## CP violation in QCD

Michael Creutz

Brookhaven Lab

Quark Confinement and the Hadron Spectrum XIII

### Conventional QCD parameters $\alpha_s$ $m_{q_i}$ $\Theta$

Non-trivial connection to physical observables

- $\alpha_s$  tied to overall scale:  $m_p$
- $m_{q_i}$  determines pseudoscalar spectrum:  $m_{\pi} \ m_{K} \ \dots$
- • Controls neutron electric dipole moment

Confinement: quarks are not free

defining their masses non-trivial

Connection to scattering of physical particles subtle

• ambiguities can arise: "renormalons"

Related ambiguities in defining  $\Theta$ 

non-differentiable fields in path integral

MC talk at QCHS II, Como, 1996

hep-ph/9608216

## Connecting ⊕ with quark masses

Naive variable change  $\psi \longrightarrow e^{i\gamma_5\theta}\psi$ 

• mass term  $\overline{\psi}\psi \longrightarrow \cos(\theta) \ \overline{\psi}\psi + i\sin(\theta) \ \overline{\psi}\gamma_5\psi$ 

Study QCD dependence on  $m_1$  and  $m_5$ 

• 
$$m \ \overline{\psi}\psi \to m_1 \ \overline{\psi}\psi + im_5 \ \overline{\psi}\gamma_5\psi$$

Does physics depend only on  $\sqrt{m_1^2 + m_5^2}$  ?



Tool: effective chiral Lagrangian

Consider 2 flavors with effective potential

• 
$$V = (\sigma^2 + \vec{\pi}^2 - v^2)^2 - m_1 \sigma$$

• mass term  $m_1 \overline{\psi} \psi \longrightarrow m_1 \sigma$  tilts the sombrero



• pion becomes massive  $M_\pi^2 \propto m_1$ 

What does  $m_5$  do?

- $im_5\overline{\psi}\gamma_5\psi\longrightarrow m_5\eta$  not in above effective potential
- $m_5$  will give  $\eta$  an expectation value  $\langle \eta \rangle \propto m_5/M_\eta^2$

Flavored chiral rotation  $\psi \to e^{i\tau_3\gamma_5\theta}$ 

- mixes  $i\overline{\psi}\gamma_5\tau_3\psi\sim\eta$  and  $\overline{\psi}\vec{\tau}\psi\sim a_{03}$
- $(\sigma, \vec{\pi})$  and  $(\eta, \vec{a}_0)$  independent chiral partners

#### Chiral symmetry allows coupling

$$\bullet \sim \left( \left( \sigma \quad \vec{\pi} \right) \cdot \left( \frac{\eta}{\vec{a}_0} \right) \right)^2$$

(squared because of parity)

With an expectation for eta

• 
$$(\sigma \eta + \vec{\pi} \cdot \vec{a}_0)^2 \rightarrow \langle \eta \rangle^2 \sigma^2$$

Inducing in the effective potential

• 
$$V \to V - \alpha m_5^2 \sigma^2$$

(sign related to pi eta mixing)

### Quadratic warping of the effective potential



 $m_5$  also gives pions a mass

•  $M_\pi^2 \propto m_5^2$  not linear in  $m_5$ 

 $m_5$  induces a barrier between  $\sigma>0$  and  $\sigma<0$ 



Transition at  $m_1 = 0$  becomes first order



Transition occurs at conventional  $\Theta = \pi$ 

• 
$$\frac{m_5}{m_1} = \tan(\Theta/2)$$

- physics not only dependent on  $\sqrt{m_1^2+m_5^2}$
- variable change is anomalous

Physics depends non-trivially on ⊖

•  $m_1$  and  $m_5$  are physically independent parameters

# Why is $\psi \longrightarrow e^{i\gamma_5\theta}\psi$ not a symmetry?

#### Fugikawa: fermion measure changes

- $d\psi \rightarrow |e^{i\gamma_5\theta}| \ d\psi = e^{i\theta \text{Tr}\gamma_5} \ d\psi$
- index theorem: ## has chiral zero modes
  - $n_+ n_- = \nu = \text{gauge field winding number}$
  - $\operatorname{Tr}\gamma_5 \equiv \sum_i \langle \psi_i | \gamma_5 | \psi_i \rangle = \nu$

$$d\psi \to e^{iN_f \nu \theta} \ d\psi$$

 $\psi \longrightarrow e^{i\gamma_5\theta}\psi$  equivalent to inserting  $e^{i\nu\theta}$  in path integral

$$Z = \int (dA)(d\psi)(d\overline{\psi}) \ e^{-\beta S} \longrightarrow \int (dA)(d\psi)(d\overline{\psi}) \ e^{i\nu\Theta} \ e^{-\beta S}$$

- a physically different theory
- CP violating

 $m_1$  and  $m_5$  are inequivalent

Michael Creutz

Is there a  $m_5$  for each flavor?

- no,  $\psi \longrightarrow e^{i\gamma_5\lambda_\alpha\theta}\psi$  is a valid symmetry
- $\lambda_{\alpha}$  a traceless generator of  $SU(N_f)$

Can rotate  $\theta$  into any flavor

including the top quark!

decoupling?

