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1. LQFT: an axiomatic approach to QFT

* Perturbation theory has proven to be an extremely successful tool for
investigating problems in particle physics

But by definition this procedure
is only valid in a weakly
interacting regime

— Form factors?
— Hadronic observables?
— Confinement mechanism?

* This emphasises the need for a non-perturbative approach!

— Local quantum field theory (LQFT) is one such approach
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1. LQFT: an axiomatic approach to QFT

LQFT is defined by a core set of physically motivated axioms

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert
space H which possesses a continuous unitary representation Ula, o) of the Poincaré
Spinor group )f"T .

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator
P* is confined to the closed forward light cone V' = {p* | p* = 0, p” > 0}, where
Ufa,1) = ",

Axiom 3 (Uniqueness of the vacuum). There erists a unit state vector |0) (the

vacuum state) which is a unique translationally invariant state in H.

Axiom 4 (Field operators). The theory consists of fields o' (x) (of type (k) ) which
=

have components o, (x) that are operator-valued tempered distributions in H, and the

vacuum state |0) is a cyclic vector for the fields.

N . T ' T . K} ] .
Axiom 5 (Relativistic covariance). The fields -.;;[ (x) transform covariantly under
the action of JZ‘1| :

s
i

Ula, o)l (x)U(a.a) ' = 5'1.[_:."}((}- D"

(Ala)r + a)

where S(ev) is a finite dimensional matriz representation of the Lorentz spinor group

& |T and A(a) is the Loventz transformation corresponding to o € %] .

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of

the fields o™, o) are space-like separated, then:
o™ (£, 002 ()] = @™ (el (9) £ o ()™ () = 0

when applied to any state in H, for any fields ¢, o).

A. Wightman
[R. F. Streater and A. S. Wightman, PCT, Spin
and Statistics, and all that (1964).]

R. Haag

[R. Haag, Local Quantum Physics,
Springer-Verlag (1996).]
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2. Correlation functions in LQFT

* Due to the properties of the field operators it follows that correlation
functions are (tempered) distributions

* Since the fields are Lorentz covariant (Axiom 5), the Fourier transform of
general correlation functions can be written

N
Ti1,2)(p) = F [(0161(2)d2(1)|0)] = > Qu(p) Ta(1,2)(P)
0=1.v >

Lorentz covariant Lorentz invariant
polynomial component

* Moreover, the spectral condition (Axiom 2) implies that the Lorentz
invariant components vanish outside the (closed) forward light cone

P

Tus() = PO + [ ds 0I5 — 9)pa(s
v 0 _v

c (1 g »
Slng UIar Comp onent Sp ectr al f unction [N. N. Bogolubov, A. A. Logunov and A. I. Oksak, General
Principles of Quantum Field Theory, (1990).]
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3. Singular terms and the CDP

* For QFTs that satisfy the standard LQFT axioms one can prove that the
correlation strength between clusters of fields always decreases with
separation [ Araki; Araki, Hepp, Ruelle |

— this is called the cluster decomposition property (CDP)

e If QCD satisfied these axioms one would be permitted to ‘pull apart’
coloured states

* It turns out though that gauge theories violate these axioms
— charged fields are non-local!
* There are two approaches for defining a quantised gauge theory:

(1) One preserves positivity of the Hilbert space, but loses locality (e.g.
Coulomb gauge)

(2) One preserves locality, but loses positivity (e.g. BRST quantised
gauge theories) \

[H. Araki, Ann. Phys. 11, 260 (1960).]

In this work we choose to preserve locality R
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3. Singular terms and the CDP

* By choosing option (2) one maintains many of the standard properties of
LQFT, but now the space of states can contain negative norm states

— referred to as the Pseudo-Wightman approach [Bogolubov et al.

* In Pseudo-Wightman QFTs the CDP can be violated [Strocchi]:

Theorem (Cluster Decomposition).

01‘2[£]23\-‘—§c—_n-1[£] (1 + l[%“]—') , with a mass gap (0,M) inV

<(-}|Bl(3:1)82(3:2)‘{-))T < ~ N -
| | C1.2[€]?N 2 (1 + |§i|) : without a mass gap in 'V

where: <U|81(I1)Bz(;}32)‘(_}>T = (U‘Bl(.’rl)Bz{:}CQMU> - {(_}|Bl (;3'31”(]) {[_)‘Bz(:lfz)‘[)), N e ZE“!

