of events candidates
- Filter and reduce the data to be transferred and recorded
 - From 40 TB/s to 100 MB/s
 - \circ Latency < 4 μ s

CMS Phase II: L1TT Approaches HW Demo 2016

Tracklet Approach

Time Multiplexed Trigger - TMT Approach

Associative Memory plus FPGA - AM+FPGA Approach

- FPGA hardware provides data formatting and sharing
- AM ASIC is a Content-addressable memories (CAMs) that provides Pattern Recognition
- Hardware demonstration based on Pulsar 2b ATCA Board
 - Custom Pattern Recognition Mezzanine for Pulsar 2b
- SPRACE team contribution are related to
 - ATCA infrastructure
 - CMS Outer Tracker Data Sourcing Emulator

Pulsar 2b ATCA Carrier Board

General purpose ATCA board developed by Fermilab

Designed to support L1 track trigger R&D

Xilinx Virtex 7 FPGA

XC7VX690T-FFG1927-2

Up to 80 GTH transceivers

- □ 40 for RTM
- □ 28 for Backplane
- 12 for Mezzanines

			Hot	
FMC Mozzanino	LVDS	1	Swap	Z
	3 G H	FPGA Virtex-7	40 GTH to RTM	E 3
FMC Mezzanine		XC7VX415T XC7VX485T XC7VX550T XC7VX690T	DDR3	
FMC Mezzanine		FFG1927	28 GTH to Fabric JTAG / SPI Base	Z O N E 2
FMC Mezzanine		REGULATORS Switchers, Linear 12V	s IPMC Mezzanine	Z O N E
🛟 Fermilab	JTAG	ISOLATED BUS CONVERTER	POWER INPUT MODULE	1

Four FMC Slots

- Up to 35W each
- □ LVDS up to 34 Gbps unidirectional
- 3 X GTH up to 30 Gbps bidirectional

Board Management

- IPMC Microcontroller IPMI protocol
- ATCA Standard communication w/ Shelf Manager
- □ TCP/IP Services
- XVC FPGA remote programming/debugging

SPRACE Instrumentation Contributions

SPRACE Implementation – FNAL ATCA Infrastructure*

IPMI

- Management & Control of the ATCA boards
- Cooling Control
- Energy Management
- Hot Swap Operations

XVC

- Service for FPGA remote access
- Development/debugging from distance

Rear cabling

- 120 optical cables
- □ 480 channels @ 10 Gbps capability

TTC synchronization

Clock and Control Signals to all boards

*A similar, despite smaller, ATCA infrastructure is about to be implemented at SPRACE São Paulo

SPRACE Implementation – Data Sourcing System FPGA Designs

User Interface

- IPbus protocols compatible
- Control/Debugging operations
- W/R operations at DSM BRAM

Data Sourcing Modules (DSM)

- Emulates 40 detector sensor module
- □ 16 kB memory per module

Serial Link Bandwidth

- 8 Gbps per module
- 320 Gbps per board
- □ 3.84 Tbps per ATCA Shelf

Synchronization

TTC signals synchronize both Shelves

DSS: General purpose testing system

□ ATCA BER, Latency, Synchronism measured

SPRACE Implementation – High Speed Link Integrity

Auto Tuning System

- Based on Python
- Handles with two Vivado Instances
- Debugs IBERT automatically

Auto Tuning Steps

- □ Stress the channel with PRBS 31 (PRBS 7)
- Tests several tuning combinations
- □ The system checks the result at receiver side

After best settings for RTM Links

- B Gbps presents good reliability
- BER in the order of 1E-11 or less

DS

Receiver

SPRACE Implementation – L1TT Integration

Integration Succeeded in Shelf Level

- Data Sourcing to Pattern Recognizer
- Measurement of the transmission latency
- $\circ~$ 170 ±8 ns @ 250 MHz and 8 Gbps
- Sent and received data perfectly match

AM+FPGA Collaboration used the Data Sourcing System as input data for L1TT system development

