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Chiral effective field theory
for few- and many-nucleon systems 



 Why (precision) nuclear physics?

After discovery of Higgs boson,

Interesting topic on its own. Some current frontiers:
— the nuclear chart and limits of stability  FAIR, GANIL, ISOLDE,…

— EoS for nuclear matter (gravitational waves from n-star mergers)  LIGO/Virgo,…

— hypernuclei (neutron stars)  JLab, JSI/FAIR, J-PARC, MAMI,…    

But also highly relevant for searches for BSM physics, e.g.:
— direct Dark Matter searches (WIMP-nucleus scattering)
— searches for 0νββ decays
— searches for nucleon/nuclear EDMs
— proton radius puzzle (complementary experiments with light nuclei…) 

need a reliable approach to nuclear structure with quantified uncertainties!

the strong sector remains the only poorly 
understood part of the SM!



 From QCD to nuclei

QCD

effective chiral Lagrangian 

nuclear forces and currents

nuclear structure and dynamics

symmetries (especially the chiral symmetry);
lost of information (LECs)

integrate out                          (but retain               ):
Chiral Perturbation Theory

ab initio many-body methods:
lattice, FY, NCSM,…
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  Method of UT for nuclear forces

Begin with the Leff  [π,N] without external fields

Canonical formalism: Leff  [π,N]          H [π,N] =   

�From Leff to nuclear forces/currents
Method of  unitary transformation
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Apply UT in Fock space to decouple purely nucleonic states [model space] from the rest
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decoupling equation: 

which is solved perturbatively employing the chiral expansion

η-space λ-space
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decoupling equation: 

which is solved perturbatively employing the chiral expansion

η-space λ-space
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Apply all possible additional UTs on the η-subspace consistent with a given chiral order
[6 angles αi for static N3LO contributions]

Renormalizability of the potentials [all 1/(d-4) poles must be canceled by the c.t. from Leff]
       fixes some of the αi and leads to unique (static) expressions  

For more details see: EE, Nuclear Forces from Chiral Effective Field Theory: A Primer, arXiv:1001.3229[nucl-th]



 Chiral expansion of nuclear forces  [W-counting]
Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  EE et al. ’02

Bernard, EE, Krebs, Meißner,’08, ’11 EE ’06

Entem, Kaiser, Machleidt, Nosyk ’15
EE, Krebs, Meißner ’15

Girlanda, Kievsky, Viviani ’11
Krebs, Gasparyan, EE ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

— A similar program is being pursued for in chiral EFT with explicit Δ(1232) DOF



 
Application 1:
A new generation of chiral NN potentials 

— semi-local, coordinate-space-regularized up to N4LO

— semi-local, momentum-space-regularized up to N4LO+

— nonlocal, momentum-space-regularized up to N4LO+

EE, Krebs, Meißner, EPJA 51 (2015) 53; PRL 115 (2015) 122301

Reinert, Krebs, EE, EPJA 54 (2018) 88

Entem, Machleidt, Nosyk, PRC 96 (2017) 024004



 The long and short of nuclear forces

Short-range interactions have to be tuned to experimental data. In the isospin 
limit, one has according to NDA:

LO [Q0]:
NLO [Q2]:

N3LO [Q4]:

2 operators (S-waves)
+ 7 operators (S-, P-waves and ε1)

+ 12 operators (S-, P-, D-waves and ε1, ε2) 
N4LO [Q5]: no new terms

N2LO [Q3]: no new terms
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Nuclear χEFT in the Precision Era Evgeny Epelbaum

πN scattering 2π-exchange 

NN force

long- and intermediate-range parts of the 3NF

Figure 2: The long-range part of the nuclear force is completely predicted by the chiral symmetry
of QCD and experimental information on the pion-nucleon system.

part of the interaction and thus maintains the analytic structure of the amplitude in the low-energy
domain. This feature is in contrast with the non-local momentum-space regulator employed in the
first-generation NN potentials of Refs. [47, 48] of the type

V (p⃗, p⃗ ′)→V reg(p⃗, p⃗ ′) =V (p⃗, p⃗ ′)exp
(

−
p2n+ p′2n

Λ2n

)

, n= 2,3 , (2.7)

where p⃗, p⃗ ′ are the initial and final momenta of the nucleons in the center of mass system (CMS),
which distorts the long-range part of the interaction. Another advantage of the regulator in Eq. (2.5)
is that it cuts off precisely the undesired short-range components of the pion exchange contributions
which cannot be meaningfully predicted in chiral EFT instead of their large-momentum parts as
does the non-local regulator in Eq. (2.7). This makes the additional spectral-function regularization
(SFR) [75] of the two-pion exchange components, which was used e.g. in Refs. [48, 76] to tame
the unphysically strong attraction at short distances at N2LO [41], obsolete. This is a particularly
welcome feature in view of the ongoing and upcoming 3NF studies, in which the implementation
of the SFR would be rather non-trivial. The insensitivity of the calculated NN observables to the
value of the exponent in Eq. (2.5) is demonstrated in [18]. For contact interactions, we used in
Refs. [18, 19] a non-local Gaussian regulator in momentum space with the cutoff set to Λ= 2/R.

2.3 Determination of the LECs

I am now in the position to specify the employed values of the various LECs and begin with
the long-range part of the potential due to exchange of pion(s). Here, the framework of chiral
EFT shows its full power by allowing one to predict the long-range part of the nuclear force in a
parameter-free way using the available experimental information on the pion-nucleon system and
exploiting the constraints due to the chiral symmetry of QCD as visualized schematically in Fig. 2.
At orders N2LO, N3LO and N4LO, one needs to specify the values of the order-Q2, order-Q3 and
order-Q4 πN LECs ci, di and ei, respectively. At N2LO and N3LO, we used in [18] the values
of c1 = −0.81, c2 = 3.28, c3 = −4.69, c4 = 3.40, d̄1 + d̄2 = 3.06, d̄3 = −3.27, d̄5 = 0.45 and
d̄14 − d̄15 = −5.65 from the order-Q3 fits to πN data in the physical region [77] and inside the
Mandelstam triangle [78]. Further, the LEC d18 is adjusted to reproduce the observed value of the
Goldberger-Treiman discrepancy. Here and in the following, the values of the LECs are given in
units of GeV−n. The bars over the LECs indicate that I am using the convention of Ref. [77] by
setting the dimensional regularization scale equal to the pion mass. At N4LO, we employ the values
from our order-Q4 fit to Karlsruhe-Helsinki partial-wave analysis of πN scattering [55], namely:
c1 =−0.75, c2 = 3.49, c3 =−4.77, c4 = 3.34, d̄1+ d̄2 = 6.21, d̄3 =−6.83, d̄5 = 0.78, d̄14− d̄15 =
−12.02, ē14 = 1.52 and ē17 =−0.37. These values are in a reasonable agreement with the ones of
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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 Determination of πN LECs

Matching ChPT to πN Roy-Steiner equations

πN scattering, 
physical region

χ expansion of the πN amplitude expected to 
converge best within the Mandelstam triangle

Hoferichter, Ruiz de Elvira, Kubis, Meißner, PRL 115 (2015) 092301

Closer to the kinematics relevant for nuclear 
forces…

NN potential

Subthreshold coefficients (from RS analysis) 
provide a natural matching point to ChPT

subthreshold 
expansion

H

⌫ =
s� u

4m

~k ' 0

A
b

µ

s, p, rµ, lµ

s, p, rµ, lµ

rµ ! r
0
µ
= RrµR

†
+ iR @µR

†
,

lµ ! l
0
µ
= L lµL

†
+ iL @µL

†
,

s+ i p ! s
0
+ i p

0
= R(s+ i p)L

†
,

s� i p ! s
0 � i p

0
= L(s� i p)R

†

vµ = v
(s)

µ
+

1

2
⌧ · vµ, aµ =

1

2
⌧ · aµ, s = s0 + ⌧ · s, p = p0 + ⌧ · p ,

U [a, v, s, p] U [0, 0,mq, 0] = 1 H
0 6= U

†
HU

i
@

@t
 = H �! i

@

@t

⇣
U

†
(t) 

⌘
=

"

U
†
(t)HU(t)� U

†
(t)

 

i
@

@t
U(t)

!# ⇣
U

†
(t) 

⌘

V
j

µ
(~k, k0) :=

�He↵

�v
µ

j
(~k, k0)

, A
j

µ
(~k, k0) :=

�He↵

�a
µ

j
(~k, k0)

, P
j
(~k, k0) :=

�He↵

�pj(~k, k0)
,

v
j

µ
(x) =:

Z
d
4
qe

�iq·x
v
j

µ
(q), a

j

µ
(x) =:

Z
d
4
qe

�iq·x
a
j

µ
(q), p

j
(x) =:

Z
d
4
qe

�iq·x
p
j
(q).

f(x) =:

Z
d
4
q e

�iq·x
f(q)

�

�ajµ(k0,
~k)

h↵|S|�i = �i 2⇡�(E↵ � E� � k0)h↵|Aj

µ
(k0,

~k)|�i
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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Relevant LECs (in GeV-n) extracted from πN scattering 

Energy bin LO NLO N2LO N3LO N4LO N4LO+

neutron-proton data

0 � 100 MeV 130.11 3.79 1.46 1.08 1.08 1.08

0 � 200 MeV 104.71 19.88 3.21 1.14 1.09 1.10

0 � 300 MeV 111.24 52.03 8.78 1.51 1.15 1.13

proton-proton data

0 � 100 MeV 2046.58 33.68 6.67 0.86 0.84 0.84

0 � 200 MeV 1649.58 115.60 81.11 1.95 (1.08) 0.97

0 � 300 MeV 1301.41 104.38 84.24 2.73 (1.28) 1.18

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē17

[Q4]HB,NN, GW PWA �1.13 3.69 �5.51 3.71 5.57 �5.35 0.02 �10.26 1.75 �0.58

[Q4]HB,NN, KH PWA �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �0.37

[Q4]HB,NN, Roy-Steiner �1.10 3.57 �5.54 4.17 6.18 �8.91 0.86 �12.18 1.18 �0.18

[Q4]covariant, data �0.82 3.56 �4.59 3.44 5.43 �4.58 �0.40 �9.94 �0.63 �0.90
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— some LECs show sizable correlations (especially c1 and c3)…
Notice:

— KH PWA and Roy-Steiner LECs lead to comparable results in the NN sector
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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Relevant LECs (in GeV-n) extracted from πN scattering 

Energy bin LO NLO N2LO N3LO N4LO N4LO+

neutron-proton data

0 � 100 MeV 130.11 3.79 1.46 1.08 1.08 1.08

0 � 200 MeV 104.71 19.88 3.21 1.14 1.09 1.10

0 � 300 MeV 111.24 52.03 8.78 1.51 1.15 1.13

proton-proton data

0 � 100 MeV 2046.58 33.68 6.67 0.86 0.84 0.84

0 � 200 MeV 1649.58 115.60 81.11 1.95 (1.08) 0.97

0 � 300 MeV 1301.41 104.38 84.24 2.73 (1.28) 1.18

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē17

[Q4]HB,NN, GW PWA �1.13 3.69 �5.51 3.71 5.57 �5.35 0.02 �10.26 1.75 �0.58

[Q4]HB,NN, KH PWA �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �0.37

[Q4]HB,NN, Roy-Steiner �1.10 3.57 �5.54 4.17 6.18 �8.91 0.86 �12.18 1.18 �0.18

[Q4]covariant, data �0.82 3.56 �4.59 3.44 5.43 �4.58 �0.40 �9.94 �0.63 �0.90

m ! 1
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— some LECs show sizable correlations (especially c1 and c3)…
Notice:

— KH PWA and Roy-Steiner LECs lead to comparable results in the NN sector

With the LECs taken from πN, the long-range NN force is completely fixed (parameter-free)
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calculations) [Lepage ’97; EE, Gegelia ’09]. In practice, low values of Λ are preferred:

— many-body methods require soft interactions,
— spurious deeply-bound states for Λ > Λcrit make calculations for A > 3 unfeasible…

it is crucial to employ a regulator that minimizes finite-Λ artifacts!
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Nonlocal:

affect long-range interactions…



 Regularization
The cutoff Λ has to be kept finite, Λ ~ Λb (unless all counterterms are taken into account in the 
calculations) [Lepage ’97; EE, Gegelia ’09]. In practice, low values of Λ are preferred:

— many-body methods require soft interactions,
— spurious deeply-bound states for Λ > Λcrit make calculations for A > 3 unfeasible…

it is crucial to employ a regulator that minimizes finite-Λ artifacts!

