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Result 1: Small-size clusters at low T

References

Result 4: Effect on kurtosis

Result 2: Four-nucleon clustering and He-4 production

We propose new effects in heavy-ion collisions at the Beam Energy Scan (BES) of the Relativistic
Heavy-Ion Collider which can signal the presence of a possible QCD critical point at a particular collision energy.

We focus on nucleon-nucleon (NN) interaction: at distances ~1 fm is mediated by the σ critical mode.

Beyond mean field, the ω strength is increased to 
reduce the potential depth and make it closer to the 

phenomenological NN Bonn potential.

The shallow potential classically bounds few-nucleons 
close to T=0 (see Results 1). It can also reproduce 

binding energies of bulk nuclear matter in a 
semiclassical approach (see Ref. [1]).  

Walecka-Serot potential between nucleons: 

Close to the critical point T
c
~100 MeV, this potential is 

unable to bind nucleons. However, modifications due to 
the σ mode strongly affects the NN interaction

(see Method).

Nuclear forces appear as a partial cancellation of repulsion and attraction in the mean potential energy,
and Fermi energy, producing binding energies of few MeV in infinite nuclear matter.

We consider several NN potentials with increasing degree of criticality (due to decrease of σ mass close to T
c
):

Result 3: Big clusters close to critical transition

Molecular dynamics + Langevin with V
A’
 potential at T=10-3 MeV with N=4, 6, 8 and 13 nucleons

T is fixed by fast particles (pions, kaons), while nucleon dynamics is dominated by the pairwise potential.
Baryon diffusion constant λ is taken from URASiMA simulations.

We stress the importance of correlations between nucleons for binding and eventual clustering
(Boltzmann’s Stosszahlansatz is not enough to describe this phenomenon).

1) With freeze-out conditions as in experiment, we run N
ev

=105 simulations with N=32 particles in a 

non-expanding frame during Δt=5 fm/c. A final boost matches y and p
T
 distributions. 

A system with noncritical V
A’
 is calibrated to s1/2

NN
=19.6 GeV (close to Poisson expectations). 

We cannot simulate larger energies due to the absence of antiprotons. 

For freeze-out conditions at BES the potential V
A’
 cannot produce clustering of nucleons

However, V
C
 is able to form clusters (e.g. He-4) at temperatures T~100 MeV within a few Fermi/c. 

PDF of distances between nucleons at T=120 MeV for N=4.
At T=0, a Dirac delta sits at the minimum of the potential

These potentials are implemented into a classical molecular dynamics with thermal noise.
We extract physical properties from phase space distribution.

Quantum effects are ignored at T~100 MeV, but needed for infinite matter (see [1]).
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Spatial configurations and binding energies checked against direct minimization of the potential.

Resulting geometries coincide with Platonic solids except for N=8 (as known for Lennard-Jones potential) 

PDF is used to define an 
identification procedure of 
N=4 clusters in simulations 

with more nucleons

N=128
T=120 MeV
n=0.16 fm-3

At long times all 
particles eventually fall 

into a big cluster
(except for outliers 

with high momentum)

Medium at BES only has a 
few Fermi/c to interact.

We can expect few-nucleon 
partially bound systems 

e.g. proto He-4 nuclei
(see Result 2) 

also...
signatures on cumulants of 
(net-)proton distribution at 

freeze-out?
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1) Attractive part of NN potential is very sensitive to the QCD critical mode σ.

2) Phenomenological potentials for infinite nuclear matter are not able to produce binding around T~100 MeV.

3) NN potential reflecting σ-mass suppression close to T
c 
allows for substantial nuclear clustering.

4) In HICs, finite duration and radial expansion prevent big agglomeration, but small clusters can be formed.

ENHANCED HE-4 PRODUCTION IN BES CLOSE TO CRITICAL POINT

5) Clustering induces NN correlations producing an enhancement of kurtosis close to T
c

INCREASE OF KURTOSIS SIGNALS CRITICAL REGION DUE TO CLUSTERING   

2) We rescale our numbers 
to fix average number of 
protons in one cut.

Other proton cumulants 
match well with experiment 
for both cuts.

3) Larger criticality of NN potential we observe an increase of kurtosis.

Clustering → non Gaussian correlations!
STAR data. Two cuts:

0.4 GeV < p
T
 < 0.8 GeV

|y| < 0.5

(from Ref. [3])

0.4 GeV < p
T
 < 2 GeV

|y| < 0.5

(from Ref. [4],
STAR preliminary)

Simulation with N=32, T=120 MeV, Δt=5 fm/c

Motivation
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Quark confinement and hadron spectrum,
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outline

• Confinement=Bose-Einstein condensation of 
• monopoles. Kinetic coefficients -viscosity,
• jet quenching parameter, can be explained by
• “dual QGP” with monopoles. But, what are
• these monopoles in QCD?
• instanton-dyons => confinement, chiral symmetry 

breaking and nontrivial quark periodicity
• Relation between instanton-dyons and monopoles
• Chiral symmetry breaking with monopoles

Instanton-dyons <=> Monopoles
Euclidean semiclassical theory <=>time-dependent dynamics 



Magnetic objects and their 
dynamics: classics 

•  Dirac explained how magnetic charges may coexists with 
quantum mechanics (1934) 

•  �t Hooft and Polyakov discovered monopoles in Non-Abelian 
gauge theories (1974) 

•  �t Hooft and Mandelstamm suggested �dual superconductor� 
mechanism for confinement (1982) 

•  Seiberg and Witten shown how it works, in the N=2 Super -
Yang-Mills theory (1994) 

   Particle -  monopoles

   
 (1976)
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Appendix A 2. One should keep in mind that the plotted
density is normalized to T3. Such a normalization is
appropriate at high T, dominated by quarks and gluons,
but not necessarily at small T.
In this work, we will use two versions of the monopole

density, both obtained from lattice data, but in different
ways. The spread of the results is expected to represent the
uncertainty existing at the moment. The (blue) solid curve,
with a peak at Tc, in Fig. 1 shows the “directly observed”
monopole density, from Eq. (A3), which was measured on
the lattice [12].
The (red) dashed curve for the density of monopoles,

which peaks at about T ≈ 1.5Tc rather than at Tc, was
derived thermodynamically. It is the monopole density
needed to reproduce the correct pressure (entropy, energy)
of QCD as measured on the lattice [26]; in the window of
temperatures from 1 − 2Tc, the energy density, pressure,
and entropy density produced by electric quasiparticle
degrees of freedom is insufficient.
We have discussed this thermodynamic estimate in our

previous work [13]. As we will show below, a monopole
density with a peak around Tc seems to be crucial for
reproduction of the jet quenching data.

IV. CORRECTION DUE TO CORRELATIONS
OF MONOPOLES

Since the magnetic and electric couplings are compa-
rable, the ensemble of magnetic monopoles constitute a
strongly coupled plasma in the region of temperatures
above Tc. In such plasmas, there exist strong correlations
between positive and negative charges, which cancel out
their fields in some parts of space, reducing their impact on
jet quenching.

As expected by the renormalization group flow and
Dirac condition, it was directly shown on the lattice
(c.f. Refs. [12,27]) that monopoles become more correlated
as temperature is increased [16]. We have evaluated
corrections to the monopole contribution to jet quenching
using configurations from our previous path-integral
Monte Carlo simulations [13]. In that work, we reproduced
the lattice correlation functions and the critical condensa-
tion of the monopoles, in a two-component Coulomb Bose
gas with varying coupling. In the process of doing these
studies, we created quantum ensembles of monopole paths,
which we can now use to test what effect these correlations
have on the transverse momentum acquired by a jet.
In order to determine the magnitude of this effect, we

calculate the net force along a line going through an
uncorrelated configuration (random distribution of monop-
oles and antimonopoles), and then through a random sample
of the configurations created in the study of Ref. [13].
The correlations in the plasma are not extremely strong

(there is no crystal like structure, etc.) but are indeed
present—the maximal deviation from 1 of the radial
distribution function is 0.2 at 1.1Tc and 0.4 at 3.8Tc;
see Refs. [12,13,27] for detailed plots of the radial
distribution functions.
Figure 2 shows the ratio of the average momentum

transfer squared per unit length for the correlated and
uncorrelated cases. From Tc to 4Tc, the ratio is approx-
imately 0.85, meaning that the correlations reduce the q̂ by
15%. Intuitively, the reduction of transferred momentum
was expected, since the force on a jet fromþ and − charges
will increasingly cancel the more correlated they are.

V. THE EVOLUTION OF THE AMBIENT MATTER
AT RHIC AND LHC ENERGIES

Before we embark on the evaluation of the jet quenching
parameters, we need to define the fireball temperature,

FIG. 1. Electric and magnetic quasiparticle densities used. The
(blue) solid line shows the magnetic monopole density as directly
observed on the lattice. The (red) long dashed line is the
monopole density extracted from the thermodynamics (pressure),
along with the densities of quarks (purple, short dashed) and
gluons (green, dot dashed).