Summary

SPRACE instrumentation Milestones

- L1TT AM+FPGA demonstration requirements were reached!
- AM+FPGA collaboration had used the ATCA infrastructure and the DSS for development and debugging purpose
- Shelf Level Demonstration @ 8 Gbps was succeeded
- DSS is user friendly to rearm and shoot again
- Auto tuning system improved links performance

Ongoing Projects

- MGT Links
- Increase reliability of the links in higher speed
- Investigate clock schemes
- Evaluate Clock Jitter
- Tune Parameters
- Power Supply
- SPRACE ATCA infrastructure is being implemented at São Paulo

Possible Future Improvements

- IPMI
- New functionalities (IPMC)
- Configurations for Shelf Manager
- System Manager for IPMI sensors
- XVC
- Multi-Node XVC Multi-board per JTAG chain
- Implement/Test New Serial Links Protocols
- Codification, Clock Correction, Synchronism
- IPbus
- GUI and Burst Mode
- DSS
- Usage in order up/downstream scenarios
- ATCA
- Design of a carrier board and/or mezzanine cards
- Machine Learning
- Study of ML algorithms implementation in FPGAs

Thanks!

LUCASARRUDARAMALHO@GMAIL.COM

SEE BACKUP SLIDES FOR MORE DETAILS.

Backup Slides

L1 Tracking Trigger Data flow

Front End (FE) Electronics

- □ CMS Binary Chips (CBC)
- Converts hits to stub data
- Concentrator IC (CIC)
- Provides a frame with 8 BX stubs
- Service Hybrid
- Provides power payload and serial optical communication

Back End (BE) Electronics

- Data, Trigger and Control (DTC)
- □ L1 Track finding system
- Receives data from the DTC
- Processes with pattern recognition algorithms
- Selects tracks of interest
- Sends signal to Global Trigger Decision

AM+FPGA Approach

- Divides the detector in 48 Vertical Slices Trigger Towers
- Receives data from Trigger Tower in an ATCA Shelf
 - Pulsar 2b: a general purpose ATCA Board
 - Developed by FNAL R&D project
- □ Formats/shares data via high speed links in the backplane
- □ Associative Memory (AM) ASICs for pattern recognition

10 August 2017

ATCA Backplane

Advanced Telecommunication Computing Architecture (ATCA)

- Modular architecture
- Redundancy
- Hot-swap
- Self-controlling system
- Backplane distribution for high speed communication

Zone Connectors

- Zone 1 power supply and boards management through IPMI protocol. It contains the metallic test bus, the ringing generator bus, and low-level HPM signals
- Zone 2 base interface, fabric interface and synchronization clock interface signals
 - $^\circ~$ Base interface Dual star topology with the Switch physical slot and compatible with 0/100/1000BASE-T signaling
 - Fabric interface Dual star or Full Mesh topology
- Zone 3 Non-Standarized access to the Rear Transition Modules

ATCA Backplane@FNAL Implementation

ATCA Switch is the ATCA gateway for

- Fabric Interface Full Mesh
 - Communication between Pulsar 2b FPGAs
 - Serial Link protocols 10 Gbps
- Fabric Interface Dual Start
 - Communication between Switch and Pulsar 2b FPGA
 - Up to 10 Gbps TCP/IP communication
 - Main usage: User Interface protocols
 - Other TCP/IP protocols can also be used
- Base Interface
 - Communication between Switch and Pulsar 2b IPMC
 - TCP/IP 100 Mbps
 - Main usage: XVC for FPGA remote program/debug
 - Telnet, SSPI, FTP and other TCP/IP protocols
- Zone 1 IPMB-0 link
 - IPMI control signals between Pulsar 2b IPMCs and Shelf Manager
- □ Other links: JTAG, IPMB-L, GPIO, I²C
 - Board Standalone usage usage