~k ' 0

Si(k) :=
@He↵

@si(k)

�����
v=a=p=0, s=mq

S(0) =
@He↵

@mq

+ O(Q)

V (Q2)
2⇡ (q) =

2q4

⇡

Z 1

2M⇡

dµ

µ3

⇢(µ)

q2 + µ2
+ . . . �!

2q4

⇡

Z 1

2M⇡

dµ

µ3

⇢(µ)

q2 + µ2
freg

✓µ

⇤

◆
+ . . .

V reg
1⇡ /

1

~q 2 + M2
⇡

exp
✓
�

p04 + p4

⇤4

◆

V reg
1⇡ /

e�p04+p4

⇤4

~q 2 + M2
⇡

�!
1

~q 2 + M2
⇡

 

1 �
p04 + p4

⇤4
+ O(⇤�8)

!

V reg
1⇡ /

1

~q 2 + M2
⇡

e�p04+p4

⇤4 �!
1

~q 2 + M2
⇡

 

1 �
p04 + p4

⇤4
+ O(⇤�8)

!

⇢(µ) = =

h
V (0+

� iµ)
i

⇢(µ) = =

h
V (Q2)

2⇡ (0+
� iµ)

i

V (~p 0, ~p ) �! V⇤(~p
0, ~p ) = V (~p 0, ~p ) e�p0 (p0

/⇤)2n�(p/⇤)2n ,

V (~p 0, ~p ) �! V⇤(~p
0, ~p ) = V (~p 0, ~p ) e�(p0

/⇤)2n�(p/⇤)2n ,

V (~p 0, ~p ) �! V⇤(~p
0, ~p ) = V (~p 0, ~p ) exp

h
�(p0/⇤)2n � (p/⇤)2n

i
,

1

EE, Glöckle, Meißner ’04;
Entem, Machleidt ’03; 
Entem, Machleidt, Nosyk ’17; …

Nonlocal:

affect long-range interactions…
/ g

6

A

V
reg

1⇡
/

e
� ~q 2+M2

⇡
⇤2

~q 2 + M2

⇡

�!
1

~q 2 + M2

⇡

⇣
1 + short-range terms

⌘

vµ = v
(s)

µ
+

1

2
⌧ · v, aµ =

1

2
⌧ · a, s = s0 + ⌧ · s, p = p0 + ⌧ · p

vµ ! v
0
µ
= vµ + vµ ⇥ ✏V + aµ ⇥ ✏A + @µ✏V ,

aµ ! a
0
µ
= aµ + aµ ⇥ ✏V + vµ ⇥ ✏A + @µ✏A,

s0 ! s
0
0
= s0 � p · ✏A,

s ! s
0 = s + s ⇥ ✏V � p0✏A,

i p0 ! i p
0
0
= i(p0 + s · ✏A),

i p ! i p
0 = i(p + p ⇥ ✏V + s0 ✏A)

✏V =
1

2
(✏R + ✏L) and ✏A =

1

2
(✏R � ✏L) .

i
@

@t
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— Application to 2π exchange does not require re-calculating the corresponding diagrams:
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polynomial 
in q2, Mπ

~k ' 0

V (Q2)
2⇡ (~q ) =

g2
A

(2F⇡)4
~⌧1 · ~⌧2

Z d3l

(2⇡)3
l2 � q2

!+!�(!+ + !�)

V (Q2)
2⇡ (~q ) =

g2
A

(2F⇡)4
~⌧1 · ~⌧2

Z d3l1

(2⇡)3
d3l2

(2⇡)3
(2⇡)3�(~q �~l1 �~l2)

4~l1 ·~l2

!1!2(!1 + !2)

V (Q2)
2⇡ (~q ) /

Z d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

4~l1 ·~l2

!1!2(!1 + !2)

=
Z d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

2

⇡

Z 1

0
d�

4~l1 ·~l2

[!2
1 + �2][!2

2 + �2]

�!

Z
dµ2

1dµ
2
2

Z d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

2

⇡

Z 1

0
d�

4~l1 ·~l2 ⇢(µ1) ⇢(µ2)

[(~l21 + �2) + µ2
1][(

~l22 + �2) + µ2
2]

Z
d�

d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

h
@M⇡

i 1
h
(~l21 + �2) + M2

⇡

i h
(~l22 + �2) + M2

⇡

i ⇥ . . .

�! 2e� ~q2

2⇤2

Z
d�

d3l

(2⇡)3

h
@M⇡

i e�
~l2+4�2+4M2

⇡
2⇤2

h
!2

+ + 4�2
i h
!2

� + 4�2
i ⇥ . . .

Z
d�

d3l1d3l2

(2⇡)3
�(~q �~l1 �~l2)

h
@M⇡

i 1
h
(~l21 + �2) + M2

⇡

i h
(~l22 + �2) + M2

⇡

i ⇥ . . .

�! 2e� ~q2

2⇤2

Z
d�

d3l

(2⇡)3

h
@M⇡

i e�
~l2+4�2+4M2

⇡
2⇤2

h
(~q +~l)2 + 4M2

⇡
+ 4�2

i h
(~q �~l)2 + 4M2

⇡
+ 4�2

i ⇥ . . .

V (q) =
2

⇡

Z 1

2M⇡

µdµ
⇢(µ)

q2 + µ2
+ . . . �! V⇤(q) = e� q2

2⇤2
2

⇡

Z 1

2M⇡

µdµ
⇢(µ)

q2 + µ2
e� µ2

2⇤2 + . . . .

V (Q2)
2⇡ / g2

A

1

— Convention: choose polynomial terms such that                                  

— EM N
3
LO — — EMN N

4
LO

+
— — SMS N

4
LO

+
—

Elab bin ⇤ = 500 ⇤ = 600 ⇤ = 450 ⇤ = 500 ⇤ = 550 ⇤ = 450

neutron-proton scattering data

0 � 100 1.18 1.36 1.29 1.12 1.12 1.07
0 � 200 1.17 1.33 1.33 1.18 1.23 1.06
0 � 300 1.23 1.37 2.48 1.26 1.35 1.10

proton-proton scattering data

0 � 100 1.02 1.35 0.90 1.00 1.17 0.86
0 � 200 1.32 1.60 1.05 1.15 1.43 0.95
0 � 300 1.39 2.07 1.46 1.20 1.40 0.99

Energy bin N3LO Idaho 500/600 N4LO/N4LO+ CD Bonn 2000 Nijm II

neutron-proton data

0 � 100 MeV 1.17/1.35 1.08/1.08 1.08 1.08

0 � 200 MeV 1.17/1.33 1.09/1.10 1.07 1.07

0 � 300 MeV 1.24/1.38 1.15/1.13 1.09 1.11

proton-proton data

0 � 100 MeV 0.96/1.28 0.84/0.84 0.84 0.83

0 � 200 MeV 1.28/1.55 1.34/0.97 0.95 0.96

0 � 300 MeV 1.37/2.04 1.46/1.18 0.99 1.03
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= 0

”�2/datum” (np, 0-200 MeV) = 1.8
R=1.2 fm ! 0.8

R=1.1 fm ! 0.6
R=1.0 fm ! 0.7

R=0.9 fm ! 0.8
R=0.8 fm ,

while the results for pp channels are:

”�2/datum” (pp, 0-200 MeV) = 8.2
R=1.2 fm ! 2.2

R=1.1 fm ! 0.6
R=1.0 fm ! 0.7

R=0.9 fm ! 2.1
R=0.8 fm .

5

does not affect long-range physics at any order in 1/Λ2-expansion 

[inspired by 
Thomas Rijken]
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FIG. 2: (Color online) Ratios W (2)
C,⇤, i(r)/W

(2)
C,1(r) for for di↵erent implementations of the regularization i = 1, . . . , 4 defined in

the text as a function of the relative distance between the nucleons. Dashed-double-dotted light-brown, dashed blue, dashed-
dotted green and solid red lines refer to i = 1, 2, 3 and 4, respectively. The cuto↵ ⇤ is set to be ⇤ = 450 MeV. The dotted
horizontal line corresponds to the unregularized potential, i.e., the ratio is equal to 1, and is drawn to guide the eyes.

2. Next, we follow the opposite approach and retain only the momentum-dependent part of the regulator with-
out introducing spectral-function regularization. The regularized potential is defined by means of the twice
subtracted spectral integral

W (2)

C,⇤, 2
(q) = e�
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Z
q2dq j0(qr)W

(2)

C,⇤, 2
(q) . (2.36)

Alternatively, one can just multiply W (2)

C,1(q) by the regulator e�
q2

2⇤2 , which leads to a di↵erent admixture of
the contact terms. We found, however, that this definition leads to larger distortions at short distances as the
one in Eq. (2.36).

3. In the third approach, the regularized potential is defined according to Eq. (2.23) but without explicitly sub-
tracting the short-range terms, i.e.:
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and the Fourier transform to coordinate space can be performed using the second relation in Eq. (2.36).

4. Finally, the approach to define the regularized potential W (2)

C,⇤
(q) adopted in the present analysis is
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where the functions C2

C,i
(µ) are determined as described above and given in appendix A.

In Fig. 2, we show the ratios of the potentials W (2)

C,⇤, i
(r), with r = 1, . . . , 4, to the unregularized expression W (2)

C,1(r)
As before, we use the intermediate value of the cuto↵ of ⇤ = 450 MeV. Retaining only the momentum-transfer-
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i
,

”�2/datum” (np, 0-200 MeV) = 1.8
R=1.2 fm ! 0.8

R=1.1 fm ! 0.6
R=1.0 fm ! 0.7

R=0.9 fm ! 0.8
R=0.8 fm ,

5

Λ = 500 MeV

Does it matter in practice?

 Regularization



 NN data analysis

Since 1950-es, about 3000 proton-proton + 5000 neutron-proton scattering data below 
350 MeV have been measured.

However, certain data are mutually incompatible within errors and have to be rejected. 
2013 Granada database [Navarro-Perez et al., PRC 88 (2013) 064002], rejection rate: 31% np, 11% pp:
            2158 proton-proton + 2697 neutron-proton data below Elab = 300 MeV

7

Database

● Includes scattering data from 50ies up to 
2013

● uses ”3σ-criterion” to reject non-normal-
distributed data

● rejection rate 0-300 MeV: np: 31%, pp: 11%
np

pp

Use self-consistent 2013 Granada database 
[Phys. Rev. C 88.064002]

Comparison between theory and 
experiment via standard χ2 approach:

● Z (inverse relative norm) is chosen to 
minimze χ2

j

7

Database

● Includes scattering data from 50ies up to 
2013

● uses ”3σ-criterion” to reject non-normal-
distributed data

● rejection rate 0-300 MeV: np: 31%, pp: 11%
np

pp

Use self-consistent 2013 Granada database 
[Phys. Rev. C 88.064002]

Comparison between theory and 
experiment via standard χ2 approach:

● Z (inverse relative norm) is chosen to 
minimze χ2

j

7

Database

● Includes scattering data from 50ies up to 
2013

● uses ”3σ-criterion” to reject non-normal-
distributed data

● rejection rate 0-300 MeV: np: 31%, pp: 11%
np

pp

Use self-consistent 2013 Granada database 
[Phys. Rev. C 88.064002]

Comparison between theory and 
experiment via standard χ2 approach:

● Z (inverse relative norm) is chosen to 
minimze χ2

j

To fix NN contact interactions, use scattering data together with Bd = 2.224575(9) MeV 
and bnp = 3.7405(9) fm. 

