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Introduction

I Quarks and gluon confinement.

I To get a result in the infrared (IR), non-perturbative skills are
needed. However, a good understanding about the Nature in this
regime is hard to obtain.

I Our focus has been on the gluon propagator and also ghost
propagator in the infrared region:

I At large volume, the lattice results have showed that the gluon
propagator is suppressed to a nonvanishing value at zero
momentum and the ghost propagator is not enhanced anymore.

I A good analytical attempt to explain this behavior is via the
so-called Refined Gribov-Zwanziger (RGZ) framework (notice other
approaches were successful as well).

Caroline Felix | BRST invariant d=2 condensates in Gribov-Zwanziger theory



2

Introduction

I Quarks and gluon confinement.
I To get a result in the infrared (IR), non-perturbative skills are

needed. However, a good understanding about the Nature in this
regime is hard to obtain.

I Our focus has been on the gluon propagator and also ghost
propagator in the infrared region:

I At large volume, the lattice results have showed that the gluon
propagator is suppressed to a nonvanishing value at zero
momentum and the ghost propagator is not enhanced anymore.

I A good analytical attempt to explain this behavior is via the
so-called Refined Gribov-Zwanziger (RGZ) framework (notice other
approaches were successful as well).

Caroline Felix | BRST invariant d=2 condensates in Gribov-Zwanziger theory



2

Introduction

I Quarks and gluon confinement.
I To get a result in the infrared (IR), non-perturbative skills are

needed. However, a good understanding about the Nature in this
regime is hard to obtain.

I Our focus has been on the gluon propagator and also ghost
propagator in the infrared region:

I At large volume, the lattice results have showed that the gluon
propagator is suppressed to a nonvanishing value at zero
momentum and the ghost propagator is not enhanced anymore.

I A good analytical attempt to explain this behavior is via the
so-called Refined Gribov-Zwanziger (RGZ) framework (notice other
approaches were successful as well).

Caroline Felix | BRST invariant d=2 condensates in Gribov-Zwanziger theory



3

Motivation

Some years ago, Dudal et al.1 have proved that the Gribov-Zwanziger
action in the presence of the condensates 〈AA〉, 〈ϕ̄ϕ〉, 〈ϕ̄ϕ̄〉 and 〈ϕϕ〉
is renormalizable order by order.

The authors have also found a renormalizable effective potential,
which compatible with in the renormalization group, using the local
compositor operator (LCO) formalism.

However, an estimate for the different condensates were not gotten
due to the existence of unknown higher loop parameters.
Nonetheless, strong indications have been provide that nonvanishing
condensates are energetically favored.

1D. Dudal, S. P. Sorella and N. Vandersickel, Phys. Rev. D 84 (2011) 065039.
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Goal

I The effective action in the presence of the 〈AA〉 and 〈ϕ̄ϕ〉
condensates at one-loop.

I A non-trivial minimum of the effective action leads us to
dynamical transformation of the GZ action into the RGZ action
which gives us the suppressed gluon propagator and
non-enhanced ghost propagator in IR regime.
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Gribov problem

I Gribov2 showed that the Faddeev-Popov construction is not valid
at the non-perturbative level.

2V. N. Gribov, Nucl. Phys. B 139 (1978) 1.
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Gribov problem

Consequently, Gribov copies imply that:

I we are overcounting equivalent gauge configurations, since we
have more than one configuration for each gauge orbit,

I the Faddeev-Popov measure is ill-defined, since there are
zero-modes of the Faddeev-Popov operator when considering
the infinitesimal copies (det M = 0).
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Gribov region

The main idea of the Gribov method is to restrict the functional
integral to a certain region Ω in field space, called the Gribov region,
which is defined as

Ω = {Aa
µ; ∂µAa

µ = iαgba, Mab(Ah) = −∂µDab
µ (Ah) > 0}. (1)

I Linear covariant gauge, ∂µAa
µ = iαgba,

I Hermitian Faddeev-Popov operator,

Mab(Ah) = −δab∂2 + gf abc(Ah)c
µ∂µ, (2)

is positive. Inside the Gribov region, there are no infinitesimal
copies, sinceMab(Ah) > 0;

I it is convex, bounded and intersected by each gauge orbit3.
I Its boundary, ∂Ω, is called the first Gribov horizon and there, the

first null eigenvalue ofMab(Ah) (i.e. the first zero-mode of
Faddeev-Popov operator) appears.