FIG. 2. Ratio of correlated to uncorrelated average momentum
transfer square per mean free path as a function of the temperature.
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As expected by the renormalization group flow and
Dirac condition, it was directly shown on the lattice
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Monte Carlo simulations [13]. In that work, we reproduced
the lattice correlation functions and the critical condensa-
tion of the monopoles, in a two-component Coulomb Bose
gas with varying coupling. In the process of doing these
studies, we created quantum ensembles of monopole paths,
which we can now use to test what effect these correlations
have on the transverse momentum acquired by a jet.
In order to determine the magnitude of this effect, we

calculate the net force along a line going through an
uncorrelated configuration (random distribution of monop-
oles and antimonopoles), and then through a random sample
of the configurations created in the study of Ref. [13].
The correlations in the plasma are not extremely strong

(there is no crystal like structure, etc.) but are indeed
present—the maximal deviation from 1 of the radial
distribution function is 0.2 at 1.1Tc and 0.4 at 3.8Tc;
see Refs. [12,13,27] for detailed plots of the radial
distribution functions.
Figure 2 shows the ratio of the average momentum

transfer squared per unit length for the correlated and
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imately 0.85, meaning that the correlations reduce the q̂ by
15%. Intuitively, the reduction of transferred momentum
was expected, since the force on a jet fromþ and − charges
will increasingly cancel the more correlated they are.

V. THE EVOLUTION OF THE AMBIENT MATTER
AT RHIC AND LHC ENERGIES

Before we embark on the evaluation of the jet quenching
parameters, we need to define the fireball temperature,

FIG. 1. Electric and magnetic quasiparticle densities used. The
(blue) solid line shows the magnetic monopole density as directly
observed on the lattice. The (red) long dashed line is the
monopole density extracted from the thermodynamics (pressure),
along with the densities of quarks (purple, short dashed) and
gluons (green, dot dashed).

FIG. 2. Ratio of correlated to uncorrelated average momentum
transfer square per mean free path as a function of the temperature.

ROLE OF QCD MONOPOLES IN JET QUENCHING PHYS. REV. D 97, 016010 (2018)

016010-5

gluons

quarks

monopoles

matter composition, by d.o.f.

▲▲

■■

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

T (GeV)Tc

mono-gluon 
scattering

RHIC data

pion gas

lattice 
WB

only the monopole density  
peaks near Tc!

s

⌘
⇠ 1

T lm.f.p.
⇠ n�v

T

weak coupling

Xu, J., J. Liao, and M. Gyulassy (2015),  
arXiv:1508.00552 

Strongly coupled quark-gluon plasma in heavy ion collisions  
Edward Shuryak Rev.Mod.Phys. 89 (2017) 035001 

http://inspirehep.net/record/1616098
http://inspirehep.net/author/profile/Ramamurti%2C%20Adith?recid=1616098&ln=en
http://inspirehep.net/author/profile/Shuryak%2C%20Edward?recid=1616098&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22SUNY%2C%20Stony%20Brook%22&ln=en
http://inspirehep.net/record/1335723
http://inspirehep.net/author/profile/Shuryak%2C%20Edward?recid=1335723&ln=en


Are there monopoles in QCD?

• they are not ’t Hooft-Polyakov monopoles  
because we do not have adjoint scalars 

• Yes, lattice people learned how to find and trace them 
• but one would want some analytic control  

We do have instantons and instanton-dyons
with good semiclassical control (S>>hbar)

but  
• those are Euclidean objects, 

which cannot be taken out of Matsubara time 
• for example we cannot calculate rescattering of  

quasiparticles or jets



Non-zero Polyakov line splits instantons 
 into Nc instanton-dyons 

(Kraan,van Baal, Lee,Lu 1998)

Explained mismatch of quark condensate in SUSY QCD

Explained confinement by back reaction to free energy

Explain chiral symmetry breaking in QCD
and in setting with modified fermion periodicities

BPST

V.Khoze (jr) et al 2001

D.Diakonov 2012, Larsen+ES,Liu,Zahed+ES 2016

R.Larsen+ES 2017, Unsal et al 2017



Instanton-dyon Ensemble with two Dynamical Quarks: the Chiral Symmetry Breaking

Rasmus Larsen and Edward Shuryak
Department of Physics and Astronomy, Stony Brook University, Stony Brook NY 11794-3800, USA

This is the second paper of the series aimed at understanding of the ensemble of the instanton-
dyons, now with two flavors of light dynamical quarks. The partition function is appended by
the fermionic factor, (detT )Nf and Dirac eigenvalue spectra at small values are derived from the
numerical simulation of 64 dyons. Those spectra show clear chiral symmetry breaking pattern at
high dyon density. Within current accuracy, the confinement and chiral transitions occur at very
similar densities.

I. INTRODUCTION

A. Instanton-dyons and confinement

At high temperatures QCD matter is in form of quark-
gluon plasma (QGP) state, which is weakly coupled be-
cause of the asymptotic freedom phenomenon. The topo-
logical solitons to be discussed below have large action
S = O(1/↵

s

) � 1 and are therefore strongly suppressed,
⇠ exp(�S). However, as T decreases toward the decon-
finement transition, the coupling grows and such objects
become important.

The non-trivial configurations of interest are Instan-
tons [1], which in the Euclidean finite temperature for-
mulation are known as Calorons. Such solutions has been
generalized to the case of non-zero expectation value of
the Polyakov loop by Lee-Li-Kraan-van Baal in refs [2, 3]
and are known as LLKvB calorons. Important novel fea-
ture of these solution was realization of instanton sub-
structure: each LLKvB caloron consist of N

c

objects,
known as instanton-dyons (or instanton-monopoles).

Color confinement phenomenon has many manifesta-
tions, and thus many definitions. In this series of papers
we focus on one particular aspect of it, namely on the
shift of the vacuum expectation value of the Polyakov
loop from its “trivial value” < P >⇡ 1 at high T to small
< P >⇡ 0 at T < T

c

. Multiple numerical simulations in
the framework of lattice gauge theory has documented
such shift, as well as modification of the e↵ective poten-
tial V (P, T ) with T leading to it. Since contribution of
the quarks (and non-diagonal gluons) to thermodynam-
ical quantities are proportional to (powers) of < P >,
vanishing of it e↵ectively switches o↵ quark-gluon plasma
contributions. So, in papers of this series we focus on the
calculation of this e↵ective potential and on the decon-
finement phase transition phenomenon.

Another manifestation of confinement is a disordering
of large Wilson loops. It has been argued in [4] ensem-
ble of instanton- dyons can generate the expected area
law. However, this issue is rather subtle and depends on
the infrared tails of the soliton fields, which are modi-
fied by screening e↵ects and thus are not robust enough
to be conclusive. One more approach to confinement is-
sue is reached via the static quark potentials, which do
exist at any T and were extensively studied on the lat-
tice. We intend to calculate those in our approach later.

Finally, a classic formulation of confinement include ab-
sence of color degrees of freedom from vacuum spectra, at
T = 0. Addressing it directly is not possible for the type
of models we discuss, since the calorons and instanton-
dyons themselves become di�cult to use at su�ciently
low T .
The idea that e↵ective potential of the Polyakov loop

P is due to back reaction of the instanton-dyons goes
back to Diakonov and collaborators [5], who provided
the first estimates indicated how this may happen, but
were unable to prove it. Using the so called “double-
trace deformation of Yang-Mills theory”, at large N on
S1⇥R3, Unsal and Ya↵e [6] argued that there can be con-
fining behavior, with unbroken center symmetry, even in
weak coupling. This construction was extended by Unsal
and collaborators [7–9] to a class of deformed supersym-
metric theories with soft supersymmetry breaking. In
such setting , with weak coupling and an exponentially
small density of the dyons, the minimum of the poten-
tial is at the confining value of P induced by the repulsive
interaction in the dyon-anti-dyon pairs (called bions by
the authors). (The supersymmetry was needed to can-
cel the perturbative Gross-Pisarski-Ya↵e-Weiss (GPYW)
holonomy potential , which otherwise favors trivial value
< P >= 1. Sulejmanpasic and one of us [10] have pro-
posed a simple model, with “repulsive cores” in dyon-
antidyon channel, which can generate confining V (P ) at
certain temperature T

c

in pure gauge theory.
To evaluate the free energy of the instanton-dyon

ensemble we performed numerical simulations for pure
gauge SU(2) theory, in the first paper of this series [11],
to be below referred as I. The essential element was in-
clusion of dyon-antidyon interactions, determined in the
previous work [12] using a gradient flow method. Similar
conclusion has been recently reached by Liu, Shuryak and
Zahed [13] using analytic mean field theory. It however
uses the mean field approximation which is only applica-
ble for high enough dyon density, or T < T

c

.

B. Quarks in the instanton-dyon ensemble

In this paper we include quarks, fermions in the fun-
damental color representation, to the instanton-dyon en-
semble. Those will be referred to as “dynamical quarks”,
since the so called fermionic determinant will be included
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the fermionic factor, (detT )Nf and Dirac eigenvalue spectra at small values are derived from the
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cause of the asymptotic freedom phenomenon. The topo-
logical solitons to be discussed below have large action
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) � 1 and are therefore strongly suppressed,
⇠ exp(�S). However, as T decreases toward the decon-
finement transition, the coupling grows and such objects
become important.

The non-trivial configurations of interest are Instan-
tons [1], which in the Euclidean finite temperature for-
mulation are known as Calorons. Such solutions has been
generalized to the case of non-zero expectation value of
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and are known as LLKvB calorons. Important novel fea-
ture of these solution was realization of instanton sub-
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known as instanton-dyons (or instanton-monopoles).

Color confinement phenomenon has many manifesta-
tions, and thus many definitions. In this series of papers
we focus on one particular aspect of it, namely on the
shift of the vacuum expectation value of the Polyakov
loop from its “trivial value” < P >⇡ 1 at high T to small
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vanishing of it e↵ectively switches o↵ quark-gluon plasma
contributions. So, in papers of this series we focus on the
calculation of this e↵ective potential and on the decon-
finement phase transition phenomenon.