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

Use local/nonlocal regulator for long-range/short-range contributions 
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FIG. 16: (Color online) Neutron-proton S-, P-, D- and F-wave phase shifts and the mixing angles ✏1, ✏2 and ✏2 as obtained
at N4LO+ using the cuto↵ ⇤ = 450 MeV (red solid lines) in comparison with the Nijmegen [20] (solid dots) the Granada [92]
(blue open triangles) and Gross-Stadler [121] (green open squares) PWA. Light shaded bands show the estimated truncation
error as explained in appendix D. The shown uncertainties of the Nijmegen PWA correspond to systematic errors estimated
from the Nijm I, II and Reid93 potentials [110] as explained in Ref. [6].

and 0.15%, respectively.13 In both cases, the observed ⇤-dependence is smaller than the deviations from the very
precisely known experimental/empirical values listed in Table VIII. These deviations amount to ⇠ 0.015 fm2 and
⇠ 0.009 fm for Q and rd, respectively, and are comparable with the truncation errors for these quantities at N2LO,

namely �Q(3) = ±(0.005 . . . 0.011) fm2 (depending on the cuto↵) and �r(3)
d

= ±0.005 fm, which estimate the expected
size of N3LO contributions to these observables. This is fully in line with the fact that our calculations do not take
into account the relativistic corrections and contributions to the exchange charge operator at N3LO, see Ref. [33, 34]
for explicit expressions. Our results further indicate that starting from N3LO, the theoretical uncertainty for both
quantities is dominated by the one of the ⇡N LECs similarly to other low-energy observables considered in this and
previous sections. For both Q and rd, employing the ⇡N LECs from set 2 tends to increase the discrepancy with the
empirical numbers.

13
The smaller cuto↵ dependence of the deuteron radius reflects the long-range nature of this observable as opposed to that of Q.

— N4LO+ yields currently the best description of the 2013 Granada database (Elab < 300 MeV) 
— 40% less parameters (27+1) compared to high-precision potentials
— Clear evidence of the parameter-free chiral 2π exchange 

 State-of-the-art NN potentials
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 Error analysis
1. Truncation error
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0
, v

0
, v̇

0
, s

0
, ṡ
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Figure 8: Predictions for the np differential cross section dσ/dΩ, the analyzing power Ay, the
rotation parameter R, the polarization-transfer parameters Dt , Rt and At and the spin-correlation
parameters Cnn, Ckp, Cpp, Ckk, Azx and Azz at Elab = 143MeV calculated up to N4LO based on the
cutoff of R = 0.9fm. Data for the cross section are at Elab = 142.8MeV and taken from [92] and
for the analyzing power from [93]. For remaining notation see Fig. 6.

Using Eqs. (3.3) and (3.4) and adopting Q = Mπ/Λb, our predictions for AS at N4LO is AS =
0.8844± 0.0002 fm−1/2 while the accuracy for η is beyond the quoted figures. For the rd and Q,
our results are incomplete as we do not include relativistic corrections and meson-exchange current
contributions. The estimated size of these corrections is consistent with the deviation between our
values and the empirical numbers, see [18] for an extended discussion.

4. Beyond the two-nucleon system

Having developed the new generation of NN potentials up to N4LO and the novel approach
to uncertainty quantification, which has been validated in the NN system, we are well prepared to
test nuclear chiral EFT in heavier systems and to systematically analyze the role of the 3NF, which
has been the subject of intense experimental research at FZ Jülich, GANIL, KVI, RIKEN, TUNL
and other laboratories. This is the main goal of the recently formed Low Energy Nuclear Physics
International Collaboration (LENPIC). The numerical implementation of the 3NF regularized in
the same way as the NN potentials of Refs. [18, 19] is currently in progress so that no results
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Using Eqs. (3.3) and (3.4) and adopting Q = Mπ/Λb, our predictions for AS at N4LO is AS =
0.8844± 0.0002 fm−1/2 while the accuracy for η is beyond the quoted figures. For the rd and Q,
our results are incomplete as we do not include relativistic corrections and meson-exchange current
contributions. The estimated size of these corrections is consistent with the deviation between our
values and the empirical numbers, see [18] for an extended discussion.

4. Beyond the two-nucleon system

Having developed the new generation of NN potentials up to N4LO and the novel approach
to uncertainty quantification, which has been validated in the NN system, we are well prepared to
test nuclear chiral EFT in heavier systems and to systematically analyze the role of the 3NF, which
has been the subject of intense experimental research at FZ Jülich, GANIL, KVI, RIKEN, TUNL
and other laboratories. This is the main goal of the recently formed Low Energy Nuclear Physics
International Collaboration (LENPIC). The numerical implementation of the 3NF regularized in
the same way as the NN potentials of Refs. [18, 19] is currently in progress so that no results
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0
, v

0
, v̇

0
, s

0
, ṡ
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Figure 8: Predictions for the np differential cross section dσ/dΩ, the analyzing power Ay, the
rotation parameter R, the polarization-transfer parameters Dt , Rt and At and the spin-correlation
parameters Cnn, Ckp, Cpp, Ckk, Azx and Azz at Elab = 143MeV calculated up to N4LO based on the
cutoff of R = 0.9fm. Data for the cross section are at Elab = 142.8MeV and taken from [92] and
for the analyzing power from [93]. For remaining notation see Fig. 6.

Using Eqs. (3.3) and (3.4) and adopting Q = Mπ/Λb, our predictions for AS at N4LO is AS =
0.8844± 0.0002 fm−1/2 while the accuracy for η is beyond the quoted figures. For the rd and Q,
our results are incomplete as we do not include relativistic corrections and meson-exchange current
contributions. The estimated size of these corrections is consistent with the deviation between our
values and the empirical numbers, see [18] for an extended discussion.

4. Beyond the two-nucleon system

Having developed the new generation of NN potentials up to N4LO and the novel approach
to uncertainty quantification, which has been validated in the NN system, we are well prepared to
test nuclear chiral EFT in heavier systems and to systematically analyze the role of the 3NF, which
has been the subject of intense experimental research at FZ Jülich, GANIL, KVI, RIKEN, TUNL
and other laboratories. This is the main goal of the recently formed Low Energy Nuclear Physics
International Collaboration (LENPIC). The numerical implementation of the 3NF regularized in
the same way as the NN potentials of Refs. [18, 19] is currently in progress so that no results
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rotation parameter R, the polarization-transfer parameters Dt , Rt and At and the spin-correlation
parameters Cnn, Ckp, Cpp, Ckk, Azx and Azz at Elab = 143MeV calculated up to N4LO based on the
cutoff of R = 0.9fm. Data for the cross section are at Elab = 142.8MeV and taken from [92] and
for the analyzing power from [93]. For remaining notation see Fig. 6.

Using Eqs. (3.3) and (3.4) and adopting Q = Mπ/Λb, our predictions for AS at N4LO is AS =
0.8844± 0.0002 fm−1/2 while the accuracy for η is beyond the quoted figures. For the rd and Q,
our results are incomplete as we do not include relativistic corrections and meson-exchange current
contributions. The estimated size of these corrections is consistent with the deviation between our
values and the empirical numbers, see [18] for an extended discussion.

4. Beyond the two-nucleon system

Having developed the new generation of NN potentials up to N4LO and the novel approach
to uncertainty quantification, which has been validated in the NN system, we are well prepared to
test nuclear chiral EFT in heavier systems and to systematically analyze the role of the 3NF, which
has been the subject of intense experimental research at FZ Jülich, GANIL, KVI, RIKEN, TUNL
and other laboratories. This is the main goal of the recently formed Low Energy Nuclear Physics
International Collaboration (LENPIC). The numerical implementation of the 3NF regularized in
the same way as the NN potentials of Refs. [18, 19] is currently in progress so that no results
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FIG. 8. (color online) Cross sections at 50MeV and 96MeV for all orders from EKM, with DOB intervals at each order using
a wide variety of prior sets. Note the change in scale at each order. The thick error bars indicate 68% DOB intervals while
the thin error bars indicate 95% DOB intervals. In each panel the dashed line is the result of the next-order calculation (NLO
at LO, N2LO at NLO, etc.), shown to facilitate an assessment of the statistical consistency of di↵erent prior choices. For each
prior choice, the intervals on the left are from keeping only the first omitted term while those on the right are including four
omitted terms. The shaded bands indicate the uncertainty from EKM.

that this results in the omission of the DOB interval for
N4LO at 50 MeV with Set A0.5�2 as c̄> is then less than
c̄(k), so the distribution is not defined in this case.

Overall, the prior sets A✏ and C✏ appear to be too con-
servative for predictions at LO; we know that A✏ and C✏

have incorporated less information than the alternatives
so it is no surprise that their posteriors are more widely
distributed. Importantly, we find that the posteriors for
�k for k � 2 are largely insensitive to the choice of prior,
even for the 95% DOB interval. As posteriors retain ar-
tifacts of the prior in inverse proportion to the strength
of the data, this similarity suggests that the data is su�-
ciently informative that any reasonable prior is properly
subservient and thus able to adapt to evidence of the real
world presented by the data.

IV. CHOICE OF EXPANSION PARAMETER

In the previous section, the scale ⇤b in the expansion
parameter was taken from Ref. [10], where it was ex-
tracted from error plots after the fit of the LECs. This
identification was certainly not rigorous in any statistical
sense. Therefore here we explore how ⇤b can be extracted
from the convergence pattern of the EFT for observables.

In the case of pQCD, Cacciari and Houdeau discussed
using an expansion parameter that is di↵erent from ↵s.
They introduced a scale factor �, so that the expansion
is in powers of ↵s/� [6]. This changes the expressions for
pr(�k|c0 . . . , ck) by a rescaling of the expansion param-
eter Q and a corresponding rescaling of the coe�cients
themselves. We can rewrite the series for an observable
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FIG. 10. (color online) Empirical determination of � by com-
paring results at di↵erent orders. The cross sections used are
the computations with the R = 0.9 fm regulator. Priors are
Set A(1)

✏ . For full explanation see text.

are fairly wide, but still the only curve which falls com-
pletely within the 68% interval is � = 1.3. The orig-
inal expansion parameter at � = 1 spends some time
above the 1� region, which may reflect that DOB inter-
vals resulting from this prior are too conservative; i.e.,
the actual success rate regularly exceeds the DOB that
has been assigned. This is consistent with our earlier ob-
servation that Set A✏ priors produce overly conservative
DOB intervals.
We also compute the intervals using Set C(1)

✏ , which ac-
counts for the e↵ects of each coe�cient and is less conser-
vative. The results are contained in Fig. 11. We see that
even for these assumptions, the � = 1 curve gets outside
the 1� band. The plot suggests � = 1.1 is a more con-
sistent choice (other values near � = 1.1 will, of course,
also be consistent). Because the DOB intervals computed

with Set C(1)

✏ priors are more informed by the available
coe�cients, this result may suggest a small increase in
the assigned breakdown scale is appropriate. However,
we note the small amount of data on EFT convergence
that is being used here; almost all rescalings considered
are consistent at the 2� level. Such determinations of ⇤b

from success rates can be sharpened by considering the
behavior of the EFT series for more observables.

B. Gaussian naturalness and the Forte method

in Ref. [45], Forte et al. suggest that, for QCD expan-
sions, the best � is the one that makes all the expansion
coe�cients closest to the same size, which they inter-
pret as a statement that the coe�cients should be nor-
mally distributed around a single number µ with variance
�
2 [45]. For a quantity for which the known information
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FIG. 11. (color online) Empirical determination of � by com-
paring results at di↵erent orders. The cross sections used are
the computations with the R = 0.9 fm regulator. Priors are
Set C(1)

✏ . For full explanation see text.

is a mean and standard deviation, in this case a particular
coe�cient cn, the method of maximum entropy results in
a distribution that is a gaussian [20, 22]:

pr(cn|�, µ,�) =
1

p
2⇡�

exp

✓
�
(|cn|�n

� µ)2

2�2

◆
. (41)

If we have several known coe�cients, all of which are
drawn from a distribution with the same mean and stan-
dard deviation, the joint pdf pr(c0, . . . , ck|�, µ,�) be-
comes the standard likelihood function. If � = c̄ and
µ = 0 such a distribution corresponds to the Set C prior
of Table I.
Forte et al. consider the probability distribution for

both µ and � given a set of {cn} [45]. This can be ob-
tained from (41) using Bayes’ theorem:

pr(�, µ|c0, . . . , ck,�) =
pr(c0, . . . , ck|�, µ,�) pr(�, µ|�)

pr(c0, . . . , ck|�)
.