3G. Dell’Antonio and D. Zwanziger, Nucl. Phys. B 326 (1989) 333.
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The local gauge invariance of Ah
µ

The configuration Ah
µ is a non-local power series in the gauge field, obtained

by minimizing the functional fA[u] along the gauge orbit of Aµ4 , with

fA[u] ≡ min
{u}

Tr

∫
d4x Au

µAu
µ,

Au
µ = u†Aµu +

i
g

u†∂µu. (3)

One finds that a local minimum is given by

Ah
µ =

(
δµν −

∂µ∂ν
∂2

)
φν , ∂µAh

µ = 0 ,

φν = Aν − ig
[

1
∂2 ∂A,Aν

]
+

ig
2

[
1
∂2 ∂A, ∂ν

1
∂2 ∂A

]
+ O(A3). (4)

Notice that the Ah field collapses to the A field in Landau gauge.

4G. Dell’Antonio and D. Zwanziger, Nucl. Phys. B 326 (1989) 333. P. van Baal, Nucl. Phys. B 369 (1992) 259. M. Lavelle and

D. McMullan, Phys. Rept. 279 (1997) 1.
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The local gauge invariance of Ah
µ

The field Ah
µ can be localized adding an auxiliary Stueckelberg field ξa

Ah
µ = (Ah)a

µT a = h†Aµh +
i
g

h†∂µh, (5)

while
h = eig ξaT a

. (6)

The local gauge invariance of Ah
µ under a gauge transformation

v ∈ SU(N) with

h→ v†h , h† → h†v , Aµ → v†Aµv +
i
g

v†∂µv . (7)
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Action

Taking into account the BRST invariant the Grivov-Zwanziger action
in the linear covariant gauges, the total action is given by

S = SYM + SGF + SGZ + Sε, (8)

whereby SYM is the Yang-Mills action,

SYM =
1
4

∫
d4xF a

µνF a
µν , (9)

SGF denotes the Faddeev-Popov gauge-fixing in linear covariant
gauges, i.e.

SGF =

∫
d4x

(αg

2
baba + iba ∂µAa

µ + c̄a∂µDab
µ (A)cb

)
, (10)
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Action

Taking into account the BRST invariant the Grivov-Zwanziger action
in the linear covariant gauges, the total action is given by

S = SYM + SGF + SGZ + Sε, (11)

SGZ is the Gribov-Zwanziger action in its local form, which stands by

SGZ =

∫
d4x

[
ϕ̄ac
µ ∂ν(Dab

ν (Ah)ϕbc
µ )− ω̄ac

µ ∂ν(Dab
ν (Ah)ωbc

µ )
]

− γ2g
∫

d4x
[
f abc(Ah)a

µϕ
bc
µ + f abc(Ah)a

µϕ̄
bc
µ +

d
g

(N2
c − 1)γ2

]
, (12)

finally, the term Sε
Sε =

∫
d4x εa ∂µ(Ah)a

µ (13)

implements, through the Lagrange multiplier ε, the transversality of
the composite operator (Ah)a

µ, namely ∂µ(Ah)a
µ = 0.
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Gap Equation

The γ the Gribov parameter is dynamically fixed by gap equation:

〈f abc(Ah)a
µ(ϕbc

µ + ϕ̄bc
µ )〉 = 2d(N2 − 1)