Another manifestation of confinement is a disordering
of large Wilson loops. It has been argued in [4] ensem-
ble of instanton- dyons can generate the expected area
law. However, this issue is rather subtle and depends on
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fied by screening e↵ects and thus are not robust enough
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sue is reached via the static quark potentials, which do
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dyons themselves become di�cult to use at su�ciently
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weak coupling. This construction was extended by Unsal
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such setting , with weak coupling and an exponentially
small density of the dyons, the minimum of the poten-
tial is at the confining value of P induced by the repulsive
interaction in the dyon-anti-dyon pairs (called bions by
the authors). (The supersymmetry was needed to can-
cel the perturbative Gross-Pisarski-Ya↵e-Weiss (GPYW)
holonomy potential , which otherwise favors trivial value
< P >= 1. Sulejmanpasic and one of us [10] have pro-
posed a simple model, with “repulsive cores” in dyon-
antidyon channel, which can generate confining V (P ) at
certain temperature T
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To evaluate the free energy of the instanton-dyon

ensemble we performed numerical simulations for pure
gauge SU(2) theory, in the first paper of this series [11],
to be below referred as I. The essential element was in-
clusion of dyon-antidyon interactions, determined in the
previous work [12] using a gradient flow method. Similar
conclusion has been recently reached by Liu, Shuryak and
Zahed [13] using analytic mean field theory. It however
uses the mean field approximation which is only applica-
ble for high enough dyon density, or T < T

c

.

B. Quarks in the instanton-dyon ensemble
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damental color representation, to the instanton-dyon en-
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III. THE GENERAL SETTING

The setup is almost the same as in our paper I [11],
with the di↵erence being the inclusion of the fermionic
determinant in the zero-modes approximation. This fac-
tor creates an additional fermion-induced interaction be-
tween the L dyons.

The dimensionless holonomy ⌫ = v/(2⇡T ) is related to
the expectation value of the Polyakov loop through the
(SU(2)) relation

P = cos(⇡⌫) (4)

We seek to minimize the free energy

f =
4⇡2

3
⌫2⌫̄2 � 2n

M

ln


d
⌫

e

n
M

�
� 2n

L

ln


d
⌫̄

e

n
L

�

+�f (5)

where the first term is the perturbative Gross-Pisarski-
Ya↵e-Weiss holonomy potential, the next terms contain
semiclassical independent dyon contributions, with

d
⌫

= ⇤

✓
8⇡2

g2

◆2

e
� ⌫8⇡2

g2 ⌫
8⌫
3 �1/(4⇡) (6)

and �f ⌘ � log(Z
changed

)/Ṽ3 is defined via the partition
function studied numerically

Z
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=
1

Ṽ 2(NL+NM )
3

Z
D3x det(G) exp(��D

DD̄
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⇥
Y

i

�
Nf

i

(7)

The last factor is the fermionic determinant, now writ-
ten as the product of all eigenvalues of the hopping T

ij

matrix.
Both G and �D

DD̄

are the same as in [11], and we
therefore just present their expressions here without com-
ments.

G = �
mn
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ij
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m
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For dyon antidyon interactions we have for distances
larger than x0

�S
DD̄

= �2
8⇡2⌫

g2
(
1

x
� 1.632e�0.704x)e�MDrT

x = 2⇡⌫rT (9)

For the rest of the combinations we have

�S
DD̄

=
8⇡2⌫

g2

✓
�e1e2

1

x
+m1m2

1

x

◆
e�MDrT

x = 2⇡⌫rT (10)

For distances smaller than x0 we have a core between
dyons of same type ie. LL, MM̄ and so on

�S
DD̄

=
⌫V0

1 + exp [�T (x� x0)]
(11)

x = 2⇡⌫rT (12)

Where x0 is size of the dyons core. In this paper we work
with x0 = 2, just as in our earlier paper I.

IV. EIGENVALUE DISTRIBUTIONS AND THE
CHIRAL CONDENSATE

The Banks-Casher relation for the chiral condensate
tells us, that in the infinite volume limit, the chiral con-
densate for massless fermions is proportional to the den-
sity of eigenvalues at zero value

| <  ̄ > | = ⇡⇢(�)
�!0,m!0,V!1 (13)

For any system with a finite volume, there are no eigen-
values smaller than 1/V and the density will always be
0 at � = 0. To understand finite volume e↵ects on the
distribution one may study those using chiral random
matrix theory, for review see [18] . In principle, using
expressions obtained in this framework one can recover
the value of the chiral condensate in the infinite volume
case.

�

NBin

FIG. 1: Eigenvalue distribution for nM = nL = 0.47, NF = 2
massless fermions.

We will be determining the chiral condensate by two
di↵erent methods:
(i) The first one is based on the part of the eigen-

value distributions with the smallest �. It requires an
understanding of both the finite volume and quark mass

e↵ects on the distribution. This understanding we ob-
tain from analytic random matrix results. We explain
this approach in section IVA.
Vanishing of the condensate is used to define the

ensemble parameters corresponding to chiral symmetry
breaking transition, T

 ̄ 

.
The second strategy (ii) we will use, is based on the

determination of the so called gap width in the distribu-
tion, near � = 0: we will refer to it as T

gap

. Ideally, both
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Ṽ 2(NL+NM )
3

Z
D3x det(G) exp(��D

DD̄

(x))

⇥
Y

i

�
Nf

i

(7)

The last factor is the fermionic determinant, now writ-
ten as the product of all eigenvalues of the hopping T

ij

matrix.
Both G and �D

DD̄

are the same as in [11], and we
therefore just present their expressions here without com-
ments.

G = �
mn

�
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For dyon antidyon interactions we have for distances
larger than x0

�S
DD̄

= �2
8⇡2⌫

g2
(
1

x
� 1.632e�0.704x)e�MDrT

x = 2⇡⌫rT (9)

For the rest of the combinations we have

�S
DD̄

=
8⇡2⌫

g2

✓
�e1e2

1

x
+m1m2

1

x

◆
e�MDrT

x = 2⇡⌫rT (10)

For distances smaller than x0 we have a core between
dyons of same type ie. LL, MM̄ and so on

�S
DD̄

=
⌫V0

1 + exp [�T (x� x0)]
(11)

x = 2⇡⌫rT (12)

Where x0 is size of the dyons core. In this paper we work
with x0 = 2, just as in our earlier paper I.

IV. EIGENVALUE DISTRIBUTIONS AND THE
CHIRAL CONDENSATE

The Banks-Casher relation for the chiral condensate
tells us, that in the infinite volume limit, the chiral con-
densate for massless fermions is proportional to the den-
sity of eigenvalues at zero value

| <  ̄ > | = ⇡⇢(�)
�!0,m!0,V!1 (13)

For any system with a finite volume, there are no eigen-
values smaller than 1/V and the density will always be
0 at � = 0. To understand finite volume e↵ects on the
distribution one may study those using chiral random
matrix theory, for review see [18] . In principle, using
expressions obtained in this framework one can recover
the value of the chiral condensate in the infinite volume
case.
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FIG. 1: Eigenvalue distribution for nM = nL = 0.47, NF = 2
massless fermions.

We will be determining the chiral condensate by two
di↵erent methods:
(i) The first one is based on the part of the eigen-

value distributions with the smallest �. It requires an
understanding of both the finite volume and quark mass

e↵ects on the distribution. This understanding we ob-
tain from analytic random matrix results. We explain
this approach in section IVA.
Vanishing of the condensate is used to define the

ensemble parameters corresponding to chiral symmetry
breaking transition, T

 ̄ 

.
The second strategy (ii) we will use, is based on the

determination of the so called gap width in the distribu-
tion, near � = 0: we will refer to it as T

gap

. Ideally, both
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FIG. 2: Eigenvalue distribution for nM = nL = 0.08, NF = 2
massless fermions.
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FIG. 3: Eigenvalue distribution for nM = nL = 0.47, NF = 2
m = 0.01 fermions.

critical temperatures should coincide, defining the loca-
tion of the chiral symmetry breaking T

�

. This approach
is explained in section IVC.

A. The finite size e↵ects

To understand the scaling of the finite volume e↵ects
we performed simulations for 64 and 128 dyons, at the
same density. (The volume of the sphere with 128 dyons
being 2 times larger than the sphere of the 64 ones.) The
quark mass in both simulations were set to zero. The
resulting eigenvalue distributions are shown in Fig. 5.

We fit the distribution of the eigenvalues with the form
taken from random-matrix theory [18] for SU(2) gauge
group for massless fermions given by

⇢(x) = V ⌃2[
x

2
(J2(x)

2 � J1(x)J3(x))

+
1

2
J2(x)(1�

Z
x

0
dtJ2(t))] (14)

where x = �V ⌃1 and J
n

is the Bessel function. Both the
scaling factor V ⌃1 and the overall factor V ⌃2 should be
proportional to the value of the chiral condensate ⌃. In
the limit V ! 1 the formula gives ⇢(0) / b as required.