(42)
Forte et al. assign no prior information to � and µ other
than that both are larger than zero, and neither quantity
depends on � a priori. They then take the prior and the
evidence in the denominator to be an overall normaliza-
tion factor that is independent of � and µ, and so do
not calculate them explicitly (cf. discussion of a scale-
invariant prior for � below). The pdf for � and µ can
then be written

pr(�, µ|c0, . . . , ck,�) / pr(c0, . . . , ck|�, µ,�) , (43)

meaning that maximizing the probability of � and µ is
equivalent to minimizing

�
2 =

NOX

i=1

kX

n=0

 
|c

(i)

n |�
n
� µ

�

!2

, (44)
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Figure 7: Chiral expansion of the np total cross section at different energies based on R = 0.9 fm
in comparison with experimental data of Ref. [90]. The horizontal band shows the result of the
NPWA.

Table 2: Deuteron binding energy Bd (in MeV), asymptotic S state normalization AS (in fm−1/2),
asymptotic D/S state ratio η , radius rd (in fm), quadrupole moment Q (in fm2) and the D-state
probability PD (in %) based on the cutoff R= 0.9 fm. Notice that rd and Q are calculated without
including exchange current contributions and relativistic corrections. References to experimental
data/empirical values can be found in Ref. [18].

LO NLO N2LO N3LO N4LO Empirical

Bd 2.0235 2.1987 2.2311 2.2246⋆ 2.2246⋆ 2.224575(9)
AS 0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
η 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
rd 1.990 1.968 1.966 1.972 1.972 1.97535(85)
Q 0.230 0.273 0.270 0.271 0.271 0.2859(3)
PD 2.54 4.73 4.50 4.19 4.29
⋆The deuteron binding energy has been taken as input in the fit.

NPWA and confirm a good convergence of the chiral expansion. More results for NN observables
can be found in Refs. [18, 19].

As already advertised, the novel approach to uncertainty quantification is not restricted to a
particular choice of the regulator. Carrying out the error analysis for calculations based on different
choices of R thus provides a useful consistency check of the method. In Fig. 9, we show the results
for the total cross section at all orders starting from NLO and for all considered cutoff choices.
Within the quoted errors, the predictions based on different values of R agree with each other and
the NPWA for all orders in the chiral expansion. The accuracy of the predicted results for the cross
section shows the same dependence on the cutoff as the quality of the fits discussed in section 2.4.

In Table 2, we list our results for the deuteron properties. At the considered accuracy level,
the chiral expansion is nearly converged already at N3LO except for PD which is not an observable
quantity.8 The predicted values for AS and η are in excellent agreement with the empirical numbers.

8PD = 5%±1% has been used as an additional “data” point in the fits at N3LO and N4LO in order to stabilize the
results, see Ref. [18] for more detail.

15

 900

 950

 1000

 1050

 1100

Q0 Q2 Q3 Q4 Q5 Exp

� t
ot

 [
m

b
]

10 MeV

 145

 150

 155

 160

Q0 Q2 Q3 Q4 Q5 Exp

70 MeV

 70

 75

 80

 85

Q0 Q2 Q3 Q4 Q5 Exp

135 MeV

 40

 50

 60

 70

Q0 Q2 Q3 Q4 Q5 Exp

200 MeV

orders

σ t
ot

 [m
b]

without 3NF

— calculations based on the 
     EE et al., PRL 115 (2015) 122301

— Bayseian analysis [BUQEYE], 
       Furnstahl et al., PRC92 (15) 024005

Verification of the 
breakdown scale 

(Λb = 600 MeV)



 

2. Statistical uncertainties

3. Uncertainties due to πN LECs c1,2,3,4 , d1,2,3,5,14,15  and e14,17
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0
, p

0
, ṗ
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0
, v

0
, v̇

0
, s

0
, ṡ
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Figure 8: Predictions for the np differential cross section dσ/dΩ, the analyzing power Ay, the
rotation parameter R, the polarization-transfer parameters Dt , Rt and At and the spin-correlation
parameters Cnn, Ckp, Cpp, Ckk, Azx and Azz at Elab = 143MeV calculated up to N4LO based on the
cutoff of R = 0.9fm. Data for the cross section are at Elab = 142.8MeV and taken from [92] and
for the analyzing power from [93]. For remaining notation see Fig. 6.

Using Eqs. (3.3) and (3.4) and adopting Q = Mπ/Λb, our predictions for AS at N4LO is AS =
0.8844± 0.0002 fm−1/2 while the accuracy for η is beyond the quoted figures. For the rd and Q,
our results are incomplete as we do not include relativistic corrections and meson-exchange current
contributions. The estimated size of these corrections is consistent with the deviation between our
values and the empirical numbers, see [18] for an extended discussion.

4. Beyond the two-nucleon system

Having developed the new generation of NN potentials up to N4LO and the novel approach
to uncertainty quantification, which has been validated in the NN system, we are well prepared to
test nuclear chiral EFT in heavier systems and to systematically analyze the role of the 3NF, which
has been the subject of intense experimental research at FZ Jülich, GANIL, KVI, RIKEN, TUNL
and other laboratories. This is the main goal of the recently formed Low Energy Nuclear Physics
International Collaboration (LENPIC). The numerical implementation of the 3NF regularized in
the same way as the NN potentials of Refs. [18, 19] is currently in progress so that no results

16

Nuclear χEFT in the Precision Era Evgeny Epelbaum

!"

!#

!$"

!$#

!%"

&!!&""#'()*+$

!"

!#

!$"

!$#

!%"

&!!&""#'()*+$

,"-%

!"

!"-%

!"-.

!"-/ 01

,"-%

!"

!"-%

!"-.

!"-/ 01

,"-#

!"

!"-#

!$

2

,"-#

!"

!"-#

!$

2

,"-#

!"

!"-#

!$ 34

,"-#

!"

!"-#

!$ 34

,"-#

!"

!"-#

!$

04

,"-#

!"

!"-#

!$

04

,$

,"-#

!"

!"-#

24

,$

,"-#

!"

!"-#

24

!"

!#$%

&#

&#$%

&" '((

!"

!#$%

&#

&#$%

&" '((

!#$)

&#

&#$)

&#$*

&#$+ ',-

!#$)

&#

&#$)

&#$*

&#$+ ',-

!"

!#$%

&#

&#$% '--

!"

!#$%

&#

&#$% '--

!"

!#$%

&#

&#$%

&"

# +# ")# ".#

!'/&01234

',,

!"

!#$%

&#

&#$%

&"

# +# ")# ".#

!'/&01234

',,

!#$%

&#

&#$%

# +# ")# ".#

!'/&01234

567

!#$%

&#

&#$%

# +# ")# ".#

!'/&01234

567

!"

!#$%

&#

&#$%

&"

# +# ")# ".#

!'/&01234

566

!"

!#$%

&#

&#$%

&"

# +# ")# ".#

!'/&01234

566

Figure 8: Predictions for the np differential cross section dσ/dΩ, the analyzing power Ay, the
rotation parameter R, the polarization-transfer parameters Dt , Rt and At and the spin-correlation
parameters Cnn, Ckp, Cpp, Ckk, Azx and Azz at Elab = 143MeV calculated up to N4LO based on the
cutoff of R = 0.9fm. Data for the cross section are at Elab = 142.8MeV and taken from [92] and
for the analyzing power from [93]. For remaining notation see Fig. 6.

Using Eqs. (3.3) and (3.4) and adopting Q = Mπ/Λb, our predictions for AS at N4LO is AS =
0.8844± 0.0002 fm−1/2 while the accuracy for η is beyond the quoted figures. For the rd and Q,
our results are incomplete as we do not include relativistic corrections and meson-exchange current
contributions. The estimated size of these corrections is consistent with the deviation between our
values and the empirical numbers, see [18] for an extended discussion.

4. Beyond the two-nucleon system

Having developed the new generation of NN potentials up to N4LO and the novel approach
to uncertainty quantification, which has been validated in the NN system, we are well prepared to
test nuclear chiral EFT in heavier systems and to systematically analyze the role of the 3NF, which
has been the subject of intense experimental research at FZ Jülich, GANIL, KVI, RIKEN, TUNL
and other laboratories. This is the main goal of the recently formed Low Energy Nuclear Physics
International Collaboration (LENPIC). The numerical implementation of the 3NF regularized in
the same way as the NN potentials of Refs. [18, 19] is currently in progress so that no results
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Exp:
Rodning, Knutson ’90

statistical error variation of Emax

truncation error πN LECs

Example: deuteron asymptotic normalizations (relevant for nuclear astrophysics)

Elab bin CD-Bonn — Idaho N3LO — — improved chiral potentials at N3LO, this work —
(MeV) (500) (600) R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

neutron-proton
0–100 0.6 1.7 5.2 0.8 0.7 0.6 0.7 1.4
0–200 0.6 2.2 5.3 0.8 0.7 0.6 0.8 1.8
0–300 0.6 3.3 6.8 2.1 1.5 1.8 4.0 10.7

proton-proton
0–100 0.5 1.5? 6.7? 1.8 0.8 0.5 1.2 4.6
0–200 1.3 2.9? 11.7? 2.1 0.7 0.6 2.2 8.2
0–300 1.3 5.9? 30.0? 12.0 3.2 7.0 24.5 66.8

?The 1S0 partial wave has not been taken into account.

Elab bin CD-Bonn — Idaho N3LO — — improved chiral potentials at N3LO, this work —
(MeV) (500) (600) R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

neutron-proton phase shifts
0–100 0.6 1.7 5.2 0.8 0.7 0.6 0.7 1.4
0–200 0.6 2.2 5.3 0.8 0.7 0.6 0.8 1.8
0–300 0.6 3.3 6.8 2.1 1.5 1.8 4.0 10.7

proton-proton phase shifts
0–100 0.5 1.5? 6.7? 1.8 0.8 0.5 1.2 4.6
0–200 1.3 2.9? 11.7? 2.1 0.7 0.6 2.2 8.2
0–300 1.3 5.9? 30.0? 12.0 3.2 7.0 24.5 66.8

?The 1S0 partial wave has not been taken into account.
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Our determination:

 Error analysis P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

In most cases, the uncertainty is dominated by truncation errors. At N4LO and at very low 
energies, other sources of errors become comparable (especially πN LECs…). 



 

— LENPIC Collaboration —

LENPIC: Low Energy Nuclear Physics International Collaboration
LENPIC

Goal: precision tests of chiral nuclear forces & currents in light nuclei

Strategy: go to high orders, do not compromise the πN LECs, no fine
                 tuning to heavy nuclei, careful error analysis

Applications 2: Beyond the 2N system 



  Light nuclei based on 2NF alone

LENPIC: Low Energy Nuclear Physics International Collaboration
LENPIC

LENPIC Collaboration (Maris et al.), EPJ Web of Conf. 113 (2016) 04015
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Figure 2. Results for 4He: gs
energy and point-proton rms
radius (rp) at different chiral
order, with both theoretical
(chiral) uncertainty estimates
(blue) and many-body numerical
uncertainties (red), with
experimental values in green.
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Figure 3. Results for 6Li: gs energy, excitation energies of the two lowest excited states, and gs magnetic moment
at different chiral order.

weakens. We also see a dramatic difference in convergence rate: the strongly bound nucleus 4He
converges more rapidly than the weakly bound nucleus 6Li; furthermore, up to N2LO convergence is
rapid, but at N3LO and N4LO our results for 6Li are far from being converged, even at Nmax = 18.

In order to improve the convergence of the many-body calculations we apply the Similarity Renor-
malization Group (SRG) at the three-body level to ’soften’ the chiral NN interaction [8–11]. Indeed,
at SRG evolution values of α = 0.04 fm4 and α = 0.08 fm4 we do find rapid convergence of the
many-body calculation, and, including induced 3N interactions, only very weak dependence on
the SRG evolution. Up to N2LO, the SRG evolution produces results for 6Li to within a fraction
of a percent of those without SRG; at N3LO and N4LO the results with the SRG evolution are
significantly better converged than, and within the extrapolation uncertainties of, the uncon-
verged results without SRG evolution. Finally, as a cross-check we also confirm that, to within
our estimated numerical accuracy, our results for 4He agree with results obtained in the Faddeev–
Yakubovsky framework [6].