& = x1 — x2 15 large and space-like, and Ch 2, Ch 2 are constants independent of & and N.

Bia) = [ d'yoin)fy-=). feDR) !/ >
O, O,

— This violation is related to the presence of singular terms [PL, 1511.02780]

[N. N. Bogolubov, A. A. Logunov and A. I. Oksak, General
Principles of Quantum Field Theory, (1990).]
[F. Strocchi, Phys. Lett. B 62, 60 (1976).]
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4. The QCD propagators

* Using the previous structural results the QCD propagators take the
following general forms [PL, 1702.02954; PL, 1711.07569]:

Gluon propagator

+ [0, PI(0) 4 pup. P (9%)] 6(p)

B () =i / > ds [guri’(s) + pupups®(s)]
HY 0 2 p? — s+ i€

Quark propagator

SP(p) =i /Om - / p( )_:?fi,f d + [P (0%) + pPy (0%)] o)

Ghost propagator

~ [ ds  p%(s)
ab _ C ab( 02 5
G =i [ 5 P PO 0)
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4. The QCD propagators

* What constraints do the dynamical properties of the fields (i.e. equations of
motion, ETCRs) impose on these propagators?

Gluon propagator [PL, 1801.09337]

— The spectral functions are no longer independent, and both satisfy
sum rules

pSP(s) 4 spP(s) = —2mE6 05 (s), / ds pi®(s) = —2m6°* 7251, / ds p3®(s) = 0
0 0

— The coefficients of the singular components are linearly related

= [ ds pfﬁb(s) ig f(Sab
DG;bF — —_ — U y 2 . g LS
' (D) %/U om (TS89 T PuPy) e T e
— (One can write; N+1
+ 3 el g (07" + ds,0, (0% 6(p).
n=>0

‘ Slavnov-Taylor identity is explicitly satisfied p“p”ﬁngF (p) = —i&s??
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4. The QCD propagators

* Using the Dyson-Schwinger equation one can further constrain the
spectral functions and coefficients of the singular terms

[629 (1 - 50) 9 aa] (O|T{A® (2) A (1) }0) = i8°g,0, Z3 6z — y) + (O|T{T2 () AL ()} 0)

1 — Ta
b - {pQQﬂa - (1 - £_0> Pup ] DabF( ) = Zéabgﬂuvz?) '+ Jﬂg(p)

* Inserting the spectral representations of the propagators, and separately
equating the different Lorentz components (as distributions) implies:

— the coefficients of the singular terms in the gluon and current
propagators are linearly related

— the gluon spectral functions satisfy the constraints:

pi(s) = —2m3°° 25 8(s) + F(s)
sp3(s) = 2m0° (257" — €) 8(s) — 7 (s)

[ ds 757 (s) = 0
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4. The QCD propagators

pib(s) = —2m0*°Z516(s) + p5P(s)
sp3P(s) = 2ms? (23_1 — &) d(s) — P30 (s)

[ ds 75" (s) = 0

* These spectral properties have important consequences

(i) The Oehme-Zimmerman superconvergence relation: | [,~ dsp$®(s) = —2m6%°Z; "
holds due to the explicit massless component

(ii) 23'1 vanishes in Landau gauge — this implies the absence of massless
gluon states

(iiif) Non-negativity violations can arise due to the sum rule satisfied by
the second spectral component

— This behaviour is not related to whether the gluon is absent or not
from the spectrum — it also holds for the corresponding
spectral function of the photon propagator

[R. Oehme, W. Zimmermann, Phys. Rev. D 21, 471 (1980).]
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4. The QCD propagators

Quark propagator [pL, 1711.07569]

(i7" = m)(O|T{&" ()97 (y)}|0) = 16" Zy "6 (2 — y) + (O] T{" ()¢ () }]0)

b (p—m)SE(p) =697y + K (p)

* Again, by inserting the spectral representation of the propagators, and
matching the different Lorentz components, one obtains constraints