Ideally, the parameter values for two di↵erent volumes
should agree. After the fits are done, we found that two
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FIG. 4: Eigenvalue distribution for nM = nL = 0.08, NF = 2
m = 0.01 fermions.
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FIG. 5: (Color Online) The points are the eigenvalue distribu-
tion for 64 (blue circles) and 128 (red squares) dyons at S = 8
and density of dyons nM = 0.33, nL = 0.20, NF = 2. The
curves are the fit with eq. (14) with ⌃2,64 = 1.30± 0.06 and
⌃2,128 = 1.28 ± 0.06 and the scaling as ⌃1,64 = 0.79 ± 0.05
and ⌃1,128 = 0.51 ± 0.04 for these two cases, respectively.
The lower purple line is the di↵erence between the two fits.
Eq. (15) gives ⌃ = 0.38 ± 0.13, while the maximum of the
di↵erence between the two curves give ⌃ = 0.3.

values for parameter ⌃2 agree very well indeed. (This is
related to the fact that the height of the distributions at
the r.h.s. of Fig. 5 do agree.)
Note that the main di↵erence between two distribu-

tions is a shift to the left for bigger volume. This is ex-
pected: in larger volume clusters of a condensate inside
which quarks propagate gets larger, and the eigenvalues
smaller. The formula, from random matrix theory, pre-
scribes a particular “mesoscopic” scaling with the vol-
ume. However, the fit by this formula produces values of
⌃1 which are not the same. This indicates that, at least
our smaller volume, is not yet in the range in which the
expected large volume scaling applies.
The physics behind this behavior is as follows: there

are basically two components of the ensemble, gener-
ating two di↵erent dependencies on the volume. As
we already mentioned in the introduction, there is col-
lectivized dyons, producing the condensate, and dyon-
antidyon pairs. The former component produces eigen-

high density
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low density
unbroken chiral sum

collectivized
zero mode zone
dip near zero is

a finite size effect

extracting condensate 
is far from trivial…
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symmetric phase u=>M
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Both transitions are dramatically different!
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FIG. 4: Debye Mass Md as a function of action parameter
S, for the Z2-symmetric model (red squares) and the usual
QCD-like model with Nc = Nf = 2 (blue circles).

FIG. 5: The Dirac eigenvalue distribution ⇢(�) for ensemble
of 64 (Blue triangle) and 128 (Red square) dyons, for Z2-
symmetric model at S = 6. The upper plot shows the region
of smaller eigenvalues, in which one can see the finite volume
“dip”, of a width which scales approximately as 1/V4 as ex-
pected. The lower plot shows the same data sets, but in wider
range of eigenvalues: it displays the “inverse cusp” shape of
the distribution discussed in the text.

⇢(�) to � ! 0 and to extract the value of the quark con-
densate.) In the other model, the N

c

= N
f

= 2 QCD,
such “inverse cusp” is absent, see II.

So far our discussion assumed an infinite volume limit,
in which case the Dirac eigenvalue spectrum extends till
� = 0. However, it is well known that any finite-size sys-
tems, with 4-volume V4, have the smallest eigenvalues of
the order O(1/V4). This creates the so called “finite size
dip”, in the eigenvalue distribution, also clearly visible in
Fig. 5(upper). One can see that doubling of the volume,
from 64 to 128 dyons at the same density, reduces the
width of this dip roughly by factor two, as expected.

As the holonomy jumps away from its confining value
0.5, the dyon densities become di↵erent. Unlike the fun-
damental quarks, where the holonomy goes down, the
densities of L dyons become larger than that of M dyons.
The total density goes down, but the reduction in M
dyons, leaves space for a few more L dyons. This means
that on one hand the density is larger for L dyons, and
the zero-mode density is therefore higher. On the other
hand, the factor in the exponential in T

ij

(Eq. 4) is ⌫̄
for L dyons, and ⌫ for M dyons. This means that as ⌫
becomes smaller, the e↵ective density of the zero-modes
associated with L dyons become smaller, while the zero-
modes associated with M dyons gets an increased e↵ec-
tive density. It is therefore the interplay between these
two e↵ects, that control which of the condensates are
largest. This results in what we show in Fig. 6, where
the M dyon condensate appears to be slightly larger than
the L dyon condensate, and both condensates decreases
slightly in accordance with the total density of dyons. It
is also observed that since each gas of zero-modes e↵ec-
tively works as a N

f

= 1 ensemble, with non-vanishing
condensates even at the lowest densities we studied[30]
(the r.h.s. of the plot). The other model – N

c

= N
f

= 2
QCD –has condensate shown by black triangles: it clearly
has chiral symmetry restoration,at S > 8 we detected no
presence of a condensate.
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FIG. 6: Chiral condensate generated by u quarks and L dyons
(red squares) and d quarks interacting with M dyons (blue
circles) as a function of action S, for the Z2-symmetric model.
For comparison we also show the results from II for the usual
QCD-like model with Nc = Nf = 2 by black triangles.
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FIG. 2: The mean Polyakov loop P as a function of action pa-
rameter S, for Z2-symmetric model (red squares), compared
to that for the Nc = Nf = 2 QCD with the usual anti-periodic
quarks (blue circles).

V. CHIRAL SYMMETRY BREAKING

As we already explained above, the main feature of the
Z
Nc -symmetric model with N

f

= N
c

distribute all types
of quarks evenly, so that each type of dyons would have
one quark flavor possessing zero modes with it. This is
in contrast to the usual QCD, in which all quarks are an-
tiperiodic and thus all have zero modes only with twisted
L-type dyons.

The simplest examples considered in this work are two
N

c

= N
f

= 2 theories, the Z2-symmetric model and the
two color QCD. In the former case the partition function
includes two independent fermionic determinants, one for
M and one for L dyons, with a single quark species each.
In the latter, one has a square (two-species) of the deter-
minant of hopping matrix over the L-dyons only.

Here we remind well known facts about chiral sym-
metry breaking in such cases, and the consequences for
such determinants. Theories with a single quark flavor
have only a single U

a

(1) symmetry, broken explicitly by
the fermionic e↵ective action. Indeed, it includes terms
 ̄
L

 
R

or  ̄
R

 
L

directly coupling components with op-
posite chiralities. So, there are no chiral symmetries to
break, and condensates are always nonzero, proportional
to density of the topological objects.

The case with two or more flavors is di↵erent: there is
the SU(N

f

) flavor symmetry, which can be either bro-
ken or not, depending on the strength of the 2N

f

-quark
e↵ective interaction.

A. Dirac eigenvalue distribution

Di↵erences in chiral breaking mechanisms in these two
models indicated above also manifest themselves in the
Dirac eigenvalue distribution.

For a proper persepctive, let us remind that for the

SU(N
f

) flavors with N
f

> 2 a general Stern-Smilga the-
orem [29] states that the eigenvalue distribution at small
� has the so called “cusp” singularity

⇢(�) ⇠ |�|(N2
f

� 4) (7)

For N
f

> 2 the coe�cient is positive – this is known
as “direct cusp”, and was also observed, both on the
lattice and in the instanton models. In the particular case
N

f

= 2 this cusp is absent: this fact can be traced to the
absence of symmetric dabc structure constant in the case
of SU(2) group. Indeed, both the calculations done in the
instanton liquid framework (for examples and references
see [8]) and our previous studies II of the N

f

= 2 theory
had produced “flat” eigenvalue distribution

⇢
Nf=2(�) ⇠ const (8)

In the N
f

= 1 case the Smilga-Stern derivation does
not apply, but empirically it has been observed that the
distribution does have a singularity at � = 0 of the
form of the “inverse cusp”, ⇠ �|�|, with negative co-
e�cient. Our results for the Z(N

c

)-QCD under consid-
eration shown in Fig. 5 also show the “inverse cusp” with
linear behavior of ⇢(�). (We use this fact to extrapolate

FIG. 3: (upper) Densities of L dyons (red squares) and
M dyons (blue circles), as a function of action parameter S,
for the Z2-symmetric model. (lower) the same for the usual
QCD-like model with Nc = Nf = 2 and anti-periodic quarks.

confining phase
 gets much more

robust: strong first order
mixed phase (flat F)

is observed at medium densities
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Are there monopoles in the quark-gluon plasma?

Adith Ramamurti,⇤ Edward Shuryak,† and Ismail Zahed‡

Department of Physics and Astronomy,

Stony Brook University,

Stony Brook, NY 11794, USA
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T

c

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
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by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T
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expels electric fields from the vacuum into confining flux
tubes.
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T
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, the monopole density has a peak
near T
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. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
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[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T
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but also as non-condensed quasiparticles at T > T
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.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T
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.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
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The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇2 + S

top

(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-
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tion function,
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2

=
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n � !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z

1

and n for Z
2

, are very di↵erent in nature. In Z
1

,
each term of the sum is periodic in !, while in Z

2

, this
property is recovered only after summation over n. The
temperature T in Z

2

happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z

1

. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z
1

= Z
2

= ✓
3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z

1

is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2

. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X
n=�1

f(! + nP ) =
1X

l=�1

1

P
f̃

✓
l

P

◆
ei2⇡l!/P , (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N

c

)

based on classical paths

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇2 + S

top

(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T

c

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-

⇤
adith.ramamurti@stonybrook.edu

†
edward.shuryak@stonybrook.edu

‡
ismail.zahed@stonybrook.edu

related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T

c

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇2 + S

top

(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

moment
of inertia

Aharonov-Bohm
 phase 

Matsubara 
winding number

3

tion function,

Z
2

=
1X

n=�1

p
2⇡⇤T exp
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� T⇤

2
(2⇡n � !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z

1

and n for Z
2

, are very di↵erent in nature. In Z
1

,
each term of the sum is periodic in !, while in Z

2

, this
property is recovered only after summation over n. The
temperature T in Z

2

happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z

1

. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind
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which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z

1

is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2

. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X
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f(! + nP ) =
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l=�1

1

P
f̃

✓
l

P

◆
ei2⇡l!/P , (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N

c

)

based on classical paths

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇2 + S

top

(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-Note completely different dependence 

on T and holonomy omega
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T

c

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T

c

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇2 + S

top

(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

moment
of inertia

Aharonov-Bohm
 phase 

Matsubara 
winding number

3

tion function,

Z
2

=
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n � !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z

1

and n for Z
2

, are very di↵erent in nature. In Z
1

,
each term of the sum is periodic in !, while in Z

2

, this
property is recovered only after summation over n. The
temperature T in Z

2

happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z

1

. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z
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= Z
2