In figures 2 and 3 we summarize our results at different orders in the chiral expansion. In addition
to the estimated numerical uncertainties in the many-body calculation, we also display the estimated
theoretical chiral uncertainties following [3–6]. The chiral uncertainties decrease with increasing chi-
ral order (as they should). However, the many-body numerical uncertainty increases with increasing
chiral order, and at N3LO and N4LO our results for 6Li are dominated by the many-body uncertainties.
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weakens. We also see a dramatic difference in convergence rate: the strongly bound nucleus 4He
converges more rapidly than the weakly bound nucleus 6Li; furthermore, up to N2LO convergence is
rapid, but at N3LO and N4LO our results for 6Li are far from being converged, even at Nmax = 18.

In order to improve the convergence of the many-body calculations we apply the Similarity Renor-
malization Group (SRG) at the three-body level to ’soften’ the chiral NN interaction [8–11]. Indeed,
at SRG evolution values of α = 0.04 fm4 and α = 0.08 fm4 we do find rapid convergence of the
many-body calculation, and, including induced 3N interactions, only very weak dependence on
the SRG evolution. Up to N2LO, the SRG evolution produces results for 6Li to within a fraction
of a percent of those without SRG; at N3LO and N4LO the results with the SRG evolution are
significantly better converged than, and within the extrapolation uncertainties of, the uncon-
verged results without SRG evolution. Finally, as a cross-check we also confirm that, to within
our estimated numerical accuracy, our results for 4He agree with results obtained in the Faddeev–
Yakubovsky framework [6].

In figures 2 and 3 we summarize our results at different orders in the chiral expansion. In addition
to the estimated numerical uncertainties in the many-body calculation, we also display the estimated
theoretical chiral uncertainties following [3–6]. The chiral uncertainties decrease with increasing chi-
ral order (as they should). However, the many-body numerical uncertainty increases with increasing
chiral order, and at N3LO and N4LO our results for 6Li are dominated by the many-body uncertainties.
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Figure 2: (Color online) Predictions for the EOS of SNM (left panel) and PNM
(right panel) based on the chiral NN potentials of Refs. [35, 36] for R = 0.9 fm
(upper raw) and R = 1.0 fm (lower raw) along with the estimated theoretical
uncertainties. Open rectangles visualize the empirical saturation point of sym-
metric nuclear matter.

The breakdown scale of the nuclear chiral EFT was estimated
to be ⇤b ' 600 MeV [35].3 The Bayesian analysis of the chiral
EFT predictions for the NN total cross section of Ref. [60] has
revealed, that the actual breakdown scale may even be a little
higher than ⇤b ' 600 MeV for R = 0.9 fm. It goes without say-
ing that the estimated theoretical uncertainty at N2LO – N4LO
determines the accuracy of complete calculations which require
the inclusion of the corresponding many-body forces.

In Fig. 2, we show the results for the EOS for SNM and PNM
including the estimated theoretical uncertainties at various or-
ders of the chiral expansion for the most accurate versions of the
NN potentials with R = 0.9 fm and R = 1.0 fm [35, 36]. The ex-
pansion parameter Q at a given density is estimated by identify-
ing the momentum scale p with the Fermi momentum kF, which
is related to the density ⇢ via ⇢ = 2k

3
F/(3⇡

2) (⇢ = k
3
F/(3⇡

2))
for SNM (PNM), and assuming ⇤b = 600 MeV. At the satura-
tion density, the achievable accuracy of the chiral EFT predic-
tions for the energy per particle may be expected to be about
±1.5 MeV (±0.3 MeV) for SNM and ±2 MeV (±0.7 MeV) for
PNM at N2LO (N4LO). Notice that the expected accuracy at
N4LO is significantly smaller than the current model depen-
dence for these quantities. We further emphasize that the pre-
sented estimations should be taken with some care due to the
non-availability of complete calculations beyond NLO. More
reliable estimations of the theoretical uncertainty using the ap-
proach of [35] will be possible once the corresponding three-
and four-nucleon forces are included.

Our results confirm the conclusions of [54] that cuto↵ vari-
ation does not provide an adequate way for estimating the un-
certainties in the calculations of the nuclear EOS. As discussed
in [35], residual cuto↵-dependence of observables may gener-
ally be expected to underestimate the theoretical uncertainty at
NLO and N3LO, which is consistent with our results. Further,

3To account for increasing finite-cuto↵ artefacts using softer versions of the
chiral forces, the lower values of ⇤b = 500 MeV and 400 MeV were employed
in calculations based on R = 1.1 fm and R = 1.2 fm, respectively.
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Figure 3: (Color online) Chiral expansion of the symmetry energy asymm (left
panel) and the slope parameter L (right panel) at the empirical saturation den-
sity for the cuto↵ values of R = 0.9 fm (upper raw) and R = 1.0 fm (lower
raw) along with the estimated theoretical uncertainty. Solid circles (open rect-
angles) show the complete results at a given chiral order (incomplete results
based on NN interactions only). Solid triangles show the current experimental
constraints on asymm and L as described in the text.

the spread of results for di↵erent values of R at N4LO appears
to be roughly of a similar size as the estimated uncertainty at
this order. We, however, refrain from drawing more definite
conclusions on the cuto↵ dependence based on the incomplete
calculations.

Finally, we have also quantified the achievable accuracy of
the theoretical determination of the symmetry energy asymm and
the slope parameter L, defined as L = 3⇢ @(E/A)SNM/@⇢, at the
empirical saturation density. These important quantities have
been constrained by the available experimental information on
e.g. neutron skin thickness, heavy ion collisions and dipole
polarizabilities leading to the ranges of 29 MeV . asymm .
33 MeV and 40 MeV . L . 62 MeV [61, 62, 63]. In Fig. 3,
we show our results for these quantities using the NN potentials
from LO to N4LO along with the estimated theoretical uncer-
tainties. Especially for the slope parameter, a complete calcu-
lation at N4LO would yield a theoretical prediction much more
accurate than the current experimental data.

5. Summary and conclusions

In summary, we calculated the equations of state (EOSs) of
SNM and PNM with the state-of-the-art chiral NN potential-
s from LO to N4LO in the framework of Brueckner-Hartree-
Fock theory. At N4LO, the EOS of SNM has saturation points
for all employed cuto↵ values with the corresponding satura-
tion densities and binding energies per particle being within
the range of 0.27 . . . 0.39 fm�3 and �16.09 . . . � 23.03 MeV,
respectively. These values are compatible with the ones based

6
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Figure 2: (Color online) Predictions for the EOS of SNM (left panel) and PNM
(right panel) based on the chiral NN potentials of Refs. [35, 36] for R = 0.9 fm
(upper raw) and R = 1.0 fm (lower raw) along with the estimated theoretical
uncertainties. Open rectangles visualize the empirical saturation point of sym-
metric nuclear matter.

The breakdown scale of the nuclear chiral EFT was estimated
to be ⇤b ' 600 MeV [35].3 The Bayesian analysis of the chiral
EFT predictions for the NN total cross section of Ref. [60] has
revealed, that the actual breakdown scale may even be a little
higher than ⇤b ' 600 MeV for R = 0.9 fm. It goes without say-
ing that the estimated theoretical uncertainty at N2LO – N4LO
determines the accuracy of complete calculations which require
the inclusion of the corresponding many-body forces.

In Fig. 2, we show the results for the EOS for SNM and PNM
including the estimated theoretical uncertainties at various or-
ders of the chiral expansion for the most accurate versions of the
NN potentials with R = 0.9 fm and R = 1.0 fm [35, 36]. The ex-
pansion parameter Q at a given density is estimated by identify-
ing the momentum scale p with the Fermi momentum kF, which
is related to the density ⇢ via ⇢ = 2k

3
F/(3⇡

2) (⇢ = k
3
F/(3⇡

2))
for SNM (PNM), and assuming ⇤b = 600 MeV. At the satura-
tion density, the achievable accuracy of the chiral EFT predic-
tions for the energy per particle may be expected to be about
±1.5 MeV (±0.3 MeV) for SNM and ±2 MeV (±0.7 MeV) for
PNM at N2LO (N4LO). Notice that the expected accuracy at
N4LO is significantly smaller than the current model depen-
dence for these quantities. We further emphasize that the pre-
sented estimations should be taken with some care due to the
non-availability of complete calculations beyond NLO. More
reliable estimations of the theoretical uncertainty using the ap-
proach of [35] will be possible once the corresponding three-
and four-nucleon forces are included.

Our results confirm the conclusions of [54] that cuto↵ vari-
ation does not provide an adequate way for estimating the un-
certainties in the calculations of the nuclear EOS. As discussed
in [35], residual cuto↵-dependence of observables may gener-
ally be expected to underestimate the theoretical uncertainty at
NLO and N3LO, which is consistent with our results. Further,

3To account for increasing finite-cuto↵ artefacts using softer versions of the
chiral forces, the lower values of ⇤b = 500 MeV and 400 MeV were employed
in calculations based on R = 1.1 fm and R = 1.2 fm, respectively.

 20

 25

 30

 35

 40

 45

Q0 Q2 Q3 Q4 Q5  Exp

a
sy

m
m

 [
M

e
V

]

R = 0.9 fm

 30

 40

 50

 60

 70

Q0 Q2 Q3 Q4 Q5  Exp

L
 [

M
e

V
]

R = 0.9 fm

 20

 25

 30

 35

 40

 45

Q0 Q2 Q3 Q4 Q5  Exp

a
sy

m
m

 [
M

e
V

]

R = 1.0 fm

 30

 40

 50

 60

 70

Q0 Q2 Q3 Q4 Q5  Exp

L
 [

M
e

V
]

R = 1.0 fm

Figure 3: (Color online) Chiral expansion of the symmetry energy asymm (left
panel) and the slope parameter L (right panel) at the empirical saturation den-
sity for the cuto↵ values of R = 0.9 fm (upper raw) and R = 1.0 fm (lower
raw) along with the estimated theoretical uncertainty. Solid circles (open rect-
angles) show the complete results at a given chiral order (incomplete results
based on NN interactions only). Solid triangles show the current experimental
constraints on asymm and L as described in the text.

the spread of results for di↵erent values of R at N4LO appears
to be roughly of a similar size as the estimated uncertainty at
this order. We, however, refrain from drawing more definite
conclusions on the cuto↵ dependence based on the incomplete
calculations.

Finally, we have also quantified the achievable accuracy of
the theoretical determination of the symmetry energy asymm and
the slope parameter L, defined as L = 3⇢ @(E/A)SNM/@⇢, at the
empirical saturation density. These important quantities have
been constrained by the available experimental information on
e.g. neutron skin thickness, heavy ion collisions and dipole
polarizabilities leading to the ranges of 29 MeV . asymm .
33 MeV and 40 MeV . L . 62 MeV [61, 62, 63]. In Fig. 3,
we show our results for these quantities using the NN potentials
from LO to N4LO along with the estimated theoretical uncer-
tainties. Especially for the slope parameter, a complete calcu-
lation at N4LO would yield a theoretical prediction much more
accurate than the current experimental data.

5. Summary and conclusions

In summary, we calculated the equations of state (EOSs) of
SNM and PNM with the state-of-the-art chiral NN potential-
s from LO to N4LO in the framework of Brueckner-Hartree-
Fock theory. At N4LO, the EOS of SNM has saturation points
for all employed cuto↵ values with the corresponding satura-
tion densities and binding energies per particle being within
the range of 0.27 . . . 0.39 fm�3 and �16.09 . . . � 23.03 MeV,
respectively. These values are compatible with the ones based
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Figure 2: (Color online) Predictions for the EOS of SNM (left panel) and PNM
(right panel) based on the chiral NN potentials of Refs. [35, 36] for R = 0.9 fm
(upper raw) and R = 1.0 fm (lower raw) along with the estimated theoretical
uncertainties. Open rectangles visualize the empirical saturation point of sym-
metric nuclear matter.