Michael Creutz

#### The strong CP problem:

- $m_5$  is CP violating
- why is this parameter so small?  $O(10^{-10})$

#### Only a problem for unification

- weak interactions violate CP
- absence in QCD at low energies is not "natural"

#### **Axions**

- make ⊖ dynamical
- add  $(\partial_{\mu}\Theta)^2$  to the action
- ⊖ relaxes to zero

Ad hoc, introduces a new particle

- why no linear term in  $\Theta$ ?
- "natural?"

What about  $m_u = 0$ ?

•  $M_{\pi_0} \neq 0$  means  $m_u$  and  $m_d$  cannot both be zero

Introduce an up-down mass difference

• 
$$m \ \overline{\psi}\psi \to m_1 \ \overline{\psi}\psi + m_2 \ \overline{\psi}\tau_3\psi$$

•  $\overline{\psi} \vec{\tau} \psi \sim \vec{a}_0$  isovector scalar

 $m_2$  also not in starting effective potential

 $m_2$  will give  $a_{03}$  an expectation value

 $\bullet \quad \langle a_{03} \rangle \propto m_2/M_{a_0}^2$ 

Effective coupling  $(\vec{\pi} \cdot \vec{a}_0 + \sigma \eta)^2$ 

$$\bullet V \to V - \alpha m_2^2 \pi_3^2$$



#### Without tilt from $m_1$ ,

- $\pi_3$  gains an expectation value!
- the CP violating "Dashen phase" (Dashen 1971)



Michael Creutz

Mass gap persists at  $m_u \sim 0$ 

no singularity!

 $M_{\pi_0}^2$  can go negative at negative  $m_u$ 

- pion condensate  $\langle \pi_0 \rangle \neq 0$
- $\prod_q m_q < 0$  formally at  $\Theta = \pi$

#### In chiral Lagrangian language:

 $\alpha_s \ m_u \ m_d \ \Theta$  map onto effective potential

- overall scale
- tilt
- warp
- angle between tilt and warp



Full 2 flavor phase diagram



Michael Creutz

Concentrate on  $m_5 = 0$  plane



Second order transition at  $m_u m_d < 0$ ; i.e.  $\Theta = \pi$ 

- order parameter  $\langle \pi_0 \rangle$
- massless neutral pion along transition line

### Symmetries



 $m_u \leftrightarrow m_d$ 

- if  $m_u = m_d$  isospin is exact
- $m_2 = 0$  protected from additive renormalization

#### **Symmetries**



$$m_u \leftrightarrow -m_d$$

- $m_u = -m_d$  isospin symmetry at  $\Theta = \pi$
- $m_1 = 0$  also protected:  $m_u + m_d$



NO symmetry under  $m_u \leftrightarrow -m_u$ 

•  $m_u = 0$  not protected by any symmetry!

Symmetries protect  $m_1$ ,  $m_2$ ,  $m_5$  separately

- renormalizations not in general equal
- no symmetry to protect  $m_u \sim m_1 + m_2$

 $m_1$ ,  $m_2$ ,  $m_5$  physically distinct parameters

- independent renormalizations
- " $m_u$ " =  $\frac{m_1+m_2}{2}+im_5$  an artificial construct

Michael Creutz

Question: Can any experiment tell if  $m_u = 0$ ?

- is  $m_u = 0$  well-defined?
- $\bullet$   $\overline{MS}$  is perturbative, cannot answer this

Non-perturbative issues require the lattice

- adjust lattice parameters for hadron spectrum
- read off quark masses and see if  $m_u = 0$

Complication:  $m_d$  can induce an effective  $m_u$ 



Mass ratios not renormalization group invariant

$$\frac{m_u}{m_d} \to \frac{m_u + \epsilon m_d}{m_d + \epsilon m_u}$$

"t'Hooft vertex" (1976)

Can we use topology?

•  $m_u = 0$  equivalent to vanishing susceptibility

How to define lattice topology?

Space of lattice fields simply connected

Topology lost at the outset

small instantons can fall through the lattice

### Cooling (Wilson flow, ...) to remove UV fluctuations

### Action settles to multiple instantons



Many studies over the years: M. Teper (1985); de Forcrand, Garcia-Perez, Stamatescu; Del Debbio, Giusti, Pica; Bruckmann, Gruber, Jansen, Marinkovic, Urbach, Wagner; Ilgenfritz, Martemyanov, Muller-Preussker, Veselov, ...

Michael Creutz

#### Often stable but ambiguities appear

- winding can depend on cooling algorithm
- with which action should we cool? How long?



#### Can we use the index theorem?

- count small eigenvalues of the Wilson operator
  - at finite cutoff not exact zeros
  - how to define "small"?
  - depends on eigenvalues in first Wilson "circle"

#### Count zero modes of the overlap operator

- operator not unique: "domain wall height"
- reverts to Wilson eigenvalue distribution

Should we care if topology is ambiguous?

- not measured in laboratory experiments
- concentrate on  $M_{\eta'}$ , which is physical
  - Witten-Veneziano formula a large  $N_c$  result

Equivalent to the  $m_u = 0$  issue

# Summary

QCD has  $N_f + 1$  mass parameters

- including one CP violating parameter
- Θ not visible in perturbation theory

Experiment shows no evidence of non-zero  $\Theta$ 

- a puzzle for unification
  - fine tuning?  $m_u = 0$  not natural
  - axion relaxes Θ to zero?

#### Michael Creutz



Creutz