γ2

g2 , (14)

which gives us the horizon function, and can also be rewritten as

∂Γ

∂γ2 = 0, (15)

whereby the Γ is the quantum action defined by

e
−Γ =

∫
[dΦ]e−S,

where
[dΦ] ≡ [dAµ][dc][dc̄][db][dϕ][dϕ̄],

in our case.
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BRST symmetry

The action S = SYM + SGF + SGZ + Sε enjoys an exact nilpotent
BRST invariance, sS = 0, if we define the following BRST
transformation rules to all fields5,

sAa
µ = −Dab

µ cb , sca =
g
2

f abccbcc ,

sc̄a = iba , sba = 0 ,
sϕab

µ = 0 , sωab
µ = 0 ,

sω̄ab
µ = 0 , sϕ̄ab

µ = 0 ,

s(Ah)a
µ = 0 , sεa = 0 ,

shij = −igca(T a)ik hkj . (16)

5M. A. L. Capri et al., Phys. Rev. D 92 (2015) 0450;
M. A. L. Capri et al., Phys. Rev. D 94 (2016) 0250.
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Refined Gribov-Zwanziger (RGZ) action

The BRST invariant d = 2 condensates, 〈Ah
µAh

µ〉 and 〈ϕ̄ab
µ ϕ

ab
µ 〉, cause

non-perturbative dynamical instabilities disturbing the
Gribov-Zwanziger formalism.

I 〈ϕ̄ϕ〉 guarantees that the gluon propagator is non-vanishing at
zero momentum;

I 〈AA〉 assures to fit the result with the lattice data.
I Adding these condensates at the GZ action via the local

composite operator (LCO) formalism, the refined
Gribov-Zwanziger action (RGZ) is obtained.

I From here, we work with Landau gauge: ∂A = 0, Ah =⇒ A.
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Refined Gribov-Zwanziger (RGZ) action

Then, the action with these LCOs is written as

Σ = S + SA2 + Sϕϕ̄ + Svac, (17)

whereby S is action given by (11) and we also have

SA2 =

∫
ddx

τ

2
Aa
µAa

µ,

Sϕϕ̄ =

∫
ddxQϕ̄ac

µ ϕ
ac
µ . (18)
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LCO formalism

To add the operators AA and ϕ̄ϕ, we have introduced two BRST
invariant bosonic sources τ and Q,

sτ = 0, sQ = 0. (19)

In LCO formalism:
I AA and ϕ̄ϕ are added to Σ by the sources τ and Q.
I new divergences proportional to τ2, Q2 and τQ come out.
I Due to the divergences from 〈Oj (k)Oj (−k)〉k→0, with Oi one of

the d = 2 operators in the RGZ action given by

Oj = {AµAµ, ϕa
i ϕ̄

a
i }, (20)

where the indices (a, i) are fully contracted, e.g. ϕa
i ϕ̄

a
i = ϕac

µ ϕ̄
ac
µ .
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LCO formalism

For this reason, the term Svac,

Svac = −
∫

ddx
(
ζ

2
τ2 + αQQ + χQτ

)
, (21)

is necessary in Σ = S + SA2 + Sϕϕ̄ + Svac.

The parameters α, ζ and χ (LCO parameters) absorb the divergence
in τ2, Q2 and Qτ , i.e. δζτ2, δαQ2 and δχQτ .
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Hubbard-Stratonovich transformation

In order to get the effective action, we have written the energy functional as

e−W (Q,τ) =

∫
[dΦ]e−Σ.

The easiest way to get rid of these quadratic terms in sources is introducing two
auxiliary fields σ1 and σ2 through two identities:

1 =

∫
[Dσ1] e−

1
2
∫

dd x
(
σ1+ ā

2 A2+b̄Q+c̄τ
)2

,

1 =

∫
[Dσ2] e+ 1

2
∫

dd x
(
σ2+d̄ϕϕ+ēQ+ f̄

2 A2
)2

, (22)

choosing the coefficients:

ā = −
ZA√
Zζζζ

µε/2, b̄ =
ZQQZχχχ√

Zζζζ
µ−ε/2, c̄ = Zττ

√
Zζζζµ−ε/2,

d̄ =
Zϕ√

Z 2
χχχ

2

Zζζζ
− 2Zααα

µε/2, ē = ZQQ

√
Z 2
χχχ

2

Zζζζ
− 2Zααα µ−ε/2,

f̄ =
ZA√
Zζζζ

 ZτQZζζζ − ZQQZχχχ

ZQQ

√
Z 2
χχχ

2 − 2ZααZζζζα

µε/2.
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Z factors

In MS scheme and at one loop, these Z factors are given by

ZA = 1 +
13
3

Ng2

16π2ε
, Z̃ζ = ZζζZ 2

ττ = 1−
13
3

Ng2

16π2ε
,

Zζζ = 1 +
22
3

Ng2

16π2ε
, Zg = 1−

11
3

Ng2

16π2ε
,

Zτ = 1−
35
6

Ng2

16π2ε
, ZQQ = ZgZ 1/2

A = 1−
3
2

Ng2

16π2ε
,

Zχχ = 1, ZτQ = 0,

Z̃α = ZααZ 2
QQ = 1 +

35
6

Ng2

16π2ε
, Zαα = 1 +

53
6

Ng2

16π2ε
,

Zϕ = Zϕ̄ = Z−1
g Z−1/2

A = 1 +
3
2

Ng2

16π2ε
Z 2
γ2 = 1 +

3
2

g2N
16π2ε

.
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Energy functional

The energy functional can be written as

e−W (Q,τ) =

∫
[DΦ][Dσ1,3] exp

[
−SGZ −

1
2

∫
dd x

(
2c̄σ1τ + 2σ3Q

(
1−

b̄2

ē2

)
σ

2
1

−
1
ē2

(σ2
3 − 2b̄σ1σ3) +

((
ā−

f̄ b̄
ē

)
〈σ1〉 +

f̄
ē
〈σ3〉

)
A2 − 2

d̄
ē

(b̄ 〈σ1〉 − 〈σ3〉)ϕϕ
)]

,

where
σ3 = σ1b̄ − σ2ē.

I The term c̄σ1τ = Zτ
√

Zζζµ−ε/2σ1τ looks∞, but we need a finite quantity multiplying the
finite source τ .

I It is then natural to define a renormalized finite field σ′1 by σ′1 ≡ Zττ
√

Zζζσ1 ≡
√

Z̃ζσ1.
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Energy functional

The energy functional

e−W (Q,τ) =

∫
[DΦ][Dσ1,3] exp

[
−SGZ −

1
2

∫
dd x

(
2c̄σ1τ + 2σ3Q

(
1−

b̄2

ē2

)
σ

2
1

−
1
ē2

(σ2
3 − 2b̄σ1σ3) +

((
ā−

f̄ b̄
ē

)
〈σ1〉 +

f̄
ē
〈σ3〉

)
A2 − 2

d̄
ē

(b̄ 〈σ1〉 − 〈σ3〉)ϕϕ
)]

.

At one loop:
I χ = 0, ZτQ = 0, b̄ = f̄ = 0 and σ3 = −ēσ2.
I Now, σ3Q = −ēσ2Q looks∞. It is the same case of σ1.

I σ′2 ≡ ZQQ
√

Zαασ2 ≡
√

Z̃ασ2.
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Energy functional

At one-loop and in terms of the finite fields σ′1 and σ′2 the energy
functional is given by

e−W (Q,τ) =

∫
[DΦ][Dσ′1,2] exp

[
−SGZ −

1
2

∫
ddx

(
σ′1

2

Z̃ζ
−
σ′2

2

Z̃α

+ā
〈σ′1〉√

Z̃ζ
A2 − 2d̄

〈σ′2〉√
Z̃α
ϕϕ− 2

√
ζσ′1τ + 2

√
−2ασ′2Q
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Energy functional in function of the condensate
masses m2 and M2

If we define in (finite) tree level:

m2 ≡
ā√
Z̃ζ

〈
σ
′
1
〉

=

√
13Ng2

9(N2 − 1)

〈
σ
′
1
〉
⇒ 〈AA〉, M2 ≡

d̄√
Z̃α

〈
σ
′
2
〉

= −

√
35Ng2

48(N2 − 1)2

〈
σ
′
2
〉
⇒ 〈ϕ̄ϕ〉.

and λ4 ≡ 2Ng2γ4.