The breakdown scale of the nuclear chiral EFT was estimated
to be ⇤b ' 600 MeV [35].3 The Bayesian analysis of the chiral
EFT predictions for the NN total cross section of Ref. [60] has
revealed, that the actual breakdown scale may even be a little
higher than ⇤b ' 600 MeV for R = 0.9 fm. It goes without say-
ing that the estimated theoretical uncertainty at N2LO – N4LO
determines the accuracy of complete calculations which require
the inclusion of the corresponding many-body forces.

In Fig. 2, we show the results for the EOS for SNM and PNM
including the estimated theoretical uncertainties at various or-
ders of the chiral expansion for the most accurate versions of the
NN potentials with R = 0.9 fm and R = 1.0 fm [35, 36]. The ex-
pansion parameter Q at a given density is estimated by identify-
ing the momentum scale p with the Fermi momentum kF, which
is related to the density ⇢ via ⇢ = 2k

3
F/(3⇡

2) (⇢ = k
3
F/(3⇡

2))
for SNM (PNM), and assuming ⇤b = 600 MeV. At the satura-
tion density, the achievable accuracy of the chiral EFT predic-
tions for the energy per particle may be expected to be about
±1.5 MeV (±0.3 MeV) for SNM and ±2 MeV (±0.7 MeV) for
PNM at N2LO (N4LO). Notice that the expected accuracy at
N4LO is significantly smaller than the current model depen-
dence for these quantities. We further emphasize that the pre-
sented estimations should be taken with some care due to the
non-availability of complete calculations beyond NLO. More
reliable estimations of the theoretical uncertainty using the ap-
proach of [35] will be possible once the corresponding three-
and four-nucleon forces are included.

Our results confirm the conclusions of [54] that cuto↵ vari-
ation does not provide an adequate way for estimating the un-
certainties in the calculations of the nuclear EOS. As discussed
in [35], residual cuto↵-dependence of observables may gener-
ally be expected to underestimate the theoretical uncertainty at
NLO and N3LO, which is consistent with our results. Further,

3To account for increasing finite-cuto↵ artefacts using softer versions of the
chiral forces, the lower values of ⇤b = 500 MeV and 400 MeV were employed
in calculations based on R = 1.1 fm and R = 1.2 fm, respectively.
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Figure 3: (Color online) Chiral expansion of the symmetry energy asymm (left
panel) and the slope parameter L (right panel) at the empirical saturation den-
sity for the cuto↵ values of R = 0.9 fm (upper raw) and R = 1.0 fm (lower
raw) along with the estimated theoretical uncertainty. Solid circles (open rect-
angles) show the complete results at a given chiral order (incomplete results
based on NN interactions only). Solid triangles show the current experimental
constraints on asymm and L as described in the text.

the spread of results for di↵erent values of R at N4LO appears
to be roughly of a similar size as the estimated uncertainty at
this order. We, however, refrain from drawing more definite
conclusions on the cuto↵ dependence based on the incomplete
calculations.

Finally, we have also quantified the achievable accuracy of
the theoretical determination of the symmetry energy asymm and
the slope parameter L, defined as L = 3⇢ @(E/A)SNM/@⇢, at the
empirical saturation density. These important quantities have
been constrained by the available experimental information on
e.g. neutron skin thickness, heavy ion collisions and dipole
polarizabilities leading to the ranges of 29 MeV . asymm .
33 MeV and 40 MeV . L . 62 MeV [61, 62, 63]. In Fig. 3,
we show our results for these quantities using the NN potentials
from LO to N4LO along with the estimated theoretical uncer-
tainties. Especially for the slope parameter, a complete calcu-
lation at N4LO would yield a theoretical prediction much more
accurate than the current experimental data.

5. Summary and conclusions

In summary, we calculated the equations of state (EOSs) of
SNM and PNM with the state-of-the-art chiral NN potential-
s from LO to N4LO in the framework of Brueckner-Hartree-
Fock theory. At N4LO, the EOS of SNM has saturation points
for all employed cuto↵ values with the corresponding satura-
tion densities and binding energies per particle being within
the range of 0.27 . . . 0.39 fm�3 and �16.09 . . . � 23.03 MeV,
respectively. These values are compatible with the ones based
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Symmetry energy and the slope parameter
at the saturation density

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē17

[Q4]HB,NN, GW PWA �1.13 3.69 �5.51 3.71 5.57 �5.35 0.02 �10.26 1.75 �0.58
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[Q4]HB,NN, GW PWA �1.13 3.69 �5.51 3.71 5.57 �5.35 0.02 �10.26 1.75 �0.58

[Q4]HB,NN, KH PWA �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �0.37

[Q4]covariant, data �0.82 3.56 �4.59 3.44 5.43 �4.58 �0.40 �9.94 �0.63 �0.90

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē15 ē16 ē17 ē18

fit to GW, Ref. [?] �1.13 3.69 �5.51 3.71 5.57 �5.35 0.02 �10.26 1.75 �5.80 1.76 �0.58 0.96
fit to KH, Ref. [?] �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �10.41 6.08 �0.37 3.26

asymm(⇢) =

 
E

A

!

PNM

�

 
E

A

!

SNM

L = 3⇢
@(E/A)SNM

@⇢

V
reg
2⇡ (~q12, ~q32) = V2⇡(~q12, ~q32) �

Z
d
3
l12 d

3
l32 V2⇡(~q12 �~l12, ~q32 �

~l32) f̃reg(~l12,~l32)

hp
0
q
0
↵

0
|V

reg
2⇡ |pq↵i = hp

0
q
0
↵

0
|V2⇡|pq↵i �

X

↵00

Z
p
002
dp

00
q
002
dq

00
hp

0
q
0
↵

0
|V2⇡|p

00
q
00
↵

00
i hp

00
q
00
↵

00
|f̃reg|pq↵i

FT~r12,~r32[f(r12/R) f(r32/R) � 1]

hp
0
q
0
↵

0
|V3N|pq↵i =

XZ
dp̂

0
dq̂

0
dp̂ dq̂ V3N(~p

0
, ~q

0
, ~p, ~q ) [CG’s] Y ?

l0m0(p̂
0) Y

?
�0µ0(q̂

0) Ylm(p̂) Y�µ(q̂)

|↵i = |(l⇤)L(s
1

2
)S(LS)JMJi

T = V + V G0T = V + V G0V + V G0V G0V + . . .

”�2
/datum” (np, 0-200 MeV) = 1.8R=1.2 fm ! 0.8R=1.1 fm ! 0.6R=1.0 fm ! 0.7R=0.9 fm ! 0.8R=0.8 fm ,

1

NLO
N2LO
N3LO
N4LO



  Brueckner-Hartree-Fock based on 2NF alone
Jinniu Hu, Ying Zhang, EE, Ulf-G. Meißner, Jie Meng, PRC 96 (2017) 034307

NLO
N2LO
N3LO
N4LO

 0

 10

 20

 30

 40

0.1 0.2 0.3 0.4

(E
/A

) P
N

M
  
[M

eV
]

� [fm-3]

R = 0.9 fm

 0

 10

 20

 30

 40

0.1 0.2 0.3 0.4

(E
/A

) P
N

M
  
[M

eV
]

� [fm-3]

 0

 10

 20

 30

 40

0.1 0.2 0.3 0.4

(E
/A

) P
N

M
  
[M

eV
]
� [fm-3]

R = 1.0 fm

 0

 10

 20

 30

 40

0.1 0.2 0.3 0.4

(E
/A

) P
N

M
  
[M

eV
]
� [fm-3]

-35

-30

-25

-20

-15

-10

-5

 0

0.1 0.2 0.3 0.4 0.5 0.6

(E
/A

) S
N

M
  
[M

eV
]

� [fm-3]

R = 0.9 fm

-35

-30

-25

-20

-15

-10

-5

 0

0.1 0.2 0.3 0.4 0.5 0.6

(E
/A

) S
N

M
  
[M

eV
]

� [fm-3]

-35

-30

-25

-20

-15

-10

-5

 0

0.1 0.2 0.3 0.4 0.5 0.6

(E
/A

) S
N

M
  
[M

eV
]

� [fm-3]

R = 1.0 fm

-35

-30

-25

-20

-15

-10

-5

 0

0.1 0.2 0.3 0.4 0.5 0.6

(E
/A

) S
N

M
  
[M

eV
]

� [fm-3]

Figure 2: (Color online) Predictions for the EOS of SNM (left panel) and PNM
(right panel) based on the chiral NN potentials of Refs. [35, 36] for R = 0.9 fm
(upper raw) and R = 1.0 fm (lower raw) along with the estimated theoretical
uncertainties. Open rectangles visualize the empirical saturation point of sym-
metric nuclear matter.

The breakdown scale of the nuclear chiral EFT was estimated
to be ⇤b ' 600 MeV [35].3 The Bayesian analysis of the chiral
EFT predictions for the NN total cross section of Ref. [60] has
revealed, that the actual breakdown scale may even be a little
higher than ⇤b ' 600 MeV for R = 0.9 fm. It goes without say-
ing that the estimated theoretical uncertainty at N2LO – N4LO
determines the accuracy of complete calculations which require
the inclusion of the corresponding many-body forces.

In Fig. 2, we show the results for the EOS for SNM and PNM
including the estimated theoretical uncertainties at various or-
ders of the chiral expansion for the most accurate versions of the
NN potentials with R = 0.9 fm and R = 1.0 fm [35, 36]. The ex-
pansion parameter Q at a given density is estimated by identify-
ing the momentum scale p with the Fermi momentum kF, which
is related to the density ⇢ via ⇢ = 2k

3
F/(3⇡

2) (⇢ = k
3
F/(3⇡

2))
for SNM (PNM), and assuming ⇤b = 600 MeV. At the satura-
tion density, the achievable accuracy of the chiral EFT predic-
tions for the energy per particle may be expected to be about
±1.5 MeV (±0.3 MeV) for SNM and ±2 MeV (±0.7 MeV) for
PNM at N2LO (N4LO). Notice that the expected accuracy at
N4LO is significantly smaller than the current model depen-
dence for these quantities. We further emphasize that the pre-
sented estimations should be taken with some care due to the
non-availability of complete calculations beyond NLO. More
reliable estimations of the theoretical uncertainty using the ap-
proach of [35] will be possible once the corresponding three-
and four-nucleon forces are included.

Our results confirm the conclusions of [54] that cuto↵ vari-
ation does not provide an adequate way for estimating the un-
certainties in the calculations of the nuclear EOS. As discussed
in [35], residual cuto↵-dependence of observables may gener-
ally be expected to underestimate the theoretical uncertainty at
NLO and N3LO, which is consistent with our results. Further,

3To account for increasing finite-cuto↵ artefacts using softer versions of the
chiral forces, the lower values of ⇤b = 500 MeV and 400 MeV were employed
in calculations based on R = 1.1 fm and R = 1.2 fm, respectively.
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Figure 3: (Color online) Chiral expansion of the symmetry energy asymm (left
panel) and the slope parameter L (right panel) at the empirical saturation den-
sity for the cuto↵ values of R = 0.9 fm (upper raw) and R = 1.0 fm (lower
raw) along with the estimated theoretical uncertainty. Solid circles (open rect-
angles) show the complete results at a given chiral order (incomplete results
based on NN interactions only). Solid triangles show the current experimental
constraints on asymm and L as described in the text.

the spread of results for di↵erent values of R at N4LO appears
to be roughly of a similar size as the estimated uncertainty at
this order. We, however, refrain from drawing more definite
conclusions on the cuto↵ dependence based on the incomplete
calculations.

Finally, we have also quantified the achievable accuracy of
the theoretical determination of the symmetry energy asymm and
the slope parameter L, defined as L = 3⇢ @(E/A)SNM/@⇢, at the
empirical saturation density. These important quantities have
been constrained by the available experimental information on
e.g. neutron skin thickness, heavy ion collisions and dipole
polarizabilities leading to the ranges of 29 MeV . asymm .
33 MeV and 40 MeV . L . 62 MeV [61, 62, 63]. In Fig. 3,
we show our results for these quantities using the NN potentials
from LO to N4LO along with the estimated theoretical uncer-
tainties. Especially for the slope parameter, a complete calcu-
lation at N4LO would yield a theoretical prediction much more
accurate than the current experimental data.