= ✓
3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z

1

is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2

. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X
n=�1

f(! + nP ) =
1X

l=�1

1

P
f̃

✓
l

P

◆
ei2⇡l!/P , (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N

c

)

based on classical paths

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇2 + S

top

(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-Note completely different dependence 

on T and holonomy omega

3

tion function,

Z
2

=
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n � !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z

1

and n for Z
2

, are very di↵erent in nature. In Z
1

,
each term of the sum is periodic in !, while in Z

2

, this
property is recovered only after summation over n. The
temperature T in Z

2

happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z

1

. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z
1

= Z
2

= ✓
3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z

1

is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2

. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X
n=�1

f(! + nP ) =
1X

l=�1

1

P
f̃

✓
l

P

◆
ei2⇡l!/P , (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N

c

)

And yet, they are the same!
(elliptic theta function of the 3 type)
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T

c

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T
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expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇2 + S

top

(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

moment
of inertia

Aharonov-Bohm
 phase 

Matsubara 
winding number

3

tion function,

Z
2

=
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n � !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z

1

and n for Z
2

, are very di↵erent in nature. In Z
1

,
each term of the sum is periodic in !, while in Z

2

, this
property is recovered only after summation over n. The
temperature T in Z

2

happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z

1

. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z
1

= Z
2

= ✓
3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z
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is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z
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. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],
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where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N
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based on classical paths
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not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
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mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A

0

acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A

0

is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
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community. One reason for that was the setting in which
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instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
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“Poisson duality.”

Since this concept it also not widely known, Sec. II
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simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
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In Sec. III, we turn to theories with extended super-
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the works of Dorey and collaborators, and shows how the
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In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
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(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)

The topological part S
top

⇠
R

dt↵̇(t) does not lead
to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A

0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z
1

=
1X

l=�1
exp

✓
� l2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z

1

is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z

1

is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.

In the dual approach, finite temperature is introduced
via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a di↵erent number n of
rotations around the original circle can be defined as
“straight” classical periodic paths

↵
n

(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-Note completely different dependence 

on T and holonomy omega

3

tion function,
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The key point here is that these quantum numbers, l used
for Z

1

and n for Z
2

, are very di↵erent in nature. In Z
1

,
each term of the sum is periodic in !, while in Z

2

, this
property is recovered only after summation over n. The
temperature T in Z

2

happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z

1

. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind
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which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
observation that the sum Z

1

is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2

. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],
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where f(x) is some function, f̃ is its Fourier transform,
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We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle
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Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
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Finally, in order to make the discussion simpler, one
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makes the instantons and their constituents – as well
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enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
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be small enough such that the corresponding frequencies
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  T

c

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
T
c

does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! T

c

, the monopole density has a peak
near T

c

. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > T

c

[21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  T

c

,
but also as non-condensed quasiparticles at T > T

c

.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! T

c

.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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theories with extended supersymmetry N = 2, 4. Their
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lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
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tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
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does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].
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FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.

Even if one is not able to identify the sums as the
same elliptic function, the equality can be seen from the
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is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z

2
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of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
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where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R3 ⇥ S1. In this section, unlike in the
following one, all of the fields, including the fermions,
have periodic boundary conditions on S1, and therefore
supersymmetry is not broken.

We study the weak coupling g ⌧ 1 scenario, which
makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is
needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dx

µ

Aµ,
H

dx
µ

Cµ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !
and �, respectively.

Finally, in order to make the discussion simpler, one
assumes the minimal non-Abelian color group SU(N

c

)

Poisson summation formula
can be used to derive

the monopole sum

instanton-dyons with 
winding number n

5

to remind the reader that the two circles (or the double
torus) at play are the angle ↵ 2 [0, 2⇡] related with the
rotation of the monopole in ordinary/color space and the
compactified coordinate ⌧ 2 [0, �].

IV. SEMICLASSICAL THEORY AND
MONOPOLES IN PURE GAUGE THEORIES

Now consider theories without adjoint scalars, which
do not have an obvious ’t Hooft-Polyakov monopole so-
lution. One example of such a theory discussed in Ref.
[42] is the N=1⇤ theory obtained from the N=4 theory
by giving a mass to the three chiral multiplets, which, in
the IR, eliminates 3 out of 4 fermions and all 6 scalars.
We will not discuss this particular case, but proceed di-
rectly to pure gauge theory, starting from the instantons.

A. Finite temperature instanton-dyons with an
arbitrary time winding

At zero temperature, the Euclidean space R4 is sym-
metric in all four coordinates, and thus the corresponding
saddle points of the integral over fields – the instantons
– are 4d spherically symmetric. At finite temperatures,
Euclidean time is defined on the circle ⌧ 2 [0, �]. The
corresponding solitons – the calorons – are deformed pe-
riodic instantons.

In order to keep the weak coupling and the small den-
sity approximation valid, we need to consider su�ciently
high T . What this means practically will be discussed at
the end of the paper. For simplicity, for now we will also
ignore the issue of a dynamically generated potential and
mean value of the electric holonomy on the time circle,
and continue to consider it to be an external parameter;
we are therefore considering a “deformed” gauge theory.

The presence of the holonomy is known to split the
calorons into N

c

constituents [29–31] known as instanton-
dyons (or instanton-monopoles). The holonomy eigenval-
ues µ

i

, i = 1 . . . N
c

enter the gluon and instanton-dyon
masses via their di↵erences ⌫

i

= µ
i+1

� µ
i

. We will
consider only the simplest case of the number of colors
N

c

= 2, in which case there is a single holonomy parame-
ter. The caloron is composed of two types of the self-dual
dyons, known as the time-independent M dyon and the
time-twisted L dyon [44].

Following the discussion above, we need to consider a
larger set of saddle-point configurations with all possible
periodic paths. To be explicit, let us derive the corre-
sponding semiclassical configurations. One starts with
the static BPS monopole, with the A

0

component of the
gauge field now as the adjoint scalar. In the simplest

“hedgehog” gauge, the gauge fields are

Aa

4

= n
a

v

✓
coth(vr) � 1

vr

◆
,

Aa

i

= ✏
aij

n
j

r

✓
1 � vr

sinh(vr)

◆
, (12)

where n
a

= x
a

/r is the spatial unit vector and v is the
VEV of A

4

at large distances r ! 1.
The twisted solution is obtained in two steps. The first

is the substitution

v ! n(2⇡/�) � v , (13)

and the second is the gauge transformation with the
gauge matrix

⌦̂ = exp

✓
� i

�
n⇡⌧�̂3

◆
, (14)

where we recall that ⌧ = x4 2 [0, �] is the Matsubara
time. The derivative term in the gauge transformation
adds a constant to A

4

which cancels out the unwanted
n(2⇡/�) term, leaving v, the same as for the original
static monopole. After “gauge combing” of v into the
same direction, this configuration – we will call L

n

– can
be combined with any other one. The solutions are all
self-dual, but the magnetic and (the Euclidean) electric
charges are negative for positive n, opposite to the orig-
inal BPS monopole M for which both are positive.

The action corresponding to this solution is

S
n

= (4⇡/g2)|2⇡n/� � v| . (15)

The contribution to the partition function requires the
calculation of the pre-exponent, due to quantum fluctu-
ations around the L

n

solution. Following Appendix C of
Ref. [32], this can be extracted from the contribution of
the L dyon, which in turn was derived from the explicit
calculation of the moduli for the finite temperature in-
stanton (M+L system) in Ref. [44]. For the color SU(2)
group, taking the limit of large separation the L dyon,
the density has the form

dZ
L

⇠ d3x
L

✓
8⇡2
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◆
2

e
�
�

8⇡2

g2

�
⌫̄

�
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�
8⌫̄/3

, (16)

with ⌫̄ = 1 � ⌫ and ⌫ = vT/2⇡. Unlike the theo-
ries with extended supersymmetry, there are no cancel-
lations in the determinant of the nonzero modes between
bosons and fermions, and for L

n

classical configurations
those have not yet been calculated explicitly. On general
grounds, it is expected that it should append the part
from the moduli such that the correct running coupling
at the relevant scale ⇠ 2⇡T ⌫̄ is reproduced. This means
that one expects the exponent to read

dZ
L

⇠ d3x
L

exp

✓
� ⌫̄

8⇡2

g2
0

+ ⌫̄
22

3
log

✓
p
0

2⇡T ⌫̄

◆◆
, (17)

5

to remind the reader that the two circles (or the double
torus) at play are the angle ↵ 2 [0, 2⇡] related with the
rotation of the monopole in ordinary/color space and the
compactified coordinate ⌧ 2 [0, �].

IV. SEMICLASSICAL THEORY AND
MONOPOLES IN PURE GAUGE THEORIES

Now consider theories without adjoint scalars, which
do not have an obvious ’t Hooft-Polyakov monopole so-
lution. One example of such a theory discussed in Ref.
[42] is the N=1⇤ theory obtained from the N=4 theory
by giving a mass to the three chiral multiplets, which, in
the IR, eliminates 3 out of 4 fermions and all 6 scalars.
We will not discuss this particular case, but proceed di-
rectly to pure gauge theory, starting from the instantons.

A. Finite temperature instanton-dyons with an
arbitrary time winding

At zero temperature, the Euclidean space R4 is sym-
metric in all four coordinates, and thus the corresponding
saddle points of the integral over fields – the instantons
– are 4d spherically symmetric. At finite temperatures,
Euclidean time is defined on the circle ⌧ 2 [0, �]. The
corresponding solitons – the calorons – are deformed pe-
riodic instantons.