XVC

XVC is an internet-based protocol that acts like a JTAG cable

- Debug and programming via Vivado hardware manager
- The implemented XVC Service has
- Reliability It has the same result as conventional JTAG program cable
- Mobility
 - The User can remotely connect the FPGAs in ATCA Shelf
 - No USB JTAG programming cable is needed anymore
- Scalability
 - The simultaneous FPGA program do not interfere each other
- Speed
 - Performance depends on XVC User computer performance XVC User internet connection
 FPGA image size

IPMC

TCP/IP

hw_server

Vivado

FPGA

IPbus

μHal (Hardware Access Library) Library with connections.xml

- μHal provides a Python/C++ API to control the interface bus implemented in the FPGA
 - Allows W/R operations in the hardware through a PC via standard network links
- The XML file makes the addressing be transparent to the user point of view
 - $^\circ~$ It can scale to several FPGAs control in several different boards in the ATCA Shelf

Data Sourcing FW with IPbus

- Offers a generic interface bus flexible enough to be used according to the project requirements
- Implements a UDP server and translates its messages, providing data transactions to user-defined modules attached to that bus
- □ In case of DS the system provides
 - An VHDL entity logic for control commands management up to 4096 addresses available
 - $^\circ$ $\,$ 4096 x 32 bits BRAM for each Sensor Module emulated and each GTH $\,$ Channel

User Interface Commands

Basic Functions

- Compatible with OEI and IPBus
 - Protocols that provide PC access to FPGA Memory Blocks
- Python interface
 - Can write Real Data Sample at Sender in the IP chosen
 - Can Read and Compare Real Data Samples in the IP chosen

Advanced Functions

- Python Interface
 - Can change IP/MAC Address
 - Reset/Rearm Signals
 - Serial Link Latency Measurements
 - BER measurements
 - Remote online tuning

Serial Link Protocol – GT Wizard Aurora 64b66b

64b66b encoding

- 3.125% overhead between data rate and line rate
 - i.e 7.75 Gbps data rate => 8 Gbps line rate
- Data input/output is controlled by the Gearbox
 - Considering 64 bits per clock cycle
 - $\,\circ\,$ 32 clock cycles with valid data I/O
 - $\circ~$ 1 clock cycle with a pause
 - Pauses are different between GT in the same FPGA
- Clock frequency depends of speed rate, oscillator available and PLL capabilities
- Latency is linear related to the speed rate
 - Jitter depends on the GearBox pauses

SPRACE Implementation – High Speed Link Integrity

Links @ 10 Gbps using PRBS31

- □ KC705 board, GTX transceivers
- □ Links performance (BER $\approx 10^{-8}$)
- Similar performance found at Pulsar 2b

Clock Jitter on MGTREFCLK

- The transceiver clock had unexpected jitter
- Causes link performance decrease

Studies performed find out that

The clock jitter have great influence of the power supplies

SPRACE Implementation – High Speed Link Integrity

Supply Noise

Jitter

Eye Scan

BER ≈ 10⁻⁸

BER < 10⁻¹⁴

LHC CMS TTC network

Synchronization by CERN TTCci system

TTC USB to VME Board

Translates communication between TTC VME Board and PC

TTC VME Board

- Can generate internal signal or use external signals as reference
 - LHC Sync system i.e
- An optical cable sends the signals needed
 - Common Clock Reference for the FPGA logic
 - Bunch Crossing Zero Flag (11 KHz)
 - Event Counter Zero Flag (User Defined)

TTC FMC Card

Receives optical signals and sends via LVDS in FMC to Pulsar 2b Virtex
7

Pulsar 2b with the TTC FMC is the sync master

 Replicate the signals through the backplane to the other slave Pulsar 2b boards

Simulation Contributions

AM+FPGA Simulation

Simulation Studies: High-Energy Jets

- Jets = sets of collimated high-energy tracks
- High-energy jets ($E_T > 100 \text{ GeV}$) very frequently produced in LHC
 - One order of magnitude more hits combinations for track fitting
 - \circ 95% CI → 5% bigger values
 - What is the impact of these events in terms of trigger latency?