5. Summary and conclusions

In summary, we calculated the equations of state (EOSs) of
SNM and PNM with the state-of-the-art chiral NN potential-
s from LO to N4LO in the framework of Brueckner-Hartree-
Fock theory. At N4LO, the EOS of SNM has saturation points
for all employed cuto↵ values with the corresponding satura-
tion densities and binding energies per particle being within
the range of 0.27 . . . 0.39 fm�3 and �16.09 . . . � 23.03 MeV,
respectively. These values are compatible with the ones based

6
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Figure 2: (Color online) Predictions for the EOS of SNM (left panel) and PNM
(right panel) based on the chiral NN potentials of Refs. [35, 36] for R = 0.9 fm
(upper raw) and R = 1.0 fm (lower raw) along with the estimated theoretical
uncertainties. Open rectangles visualize the empirical saturation point of sym-
metric nuclear matter.

The breakdown scale of the nuclear chiral EFT was estimated
to be ⇤b ' 600 MeV [35].3 The Bayesian analysis of the chiral
EFT predictions for the NN total cross section of Ref. [60] has
revealed, that the actual breakdown scale may even be a little
higher than ⇤b ' 600 MeV for R = 0.9 fm. It goes without say-
ing that the estimated theoretical uncertainty at N2LO – N4LO
determines the accuracy of complete calculations which require
the inclusion of the corresponding many-body forces.

In Fig. 2, we show the results for the EOS for SNM and PNM
including the estimated theoretical uncertainties at various or-
ders of the chiral expansion for the most accurate versions of the
NN potentials with R = 0.9 fm and R = 1.0 fm [35, 36]. The ex-
pansion parameter Q at a given density is estimated by identify-
ing the momentum scale p with the Fermi momentum kF, which
is related to the density ⇢ via ⇢ = 2k

3
F/(3⇡

2) (⇢ = k
3
F/(3⇡

2))
for SNM (PNM), and assuming ⇤b = 600 MeV. At the satura-
tion density, the achievable accuracy of the chiral EFT predic-
tions for the energy per particle may be expected to be about
±1.5 MeV (±0.3 MeV) for SNM and ±2 MeV (±0.7 MeV) for
PNM at N2LO (N4LO). Notice that the expected accuracy at
N4LO is significantly smaller than the current model depen-
dence for these quantities. We further emphasize that the pre-
sented estimations should be taken with some care due to the
non-availability of complete calculations beyond NLO. More
reliable estimations of the theoretical uncertainty using the ap-
proach of [35] will be possible once the corresponding three-
and four-nucleon forces are included.

Our results confirm the conclusions of [54] that cuto↵ vari-
ation does not provide an adequate way for estimating the un-
certainties in the calculations of the nuclear EOS. As discussed
in [35], residual cuto↵-dependence of observables may gener-
ally be expected to underestimate the theoretical uncertainty at
NLO and N3LO, which is consistent with our results. Further,

3To account for increasing finite-cuto↵ artefacts using softer versions of the
chiral forces, the lower values of ⇤b = 500 MeV and 400 MeV were employed
in calculations based on R = 1.1 fm and R = 1.2 fm, respectively.
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Figure 3: (Color online) Chiral expansion of the symmetry energy asymm (left
panel) and the slope parameter L (right panel) at the empirical saturation den-
sity for the cuto↵ values of R = 0.9 fm (upper raw) and R = 1.0 fm (lower
raw) along with the estimated theoretical uncertainty. Solid circles (open rect-
angles) show the complete results at a given chiral order (incomplete results
based on NN interactions only). Solid triangles show the current experimental
constraints on asymm and L as described in the text.

the spread of results for di↵erent values of R at N4LO appears
to be roughly of a similar size as the estimated uncertainty at
this order. We, however, refrain from drawing more definite
conclusions on the cuto↵ dependence based on the incomplete
calculations.

Finally, we have also quantified the achievable accuracy of
the theoretical determination of the symmetry energy asymm and
the slope parameter L, defined as L = 3⇢ @(E/A)SNM/@⇢, at the
empirical saturation density. These important quantities have
been constrained by the available experimental information on
e.g. neutron skin thickness, heavy ion collisions and dipole
polarizabilities leading to the ranges of 29 MeV . asymm .
33 MeV and 40 MeV . L . 62 MeV [61, 62, 63]. In Fig. 3,
we show our results for these quantities using the NN potentials
from LO to N4LO along with the estimated theoretical uncer-
tainties. Especially for the slope parameter, a complete calcu-
lation at N4LO would yield a theoretical prediction much more
accurate than the current experimental data.

5. Summary and conclusions

In summary, we calculated the equations of state (EOSs) of
SNM and PNM with the state-of-the-art chiral NN potential-
s from LO to N4LO in the framework of Brueckner-Hartree-
Fock theory. At N4LO, the EOS of SNM has saturation points
for all employed cuto↵ values with the corresponding satura-
tion densities and binding energies per particle being within
the range of 0.27 . . . 0.39 fm�3 and �16.09 . . . � 23.03 MeV,
respectively. These values are compatible with the ones based
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(right panel) based on the chiral NN potentials of Refs. [35, 36] for R = 0.9 fm
(upper raw) and R = 1.0 fm (lower raw) along with the estimated theoretical
uncertainties. Open rectangles visualize the empirical saturation point of sym-
metric nuclear matter.

The breakdown scale of the nuclear chiral EFT was estimated
to be ⇤b ' 600 MeV [35].3 The Bayesian analysis of the chiral
EFT predictions for the NN total cross section of Ref. [60] has
revealed, that the actual breakdown scale may even be a little
higher than ⇤b ' 600 MeV for R = 0.9 fm. It goes without say-
ing that the estimated theoretical uncertainty at N2LO – N4LO
determines the accuracy of complete calculations which require
the inclusion of the corresponding many-body forces.

In Fig. 2, we show the results for the EOS for SNM and PNM
including the estimated theoretical uncertainties at various or-
ders of the chiral expansion for the most accurate versions of the
NN potentials with R = 0.9 fm and R = 1.0 fm [35, 36]. The ex-
pansion parameter Q at a given density is estimated by identify-
ing the momentum scale p with the Fermi momentum kF, which
is related to the density ⇢ via ⇢ = 2k

3
F/(3⇡

2) (⇢ = k
3
F/(3⇡

2))
for SNM (PNM), and assuming ⇤b = 600 MeV. At the satura-
tion density, the achievable accuracy of the chiral EFT predic-
tions for the energy per particle may be expected to be about
±1.5 MeV (±0.3 MeV) for SNM and ±2 MeV (±0.7 MeV) for
PNM at N2LO (N4LO). Notice that the expected accuracy at
N4LO is significantly smaller than the current model depen-
dence for these quantities. We further emphasize that the pre-
sented estimations should be taken with some care due to the
non-availability of complete calculations beyond NLO. More
reliable estimations of the theoretical uncertainty using the ap-
proach of [35] will be possible once the corresponding three-
and four-nucleon forces are included.

Our results confirm the conclusions of [54] that cuto↵ vari-
ation does not provide an adequate way for estimating the un-
certainties in the calculations of the nuclear EOS. As discussed
in [35], residual cuto↵-dependence of observables may gener-
ally be expected to underestimate the theoretical uncertainty at
NLO and N3LO, which is consistent with our results. Further,

3To account for increasing finite-cuto↵ artefacts using softer versions of the
chiral forces, the lower values of ⇤b = 500 MeV and 400 MeV were employed
in calculations based on R = 1.1 fm and R = 1.2 fm, respectively.
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Figure 3: (Color online) Chiral expansion of the symmetry energy asymm (left
panel) and the slope parameter L (right panel) at the empirical saturation den-
sity for the cuto↵ values of R = 0.9 fm (upper raw) and R = 1.0 fm (lower
raw) along with the estimated theoretical uncertainty. Solid circles (open rect-
angles) show the complete results at a given chiral order (incomplete results
based on NN interactions only). Solid triangles show the current experimental
constraints on asymm and L as described in the text.

the spread of results for di↵erent values of R at N4LO appears
to be roughly of a similar size as the estimated uncertainty at
this order. We, however, refrain from drawing more definite
conclusions on the cuto↵ dependence based on the incomplete
calculations.

Finally, we have also quantified the achievable accuracy of
the theoretical determination of the symmetry energy asymm and
the slope parameter L, defined as L = 3⇢ @(E/A)SNM/@⇢, at the
empirical saturation density. These important quantities have
been constrained by the available experimental information on
e.g. neutron skin thickness, heavy ion collisions and dipole
polarizabilities leading to the ranges of 29 MeV . asymm .
33 MeV and 40 MeV . L . 62 MeV [61, 62, 63]. In Fig. 3,
we show our results for these quantities using the NN potentials
from LO to N4LO along with the estimated theoretical uncer-
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phase constraint after convergence to the ground state. Both
have been found to have minimal effects on the equation of
state of neutrons [47–49]. At each order, the full interaction is
usedboth in the propagator andwhen evaluating observables.
The bands in Fig. 2 give the range of the energy obtained
by varying R0 between 0.8–1.2 fm, where the softer
R0 ¼ 1:2 fm interactions yield the lower energies. At low
densities (low Fermi momenta), as expected the energy is
well constrained at LO,with small corrections at NLO due to
effective range effects [50,51].AFDMCenables us to present
results up to saturation density (and higher, butwe emphasize
that the contributions of 3N forces will become important for
densities n * 0:05 fm"3 [17]). At LO, the energy has a large
uncertainty. The overlap of the bands at different orders in
Fig. 2 is excellent. In addition, the result that the NLO and
N2LO bands are comparable is expected due to the large ci
entering at N2LO; this is similar to the phase shift bands in
Fig. 1. At the highest density studied, the size of the N2LO
band is approximately 10% of the potential energy, which
will be improved by including 3N forces [17] and going to
higher order [20]. Therefore, our first QMC results for neu-
tron matter exhibit a systematic order-by-order convergence
in chiral EFT.Given the small contributions coming from 3N
forces at intermediate density, as well as the limited size of
the systematic error bands there, our results are a nonpertur-
bative benchmark that can lead to further predictions at
higher density, when 3N forces are consistently included.

Our AFDMC results provide first nonperturbative
benchmarks for chiral EFT interactions at nuclear
densities. We have performed perturbative calculations

following Refs. [17,18,20] based on the same local N2LO
NN interactions at the Hartree-Fock level plus second-
order contributions and including third-order particle-
particle and hole-hole corrections. At each order, we give
bands obtained by using a Hartree-Fock or free single-
particle spectrum. The perturbative energies are compared
in Fig. 3 to the AFDMC N2LO results. For the softer
R0 ¼ 1:2 fm (!# 400 MeV) interaction, the third-order
corrections are small and the perturbative third-order
energy is in excellent agreement with the AFDMC results,
while for the harder R0 ¼ 0:8 fm (!# 600 MeV) interac-
tion, the convergence is clearly slow. This is the first non-
perturbative validation for neutron matter of the possible
perturbativeness of low-cutoff !# 400 MeV interactions
[52]. Finally, in the low-density regime, the results in
Fig. 3 match the QMC calculations of Refs. [28,51]
based on central interactions that reproduce the large
neutron-neutron scattering length and the effective range
physics.
In summary, we have presented the first QMC calcula-

tions with chiral EFT interactions. This was achieved by
using a freedom in chiral EFT to remove all sources of
nonlocality to N2LO. We have constructed local LO, NLO,
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FIG. 2 (color online). Neutron matter energy per particle E=N
as a function of density n calculated using AFDMC with chiral
EFT NN interactions at LO, NLO, and N2LO. The statistical
errors are smaller than the points shown. The lines give the range
of the energy band obtained by varying R0 between 0.8–1.2 fm
(as for the phase shifts in Fig. 1), which provides an estimate
of the theoretical uncertainty at each order. The N2LO band is
comparable to the one at NLO due to the large ci couplings in the
N2LO two-pion exchange.
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FIG. 3 (color online). The AFDMC N2LO band of Fig. 2 in
comparison to perturbative calculations of the neutron matter
energy using the same local N2LO NN interactions. The lower
(upper) limit of the AFDMC N2LO band is for R0 ¼ 1:2 fm
(R0 ¼ 0:8 fm), corresponding to a momentum cutoff !#
400 MeV (!# 600 MeV). Perturbative results are shown for
Hartree-Fock plus second-order contributions (2nd order) and
including third-order particle-particle and hole-hole corrections
(3rd order). The bands at 2nd and 3rd order are obtained by using
a Hartree-Fock or free single-particle spectrum. For the softer
R0 ¼ 1:2 fm interaction (narrow purple bands), the third-order
corrections are small and the perturbative third-order energy is
in excellent agreement with the AFDMC results, while for the
harder R0 ¼ 0:8 fm interaction (light red bands), the conver-
gence is clearly slow. At low densities, we also show the QMC
(2010) results of Refs. [28,51].
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FIG. 1. (color online) Di↵erent topologies that contribute to the chiral 3NF up to N3LO (and N4LO). Nucleons and pions
are represented by solid and dashed lines, respectively. The shaded vertices denote the amplitudes of the corresponding
interaction. Specifically, the individual diagrams are: (a) 2⇡ exchange, (b) 1⇡-contact, (c) pure contact, (d) 2⇡-1⇡ exchange,
(e) ring contributions, (f) 2⇡-contact and (g) relativistic corrections. See main text for details.