* The coefficients of the singular terms in the quark propagator are linearly
related to the singular terms in the current propagator and the §(p)
coefficient in the quark propagator

— In contrast to the gluon case, the appearance of §(p) terms is sufficient
to guarantee that 6(p)-derivative terms must exist
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4. The QCD propagators

* The quark spectral functions satisfy the constraints:

pY (s) = 27Tm5ij221—/d9ﬁ 9)] 5(s —m?) 4+ k¥ (

ol () = :mw‘zgl - / 45 3 (e)] 5(s —m?) + Y e)\

b 4
Coefficients of massive Other components have no
components are not sum rule constraints, unlike
completely fixed gluon case

— The presence of a massive quark pole (in specific gauges) is not so
clear-cut

— The structure of the other spectral components depend on the
properties of the spectral functions of the current propagator
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4. The QCD propagators

Ghost propagator [p1, 1711.07569]

O*(O|T{C (2)C*(y)}[0) = 6 Z *6(x — y) + (0|T{L (x)C* () }/0)

b PG p) = 925" + L™ (p)

* Dyson-Schwinger equation constraints:

— The coefficients of the singular terms in the ghost propagator are
linearly related to the corresponding terms in the current propagator

— The ghost spectral function satisfies the relation:

P& (s) = {271'@'5‘15231 —/ d3 k& (3 )] 5(s) + k& (s)
b 0 ¥

Unlike gluon case, coefficient
of massless component is not
completely constrained

Coefficient vanishes in
Landau gauge
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5. Summary and outlook

* LQFT can be used to determine the general spectral properties of
propagators in QCD

* The momentum space gluon, quark and ghost propagators can all
potentially contain purely singular terms involving derivatives of é(p)

— these terms imply a violation of the CDP, which is relevant for
understanding confinement

* The Dyson-Schwinger equations impose non-trivial constraints on the
structure of the QCD spectral functions

* This LQFT approach has several potential applications:

— improve propagator parametrisations
— study gauge invariant correlation functions

— understand the non-perturbative effects of finite temperature
and density
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* The currents appearing in the QCD Dyson-Schwinger equations have
the following structure:

(l) Gluon: |:62qﬂoz o (1 o ;}) apaa] Ag _ jﬁ

jﬁ _ Q?E L igfabcaﬂébcc + (23—1 L l)@HAa L igfabcAbuFSH L gfabcay (A?,A;)

(i) Quark: K(z) := —gy" Aj (z)[t")(2)]"
(iii) Ghost: 920 = —igfepv(ALCe) = L°
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* The coefficients of the singular components satisfy the following
constraints:

ab {—%(n+1)(2n+3)bgil, 1<n<N+1
. ag’, n=>0

i luon: |

(i) Gluo {4ﬂ(n+1)b$ﬁ1, l1<n<N+1

0, n=~0

2
cﬁilz— (2n +5) ab >0
42n+3)(n+ 1)(n + 3)

(“) Qual‘k. m2n [ =1 4R (k4 1)k ("F'n.a-jj Ak +1)(k + 2)5:;?'_'_1) .
0, = i |ad + : , mn=>1
" 4n(n41)n! = m2(k+1) =
menet [ e (’”’ﬂ-&-?f +4(k + 1) (k + 2)51'?;1) _ )
b = ——— ot + : : 5o
n 4An (-,r-g, —+ l)['n,! Y0 Tn_?(k+1) m gl >

(iii) Ghost:

~ab
9n

ab
= > 0.
It T Ty Dt 2

17
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* How can one tell whether N>0 in QCD?

— The spectral functions p(s) are key to determining the value of N in
the modified CDP (in the absence of purely singular terms)

* In general this relationship is non-trivial, but in particular one has the
following result [PL, 1511.02780]:

- p(s) ~ 8(s-sy), then N=0
- p(s) ~ 8'(s-s;), then N>0

* An important quantity which is sensitive to the behaviour of the spectral
functions p,(s) are the Schwinger functions A.(t), defined by

e~ Vst
2,/5

1 oo

:% .

Aq(t)

po € Da(pP)pmo = [ ds pals)
0

This can be computed using non-perturbative
numerical techniques like lattice QCD
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