In order to keep the weak coupling and the small den-
sity approximation valid, we need to consider su�ciently
high T . What this means practically will be discussed at
the end of the paper. For simplicity, for now we will also
ignore the issue of a dynamically generated potential and
mean value of the electric holonomy on the time circle,
and continue to consider it to be an external parameter;
we are therefore considering a “deformed” gauge theory.

The presence of the holonomy is known to split the
calorons into N

c

constituents [29–31] known as instanton-
dyons (or instanton-monopoles). The holonomy eigenval-
ues µ

i

, i = 1 . . . N
c

enter the gluon and instanton-dyon
masses via their di↵erences ⌫

i

= µ
i+1

� µ
i

. We will
consider only the simplest case of the number of colors
N

c

= 2, in which case there is a single holonomy parame-
ter. The caloron is composed of two types of the self-dual
dyons, known as the time-independent M dyon and the
time-twisted L dyon [44].

Following the discussion above, we need to consider a
larger set of saddle-point configurations with all possible
periodic paths. To be explicit, let us derive the corre-
sponding semiclassical configurations. One starts with
the static BPS monopole, with the A

0

component of the
gauge field now as the adjoint scalar. In the simplest

“hedgehog” gauge, the gauge fields are

Aa

4

= n
a

v

✓
coth(vr) � 1

vr

◆
,

Aa

i

= ✏
aij

n
j

r

✓
1 � vr

sinh(vr)

◆
, (12)

where n
a

= x
a

/r is the spatial unit vector and v is the
VEV of A

4

at large distances r ! 1.
The twisted solution is obtained in two steps. The first

is the substitution

v ! n(2⇡/�) � v , (13)

and the second is the gauge transformation with the
gauge matrix

⌦̂ = exp

✓
� i

�
n⇡⌧�̂3

◆
, (14)

where we recall that ⌧ = x4 2 [0, �] is the Matsubara
time. The derivative term in the gauge transformation
adds a constant to A

4

which cancels out the unwanted
n(2⇡/�) term, leaving v, the same as for the original
static monopole. After “gauge combing” of v into the
same direction, this configuration – we will call L

n

– can
be combined with any other one. The solutions are all
self-dual, but the magnetic and (the Euclidean) electric
charges are negative for positive n, opposite to the orig-
inal BPS monopole M for which both are positive.
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Ref. [32], this can be extracted from the contribution of
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where the coupling g
0

is the defined at the normalization
scale p

0

. Similarly, the power of the action in numerator
must be appended by the two-loop corrections to the two-
loop beta function, and so on.

For our subsequent discussion, we will ignore the run-
ning and only keep the first term, taking the mean cou-
pling to be just a constant at a characteristic p

0

=
2⇡T h⌫̄i, say

S
0

⌘ S
L

+ S
M

=
8⇡2

g2
0

= 10 . (18)

The simulation of instanton-dyon ensembles [32] were
done for S

0

ranging from 5 to 13, and thus defining a
rather large range of dyon densities. Higher-twist instan-
tons L

n

for n > 1 or n < 0 are all strongly suppressed
and in practice can be ignored; the instanton-dyon en-
semble calculations performed in Ref. [32] only included
the n = 0 time independent dyon M and the first twisted
dyons L

1

because, in this range of temperatures, the
holonomy phase ! changes from a small value to ⇡ at
the confining phase transition, where ! and 2⇡ � ! are
comparable.

In the present calculation, we will keep all of them,
preserving exact periodicity, and write the semiclassical
partition function as

Z
inst

=
X
n

e
�
✓

4⇡
g20

◆
|2⇡n�!|

(19)

It is periodic in the holonomy, as it should be. Note that,
unlike in Eq. (11), it has a modulus rather than a square
of the corresponding expression in the exponent. This
is due to the fact that the sizes of L

n

and their masses
are all defined by the same combination |2⇡n � !|T and
therefore the moment of inertia ⇤ ⇠ 1/|2⇡n� � v|.

B. The Poisson transformation

A key point of this paper is that the existence of the
semiclassical instanton partition function implies the ex-

istence of monopoles moving and rotating in their collec-
tive coordinates. According to the general Poisson rela-
tion, Eq. (6), the Fourier transform of the corresponding
function appearing in the sum in Eq. (19) reads

F
⇣
e�A|x|

⌘
⌘
Z 1

⌫=�1
dx ei2⇡⌫�A|x|

=
2A

A2 + (2⇡⌫)2
, (20)

and therefore the monopole partition function is

Z
mono

⇠
1X

q=�1
eiq!�S(q) , (21)

where

S(q)= log
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+ q2
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⇡ 2log
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+ q2
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0

4⇡

◆
2

+ . . . , (22)

where the last equality is for q ⌧ 4⇡/g2
0

.

V. WHAT HAVE WE LEARNED ABOUT QCD
MONOPOLES?

Before summarizing our answer to this question, let
us first recall the setting and conclusions of the pre-
ceding section. The coupling is presumed small, so
4⇡/g2

0

� 1 and the semiclassical calculation is well con-
trolled. This implies that the corresponding temperature
is “high enough.” The holonomies !, �, treated as ex-
ternal Aharonov-Bohm phases imposed on the system,
create a certain “Higgsing” of the gluons, with only the
diagonal ones remaining massless. Calorons are split into
the instanton-dyons, and the semiclassical partition func-
tion, appended by all L

n

contributions, can be calculated.
What we would actually like to study is QCD with

quarks at temperatures around the deconfinement tran-
sition T ⇠ T

c

. Indeed, heavy-ion collisions create mat-
ter with T between roughly 2T

c

⇡ 300 MeV and 0.5T
c

.
Most finite-T lattice studies are devoted to this tempera-
ture range as well. While the coupling seems to be small
enough to keep the semiclassical approach reasonable,
S
0

= 8⇡2/g2 ⇠ 10, when including the pre-exponent, one
finds that the ensemble is not really dilute, and in order
to perform the integration over the collective variables,
one needs to solve a nontrivial many-body problem of
a dense instanton-dyon plasma. The instanton-dyon en-
semble in this scenario does shift the potential for the
electric holonomy dynamically to its “confining” value,
for T < T

c

. Semiclassical ensembles of instanton-dyons
also explain chiral symmetry breaking, and their changes
with flavor-dependent quark periodicity phases. Further
development of the semiclassical theory is, therefore, well
justified.

The main point of this paper, however, is di↵erent:
any semiclassical partition function, once derived, can be
Poisson-rewritten into an identical form, with the sum
over certain physical states. We have shown how one
can do so for pure gauge theory, without scalars, using
a relatively simple, or even schematic, form of its semi-
classical partition function, for which we calculated its
Poisson dual. We further argued that the resulting par-
tition function can be interpreted as being generated by
moving and rotating monopoles.

The results are a bit surprising. First, the action of a
monopole, although still formally large in weak coupling,
is only a logarithm of the semiclassical parameter; these
monopoles are therefore quite light. Second is the issue
of monopole rotation. The very presence of an object

q is angular momentum 
of rotating monopole,
so it is electric charge

6
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is “high enough.” The holonomies !, �, treated as ex-
ternal Aharonov-Bohm phases imposed on the system,
create a certain “Higgsing” of the gluons, with only the
diagonal ones remaining massless. Calorons are split into
the instanton-dyons, and the semiclassical partition func-
tion, appended by all L

n

contributions, can be calculated.
What we would actually like to study is QCD with

quarks at temperatures around the deconfinement tran-
sition T ⇠ T

c

. Indeed, heavy-ion collisions create mat-
ter with T between roughly 2T

c

⇡ 300 MeV and 0.5T
c

.
Most finite-T lattice studies are devoted to this tempera-
ture range as well. While the coupling seems to be small
enough to keep the semiclassical approach reasonable,
S
0

= 8⇡2/g2 ⇠ 10, when including the pre-exponent, one
finds that the ensemble is not really dilute, and in order
to perform the integration over the collective variables,
one needs to solve a nontrivial many-body problem of
a dense instanton-dyon plasma. The instanton-dyon en-
semble in this scenario does shift the potential for the
electric holonomy dynamically to its “confining” value,
for T < T

c

. Semiclassical ensembles of instanton-dyons
also explain chiral symmetry breaking, and their changes
with flavor-dependent quark periodicity phases. Further
development of the semiclassical theory is, therefore, well
justified.

The main point of this paper, however, is di↵erent:
any semiclassical partition function, once derived, can be
Poisson-rewritten into an identical form, with the sum
over certain physical states. We have shown how one
can do so for pure gauge theory, without scalars, using
a relatively simple, or even schematic, form of its semi-
classical partition function, for which we calculated its
Poisson dual. We further argued that the resulting par-
tition function can be interpreted as being generated by
moving and rotating monopoles.

The results are a bit surprising. First, the action of a
monopole, although still formally large in weak coupling,
is only a logarithm of the semiclassical parameter; these
monopoles are therefore quite light. Second is the issue
of monopole rotation. The very presence of an object
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QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC)
at T < Tc creates electric confinement and flux tubes. The “magnetic scenario” of QCD proposes
that scattering on the non-condensed component of the monopole ensemble at T > Tc plays an
important role in explaining the properties of strongly coupled quark-gluon plasma (sQGP) near the
deconfinement temperature. In this paper, we study the phenomenon of chiral symmetry breaking
and its relation to magnetic monopoles. Specifically, we study the eigenvalue spectrum of the Dirac
operator in the basis of fermionic zero modes in an SU(2) monopole background. We find that as
the temperature approaches the deconfinement temperature Tc from above, the eigenvalue spectrum
has a finite density at ! = 0, indicating the presence of a chiral condensate. In addition, we find
the critical scaling of the eigenvalue gap to be consistent with that of the correlation length in the
3d Ising model and the BEC transition of monopoles on the lattice.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac famously related the existence of monopoles with
electric charge quantization [1]. Monopoles in quantum
electrodynamics, however, were never found.