form for few- and many-body frameworks represents a
highly nontrivial task [37–39]. Due to the huge amount
of computational resources needed for this decomposi-
tion, matrix elements have been so far available only in
a limited model space [16]. As a consequence, consistent
N3LO three-body scattering calculations were limited to
low energies and no studies of heavier nuclei were pos-
sible. In this paper we present a novel framework that
allows one to decompose 3N interactions in a plane-wave
partial wave basis in a computationally much more ef-
ficient way than the framework of Refs. [38, 39]. This
new method makes explicit use of the fact that all (un-
regularized) contributions to chiral 3NFs are either local,
i.e. they depend only on momentum transfers, or they
contain only polynomial non-local terms.

In Section II we derive the new framework for decom-
posing local 3NFs e�ciently in a momentum-space par-
tial wave basis. In Section III we apply the calculated
matrix elements of chiral 3NFs up to N3LO to nuclear
matter and 3H, discuss the partial wave convergence and
investigate the importance of the individual topologies at
di↵erent orders in the chiral expansion. In Section IV we
summarize and given an outlook of future applications.

II. PARTIAL WAVE DECOMPOSITION OF
LOCAL THREE-NUCLEON FORCES

A general translationally invariant 3NF can be ex-
pressed as a function of the Jacobi momenta p = k1�k2

2

and q = 2
3

⇥
k3 � 1

2 (k1 + k2)
⇤
, where ki denote the single

nucleon momenta (in the following equations we will first
suppress spin and isospin degrees of freedom):

V123 = V123(p,q,p
0
,q0). (1)

Here and in the following p and q (p0 and q0) denote
the Jacobi momenta of the initial (final) state. For local
interactions, however, the momentum dependence fur-
ther simplifies as such forces only depend on momentum
transfers, i.e. on di↵erences of Jacobi momenta:

V
loc
123 = V

loc
123(p

0 � p,q0 � q) ⌘ V
loc
123(p̃, q̃). (2)

Note that this statement refers to unregularized forces.
Below we will apply non-local regulators to the partial-
wave decomposed matrix elements. The regularization
will be discussed in more detail in Section III.

Generally, the decomposition of 3NFs in plane-wave
partial waves involves the evaluation of projection inte-
grals of the form

F
mLmlmL0ml0
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123(p̃, q̃) (3)

for fixed values of p = |p|, q = |q|, p0 = |p0|, q0 = |q0|
and the angular momentum quantum numbers. By using
symmetries, it is possible to reduce the dimensionality of
the angular integrals from 8 to 5. Traditional methods
are based on a direct discretization and numerical evalu-
ation of these angular integrals [38, 39]. Due to the large
number of external quantum numbers and momentum
mesh points such algorithms require very large computa-
tional resources for calculating all matrix elements nec-
essary for many-body studies. As a result, the number
of matrix elements of chiral N3LO interactions were so
far insu�cient for studies of nuclei and matter. However,
it is possible to evaluate the basic function F defined in
Eq. (3) in a much more e�cient way by explicitly mak-
ing use of the local nature of the 3NFs. Indeed, using
rotation invariance of the potential V loc

123 we can write it
as a function of three independent variables:

V
loc
123(p̃, q̃) = V

loc
123(p̃, q̃, cos ✓p̃q̃), (4)

where

cos ✓p̃q̃ =
p̃ · q̃
p̃q̃

, p̃ = |p̃|, q̃ = |q̃|. (5)

This already shows that the original eight dimensional
integral contains actually only three non-trivial integra-
tions. The other five integrations, after employing some
integral transformations, which are described in the ap-
pendix, can be performed analytically. The final result
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FIG. 1. (color online) Di↵erent topologies that contribute to the chiral 3NF up to N3LO (and N4LO). Nucleons and pions
are represented by solid and dashed lines, respectively. The shaded vertices denote the amplitudes of the corresponding
interaction. Specifically, the individual diagrams are: (a) 2⇡ exchange, (b) 1⇡-contact, (c) pure contact, (d) 2⇡-1⇡ exchange,
(e) ring contributions, (f) 2⇡-contact and (g) relativistic corrections. See main text for details.

form for few- and many-body frameworks represents a
highly nontrivial task [37–39]. Due to the huge amount
of computational resources needed for this decomposi-
tion, matrix elements have been so far available only in
a limited model space [16]. As a consequence, consistent
N3LO three-body scattering calculations were limited to
low energies and no studies of heavier nuclei were pos-
sible. In this paper we present a novel framework that
allows one to decompose 3N interactions in a plane-wave
partial wave basis in a computationally much more ef-
ficient way than the framework of Refs. [38, 39]. This
new method makes explicit use of the fact that all (un-
regularized) contributions to chiral 3NFs are either local,
i.e. they depend only on momentum transfers, or they
contain only polynomial non-local terms.

In Section II we derive the new framework for decom-
posing local 3NFs e�ciently in a momentum-space par-
tial wave basis. In Section III we apply the calculated
matrix elements of chiral 3NFs up to N3LO to nuclear
matter and 3H, discuss the partial wave convergence and
investigate the importance of the individual topologies at
di↵erent orders in the chiral expansion. In Section IV we
summarize and given an outlook of future applications.

II. PARTIAL WAVE DECOMPOSITION OF
LOCAL THREE-NUCLEON FORCES

A general translationally invariant 3NF can be ex-
pressed as a function of the Jacobi momenta p = k1�k2
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Note that this statement refers to unregularized forces.
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wave decomposed matrix elements. The regularization
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for fixed values of p = |p|, q = |q|, p0 = |p0|, q0 = |q0|
and the angular momentum quantum numbers. By using
symmetries, it is possible to reduce the dimensionality of
the angular integrals from 8 to 5. Traditional methods
are based on a direct discretization and numerical evalu-
ation of these angular integrals [38, 39]. Due to the large
number of external quantum numbers and momentum
mesh points such algorithms require very large computa-
tional resources for calculating all matrix elements nec-
essary for many-body studies. As a result, the number
of matrix elements of chiral N3LO interactions were so
far insu�cient for studies of nuclei and matter. However,
it is possible to evaluate the basic function F defined in
Eq. (3) in a much more e�cient way by explicitly mak-
ing use of the local nature of the 3NFs. Indeed, using
rotation invariance of the potential V loc

123 we can write it
as a function of three independent variables:
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where
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, p̃ = |p̃|, q̃ = |q̃|. (5)

This already shows that the original eight dimensional
integral contains actually only three non-trivial integra-
tions. The other five integrations, after employing some
integral transformations, which are described in the ap-
pendix, can be performed analytically. The final result
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form for few- and many-body frameworks represents a
highly nontrivial task [37–39]. Due to the huge amount
of computational resources needed for this decomposi-
tion, matrix elements have been so far available only in
a limited model space [16]. As a consequence, consistent
N3LO three-body scattering calculations were limited to
low energies and no studies of heavier nuclei were pos-
sible. In this paper we present a novel framework that
allows one to decompose 3N interactions in a plane-wave
partial wave basis in a computationally much more ef-
ficient way than the framework of Refs. [38, 39]. This
new method makes explicit use of the fact that all (un-
regularized) contributions to chiral 3NFs are either local,
i.e. they depend only on momentum transfers, or they
contain only polynomial non-local terms.

In Section II we derive the new framework for decom-
posing local 3NFs e�ciently in a momentum-space par-
tial wave basis. In Section III we apply the calculated
matrix elements of chiral 3NFs up to N3LO to nuclear
matter and 3H, discuss the partial wave convergence and
investigate the importance of the individual topologies at
di↵erent orders in the chiral expansion. In Section IV we
summarize and given an outlook of future applications.
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symmetries, it is possible to reduce the dimensionality of
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are based on a direct discretization and numerical evalu-
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tional resources for calculating all matrix elements nec-
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tions. The other five integrations, after employing some
integral transformations, which are described in the ap-
pendix, can be performed analytically. The final result
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Figure 7: Chiral expansion of the np total cross section at different energies based on R = 0.9 fm
in comparison with experimental data of Ref. [90]. The horizontal band shows the result of the
NPWA.

Table 2: Deuteron binding energy Bd (in MeV), asymptotic S state normalization AS (in fm−1/2),
asymptotic D/S state ratio η , radius rd (in fm), quadrupole moment Q (in fm2) and the D-state
probability PD (in %) based on the cutoff R= 0.9 fm. Notice that rd and Q are calculated without
including exchange current contributions and relativistic corrections. References to experimental
data/empirical values can be found in Ref. [18].

LO NLO N2LO N3LO N4LO Empirical

Bd 2.0235 2.1987 2.2311 2.2246⋆ 2.2246⋆ 2.224575(9)
AS 0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
η 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
rd 1.990 1.968 1.966 1.972 1.972 1.97535(85)
Q 0.230 0.273 0.270 0.271 0.271 0.2859(3)
PD 2.54 4.73 4.50 4.19 4.29
⋆The deuteron binding energy has been taken as input in the fit.

NPWA and confirm a good convergence of the chiral expansion. More results for NN observables
can be found in Refs. [18, 19].

As already advertised, the novel approach to uncertainty quantification is not restricted to a
particular choice of the regulator. Carrying out the error analysis for calculations based on different
choices of R thus provides a useful consistency check of the method. In Fig. 9, we show the results
for the total cross section at all orders starting from NLO and for all considered cutoff choices.
Within the quoted errors, the predictions based on different values of R agree with each other and
the NPWA for all orders in the chiral expansion. The accuracy of the predicted results for the cross
section shows the same dependence on the cutoff as the quality of the fits discussed in section 2.4.

In Table 2, we list our results for the deuteron properties. At the considered accuracy level,
the chiral expansion is nearly converged already at N3LO except for PD which is not an observable
quantity.8 The predicted values for AS and η are in excellent agreement with the empirical numbers.

8PD = 5%±1% has been used as an additional “data” point in the fits at N3LO and N4LO in order to stabilize the
results, see Ref. [18] for more detail.
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FIG. 7: Extrapolated ground state energy for 4He (left) and 12C (right) using chiral N2LO interactions with regulator R =
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to the extrapolation uncertainty estimates only.
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 Summary and outlook

— derivation of contributions up to N3LO completed already in 2011; derivation of
     N4LO corrections done for V2N and almost done for V3N (new LECs…) and V4N

Nuclear Hamiltonian:

— accurate & precise 2N potentials at N4LO+ are available,

Next steps:

— Precision tests of the theory for 3H β decay & μ capture (validation)

— Extension to other processes, heavier nuclei, N4LO, explicit Δ’s, …

— promising results for few-N systems based on 2NF + 3NF@N2LO [LENPIC]

Work in progress:

— regularization of 3NF & currents beyond N2LO (nontrivial to maintain χ-symm!)