The renormalized effective potential becomes

Γ(m2,M2, λ4) =
9(N2 − 1)

13Ng2

m4

2
− 48(N2 − 1)2

35Ng2

M4

2
− 2λ4(N2 − 1)

Ng2

− N2 − 1
16π2

{
−2λ4 +

5
8

m4 + 2(N2 − 1)M4 −
(

2(N2 − 1) − 3
4

)
ln

(
M2

µ̄2

)
M4
}

+
3
8

N2 − 1
16π2

{
m4 + M4 − 2λ4 +

(
m2 + M2

)√
(m2 − M2)2 − 4λ4

}
× ln

[
1

2µ̄2

(
m2 + M2 +

√
(m2 − M2)2 − 4λ4

)]
+

3
8

N2 − 1
16π2

{
m4 + M4 − 2λ4 −

(
m2 + M2

)√
(m2 − M2)2 − 4λ4

}
× ln

[
1

2µ̄2

(
m2 + M2 −

√
(m2 − M2)2 − 4λ4

)]
. (23)
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+

3
8
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Solving the gap equations

∂Γ

∂M2 = 0,
∂Γ

∂m2 = 0,
∂Γ

∂λ4 = 0. (24)

Unfortunately, in MS and MOM schemes, these equations do not
have a numerically trustworthy solution.
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Effective potential in general scheme

The effective potential, in general renormalization scheme, becomes6

Γgen(m2,M2, λ4, b0) =
9(N2 − 1)

26Ng2
m4−

24(N2 − 1)2

35Ng2
M4−

2(N2 − 1)2M4

16π2

(
1− ln

(
M2

µ̄2

))

− 2λ4 N2 − 1
Ng2

− 2λ4 N2 − 1
16π2

(b0 − 1) +
3
4

N2 − 1
16π2

{
5
4

(m4 + M4 − 2λ4)

−
m2 + M2 − 2λ4

2
ln

[
m2M2 + λ4

µ̄4

]
+ ln

[
M2

µ̄2

]
M4

+(m2 + M2)
√

4λ4 − (m2 −M2)2 arctan

[√
4λ4 − (m2 −M2)2

m2 + M2

]}
, (25)

where b0 is parametrizing at leading order the most general renormalization scheme.

6 D. Dudal, R. F. Sobreiro, S. P. Sorella and H. Verschelde, Phys. Rev. D 72 (2005) 014016.
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Minimum of effective potential

Now, the three gap equations are

∂Γgen

∂M2
= 0

∂Γgen

∂m2
= 0

∂Γgen

∂λ4
= 0. (26)

Solving...

I m2(b0, µ̄), M2(b0, µ̄) and γ2(b0, µ̄) in function of b0 and µ̄ with N = 3 and units Λ
MS

= 1;
I the parameters b0 and µ̄ were fixed comparing the masses with the lattice estimates of the

RGZ complex conjugate gluon poles7. One can show that these poles are both RG and
scheme independent (as well as gauge parameter independent). So we selected that
scheme that brings us as close as possible to a priori scheme independent quantities;

I b0 = −3.643 and µ̄ = 1.429.
I αcoupling = 0.382 that is small enough and the perturbative tools can be used;

I γ2 = 0.637 and
I the vacuum energy is −26.955 that is the minimum of potential in the presence of two

dimensional condensate 〈AA〉 and 〈ϕ̄ϕ〉 with all parameters determined.
I The Hessian determinant is positive and

∂2Γgen

∂M22

∣∣∣∣∣
solved

= 1.668,
∂2Γgen

∂m22

∣∣∣∣∣
solved

= 0.216,
∂2Γgen

∂M2∂m2

∣∣∣∣∣
solved

= 0.011.

7D. Dudal et al, arXiv:1803.02281.
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