With the advent of non-Abelian gauge theories, classi-
cal solitons with magnetic charge were found by ’t Hooft
[2] and Polyakov [3] in the Georgi-Glashow model. Such
monopoles play important role in all other theories with
an adjoint scalar field, notably in theories with extended
supersymmetry N = 2, 4.

In theories without such scalars, e.g. pure gauge theo-
ries, one can use the same ’t Hooft-Polyakov solution with
the zeroth component of the gauge field A0 acting as the
“Higgs;” this option leads to the semiclassical theory of
instanton-dyons. For a recent short review, see Ref. [4].
These objects, however, are pseudo-particles and not par-
ticles, existing only in the Euclidean formulation of the
theory, which severely limits their phenomenological ap-
plications. We will not discuss this issue further and only
remind the reader that, in the case of extended supersym-
metry, the partition functions in terms of monopoles and
instanton-dyons were shown to be equal, related by the
so-called Poisson duality [5–7].

In spite of the monopole solution lacking in theories
without scalars, Nambu [8], ’t Hooft [9], and Mandel-
stam [10] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  Tc

expels electric field from the vacuum into confining flux
tubes.

⇤
adith.ramamurti@stonybrook.edu

†
edward.shuryak@stonybrook.edu

In lattice studies of gauge theories, monopoles have
been identified via procedures including choosing specific
gauges, such as Maximal Abelian Gauge. Their locations
and paths were positively correlated with gauge-invariant
observables, such as the action and square of the mag-
netic field [11]. The monopoles were found to create a
magnetic current around the electric flux tube, stabiliz-
ing them [12, 13]. In the Landau gauge, while monopole-
type singularities themselves are not present, the physical
properties that they source, e.g. the magnetic displace-
ment current, are still present and are gauge-invariant
[14]. Furthermore, their motion and correlations were
shown to be exactly as expected for a Coulomb plasma
[15–17]. The deconfinement critical temperature Tc does
coincide accurately with that of monopole BEC transi-
tion [16, 18, 19], and the BEC transition, along with the
the magnetic charge, has been shown to be gauge inde-
pendent [20–22].

The “magnetic scenario” of QCD [17, 23, 24] assumes
the presence of non-condensed monopoles in quark-gluon
plasma (QGP). Unlike quarks and gluons, which have
vanishing densities at T ! Tc, the monopole density has
a peak near Tc and is dominant there. Monopole-gluon
and monopole-quark scattering were shown to play a sig-
nificant role in kinetic properties of QGP, such as the
shear viscosity ⌘ [25] and the jet quenching parameter q̂
[26–28]. The non-condensed monopoles should also lead
to electric flux tubes at T > Tc [24], which indeed were
recently observed on the lattice [29]. Thus, there is a
growing amount of phenomenological evidence suggest-
ing magnetic monopoles do exist, not only as a confining
condensate at T  Tc, but also as non-condensed quasi-
particles at T > Tc.

While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention. It has been found on the lat-
tice that, by decomposing the gauge fields into Abelian-
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Fermionic zero modes of monopoles are in 3d
So they are q-m bound states

Chiral symmetry breaking is based on 4d near-zero eigenmodes
Monopole mode leaves out the  tau dependence 

And with anti-periodic quarks, it leads to Matsubara eigenvalues +- pi*T
Can collectivization of eiegenstates fill in the gap?
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(a) T = 1Tc (b) T = 1.05Tc

(c) T = 1.1Tc (d) T = 1.2Tc

FIG. 2: Evaluation of Im(Tij(r0)) for r0 in the xy plane for di↵erent temperatures.

B. The quantization procedure

We will evaluate the evolution matrix U , defined as
time-ordered integral of the hopping matrix in the previ-
ous section over the Matsubara periodic time ⌧ 2 [0, �].
This matrix will then be diagonalized to find the eigen-
values for the fermion states. Because each eigenstate
is still fermionic, each is required to fulfill the fermionic
boundary conditions, namely that the state must return
to minus itself after one rotation around the Matsubara
circle. This defines quantization of the Dirac eigenvalues
by,

�i + !i,n =

✓
n +

1

2

◆
2⇡

�
, (28)

where �is are the eigenvalues of the hopping matrix T.

For monopoles that move in Euclidean time, we must
integrate over the Matsubara circle to find the fermion
frequencies,

U =

I

�

d⌧eiH⌧ = � . (29)

This can be approximated by

� ⇡ eiHm�⌧ . . . eiH2�⌧eiH1�⌧

⇡ (1 + iHm�⌧ � . . .) . . . (1 + iH1�⌧ � . . .)

for m time slices. We diagonalize the resulting matrix on
the right-hand side and solve to find the quantity � + !.

C. Dirac eigenvalue spectra and chiral symmetry
breaking

For simplicity, we will work in units of Tc (i.e. Tc = 1)
when doing this calculation (for mass and temperature,
for example), and units of length will be defined by the
density of monopoles r ⇠ ⇢�1/3 in units of 1/Tc.

Before we begin, to estimate what the e↵ects of tem-
perature will be on our results, we can evaluate the inte-
gral in Eq. (25) with di↵erent values of the parameters,
corresponding to the range of temperatures we will simu-
late. We will take G = g =

p
4⇡/3 – as would be the case

in QCD – and v from the monopole mass, taken from
Ref. [18]. The results for T/Tc = 1, 1.05, 1.1, and 1.2
are seen in Fig. 2 (a), (b), (c), and (d), respectively.

Compared to the g = G = v = 1 case, the range of the
zero-mode hopping is significantly smaller – ⇠10 units of
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FIG. 4: Distributions of Dirac eigenvalues for T/Tc = (a) 1 , (b) 1.05 , (c) 1.1, and (d) 1.2, respectively.

Quantitatively, we found that not only the mechanism
works in principle, but that a noticeable quark conden-
sate does appear at T ⇡ Tc, practically simultaneously
with the deconfinement phase transition, seen by the
BEC of monopoles. This observation is consistent with
what what has been observed in quenched lattice calcu-
lations.

Finally, let us comment on the dependence of chiral
symmetry breaking on the fermion periodicity phase. We
have not studied it in this work, but note that for peri-

odic quarks, the Matsubara frequencies shift to bosonic
set 2⇡Tn, including n = 0. Therefore the monopoles
would produce a non-zero quark condensate at any den-
sity. This comment implies that the chiral transition is
in general some function of the periodicity phase, and
its coincidence with deconfinement only happens for the
anti-periodic quarks we studied.
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Appendix A: Gamma matrices and chirality of the
monopole zero modes

The representation of the Dirac matrices used by
Jackiw and Rebbi and mentioned in the text correspond
to the definition

�4 = � , �4~� = �i~↵ , (A1)

with the representation of the gamma matrices

�4 = �i

✓
0

� 0

◆
, �i =

✓
��i 0
0 �i

◆
, �5 = i

✓
0

0

◆
.

(A2)

Yes, the gap at zero can be filled
And this happens exactly at Tc!



Summary
• Instanton-dyons and monopoles look 

different but lead to the same partition 
function. High and low T series. 

• Chiral condensate is due to collectivization of 
topological zero modes, for monopole as well

• sQGP is unusual because it is a dual plasma, 
with both electrically and magnetically 
charged quasiparticles

• As T cools, and electric coupling increases, 
the magnetic coupling decreases

• As monopoles get lighter, their density grows 
till BEC (confinement)
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A relatively recent story: the angular distribution of jet quenching and monopoles

A jet in shorter x direction suffers less quenching by matter
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The theory gave reasonably good description of quenching itself 
But experiment stubbornly gave v2 about twice larger than  
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a monopole and a charge: 
classical motion 

E M

Observation by J.J.Thompson:

even static charge+monopole
lead to rotating electromagnetic field

A.Poincare:
angular momentum of the particle 

plus that of the field is conserved =>
motion on a cone, not plane as usual

E B

Pointing vector rotates H. Poincare ́, C. R. Acad. Sci. Ser. B. 123, 530 (1896).  

~S = [ ~E ⇥ ~B]

~S

hints from  
the 19-th cent.



 two charges play ping-pong 
with a monopole  without 

even moving!  
Dual to Budker’s  
 magnetic bottle  

Indeed, collisions are much 
 more frequent than in cascades 
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 two charges play ping-pong 
with a monopole  without 

even moving!  
Dual to Budker’s  
 magnetic bottle  

Indeed, collisions are much 
 more frequent than in cascades 

classical kinetics of the “dual plasma”, with E and M charges
was simulated by molecular dynamics, 

diffusion coefficient and viscosity calculated
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colliding with few lamp posts 

+ -

M



Quantum-mechanical problem of a charge-monopole scattering 
(should belong to QM textbooks but is not there)

e · g ⌘ n integer is the only parameter 
It is dimesionless  

so the scattering phase 
 cannot depend on momenta

j0(j0 + 1) = j(j + 1)� n2

�j = ⇡j0

Both j (total orbital mom.)  
and n (that of the field) are integers 

but j’ is not!!!!! Thus complicated  
angular distribution

Unlike in a standard scattering problem 
Ylm angular functions cannot be used: 

At large l,m>>1 those describe a scattering plane 
But we know in classical limit it is the Poincare cone

 D. G. Boulware, L. S. Brown, R. N. Cahn, S. D. Ellis, and C. k. Lee,  
Phys. Rev. D 14, 2708 (1976).  

J. S. Schwinger, K. A. Milton, W. Y. Tsai, L. L. DeRaad, and D. C. Clark,  
Ann. Phys. (N.Y.) 101, 451 (1976).
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So no new states and thus no

corrections to thermodynamics,
Only to kinetics 



gluon-monopole scattering explains small viscosity!
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Figure 14: Left panel: gluon-monopole and gluon-gluon scattering rate. Right panel:
gluon-monopole and gluon-gluon viscosity over entropy ratio, ⇥/s.

with the prime marking the secondary gluons. If the gluon mass is small (high T )
those corrections are small: their magnitude is ⇧f⌃ ⇥ (T/m) ⇥ 1/e(T ) ⇤ 1. In the
experimentally relevant region, when m/T = O(1), the e�ect is not enhanced and
is additionally suppressed by the expectation values of the Polyakov lines11 ⇥ ⇧L⌃2.

As we have already mentioned in the introduction, Xu, C. Greiner and Stöcker
[8] have suggested an alternative explanation for small QGP viscosity, namely the
next-order radiative processes, gg ⌅ ggg. Using perturbative matrix elements and
�s = 0.3..0.6, they were able to obtain ⇥/s, suppressed by a significant factor (as
compared to what comes out from the gg ⌅ gg process): their numbers are close to
what we get from the gm process. Obviously, both mechanisms, albeit having such
di�erent origin, would thus be su⇥cient to explain the well-known hydrodynamic
results for radial and elliptic flow at RHIC.

It will require more work to see how these results will change, when further
refinements are introduced. Let us mention few of those:
(i) Xu et al used near-massless perturbative gluons: bet in the RHIC domain lattice
quasiparticle masses are ⇥ 800MeV , much larger than T , and thus emission of extra
gluon gets suppressed.
(ii) include the suppression by the Polyakov VEV ¡L¿
(iii) look at even higher order corrections to see if perturbative series have any
converegence. As discussed by one of us years ago in [45], naively the processes
gg� > ng with n = 4, ... have even larger rates for coupling as large as �s = 0.3..0.6
used.

Acknowledgements We thank Jinfeng Liao for multiple useful discussions, as

11We do not agree with Hidaka and Pisarski [46] in their conclusion that ⇧L⌃ < 1 makes viscosity
� smaller by ⇧L⌃2.
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Role of monopoles in a gluon plasma
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We study the role of magnetic monopoles at high enough temperature T > 2Tc, when they can be

considered heavy, rare objects embedded into matter consisting mostly of the usual ‘‘electric’’ quasi-

particles, quarks, and gluons. We review available lattice results on monopoles at finite temperatures.

Then we proceed to classical and quantum charge-monopole scattering, solving the problem of gluon-

monopole scattering for the first time. The explicit calculations are performed in the framework of the

Georgi-Glashow model; the results that we obtain are nevertheless quite general. Connections to QCD are

carefully discussed. We find that, while the gluon-monopole scattering hardly influences thermodynamic

quantities, it does produce a large transport cross section, significantly exceeding that for pQCD gluon-

gluon scattering up to quite high T. Thus, in spite of their relatively small density at high T, monopoles are

extremely important for quark-gluon plasma transport properties, keeping viscosity small enough for

hydrodynamics to work at the LHC.

DOI: 10.1103/PhysRevD.80.034004 PACS numbers: 12.38.Mh, 12.39.!x

I. INTRODUCTION

A. Overview

As it is known from the 1970s, QCD at high temperature
T is weakly coupled [1] and provides perturbative screen-
ing of the charge [2], thus being called quark-gluon plasma
(QGP). Creating and studying this phase of matter in the
laboratory has been the goal of experiments at CERN
Super Proton Synchroton and recently at the Relativistic
Heavy Ion Collider (RHIC) facility in Brookhaven
National Laboratory, soon to be continued by the ALICE
Collaboration at the Large Hadron Collider (LHC). RHIC
experiments have revealed robust collective phenomena in
the form of radial and elliptic flows, which turned out to be
quite accurately described by near-ideal hydrodynamics.
QGP thus seems to be the most perfect liquid known, with
the smallest viscosity-to-entropy ratio !=s.

The theory of QGP has shifted from the perturbative-
based one, appropriate for a weakly coupled (gas) regime,
to the nonperturbative methods needed to address the
strongly coupled QGP (sQGP for short) regime. This
‘‘paradigm shift,’’ documented in Refs. [3,4], is still pro-
foundly affecting the developments. The methods address-
ing strongly coupled gauge theories include, in particular,
the so-called AdS/CFT correspondence, relating strongly
coupled gauge theory to weakly coupled string theory in a
particular setting. We will not discuss it in this paper; for a
recent review, see e.g. [5]. On pure phenomenological
grounds, it has been argued that, since many substances
exhibit a minimum of the viscosity at some phase transi-
tions, perhaps QGP is the ‘‘best liquid’’ at the QCD phase
transition as well, namely, at T ¼ Tc [6].

Another duality which has been used to explain unusual
properties of the sQGP is the electric-magnetic duality.
Liao and one of us have proposed the so-called ‘‘magnetic
scenario’’ [7], according to which the near-Tc region is
dominated by magnetic monopoles. This is not surprising,
if the deconfinement phase transition is basically inter-
preted as their Bose condensation. Based on molecular
dynamics of classical plasmas with both electric and mag-
netic quasiparticles, it has been further argued in that work
that the minimal viscosity/entropy ratio (the best liquid)
does not correspond to the phase transition point T ¼ Tc,
but rather to the ‘‘electric-magnetic equilibrium,’’ at T #
1:4Tc, where both components of QGP contribute about
equally to transport coefficients. We will review more
recent works on the subject in a later section.
One of the central questions is how sQGP with ‘‘near-

perfect fluidity’’ will change into a weakly coupled wQGP
with increasing T. In view of the next round of heavy-ion
experiments at LHC, a quite urgent question is what trans-
port properties are expected to be observed there, at tem-
peratures reaching about twice those reached at RHIC. In
order to answer this question, one of course has to under-
stand where the ‘‘perfect fluidity’’ property of QGP comes
from. As an important example of a perturbative point of
view, we mention the work by Xu, Greiner, and Stöcker [8]
who argued that the QGP is only moderately coupled, with
"s ¼ 0:3 $ $ $ 0:6, explaining the small viscosity by inclu-
sion of the next-order radiative processes, gg $ ggg. We
will discuss this issue partially in the next section, dealing
with parametric dependences of densities and scattering
rates, and also at the end of the paper in the Discussion
section. Here we only notice that, if this should be the
explanation, one would expect a very slow transition to
weakly coupled QGP, induced by the logarithmic running
of the coupling.*shuryak@tonic.physics.sunysb.edu
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Flux tubes can exist even without “dual superconductor”
At T>Tc

Static !QQ potentials and the magnetic component of QCD plasma near Tc

Jinfeng Liao1,2,* and Edward Shuryak3,†

1Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794, USA
(Received 9 August 2010; published 10 November 2010)

Static quark-antiquark potential encodes important information on the chromodynamical interaction

between color charges, and recent lattice results show its very nontrivial behavior near the deconfinement

temperature Tc. In this paper we study such potential in the framework of the ‘‘magnetic scenario’’ for the

near Tc QCD plasma, and particularly focus on the linear part (as quantified by its slope, the tension) in the

potential as well as the strong splitting between the free energy and internal energy. By using an analytic

‘‘ellipsoidal bag’’ model, we will quantitatively relate the free energy tension to the magnetic condensate

density and relate the internal energy tension to the thermal monopole density. By converting the lattice

results for static potential into density for thermal monopoles we find the density to be very large around

Tc and indicate at quantum coherence, in good agreement with direct lattice calculation of such density. A

few important consequences for heavy ion collisions phenomenology will also be discussed.

DOI: 10.1103/PhysRevD.82.094007 PACS numbers: 12.38.Mh, 12.38.Gc, 25.75.Nq

I. INTRODUCTION

A traditional observable for studying the QCD confine-
ment is the interaction potential between static quark and
antiquark. It was originally inferred from heavy meson
spectrum and Regge trajectories, and has then been exten-
sively studied in lattice gauge theories. (For reviews see
e.g. [1,2].) Its vacuum (T ¼ 0) form is well-known, usually
represented as a sum of a Coulomb part V " 1=r, dominant
at small separation between !QQ, and a linear part V ¼ !r
dominant at large separation (see the black solid curve in
Fig. 1). The latter implies the confinement of quarks and
has been interpreted in terms of chromo-electric flux tube
(or ‘‘string’’) formation between well-separated !QQ pair.
The so-called string tension ! in the vacuum (T ¼ 0) has
been consistently determined by different methods to be

!vac # ð426 MeVÞ2 # 0:92 GeV=fm: (1)

With current Relativistic Heavy Ion Collider (RHIC)
and future LHC experimental programs exploring excited
hadronic matter and quark-gluon plasma (QGP) at increas-
ing temperature T, it is very important to know the finite T
form of the static !QQ potential, which has recently been
calculated by means of the lattice QCD. (See e.g. [3–5].)
At finite temperature, there are actually two potentials
associated with a !QQ pair separated by distance r: one is
the free energy FðT; rÞ and the other is the internal energy
VðT; rÞ, with the difference related to the entropy generated
in the medium by the !QQ pair, i.e.

VðT;rÞ ¼ FðT;rÞ&Tð@F=@TÞ ¼ FðT;rÞþTSðT;rÞ: (2)

What is directly evaluated on the lattice is the free energy
FðT; rÞ from which the corresponding VðT; rÞ and SðT; rÞ
can be inferred [3]. While at T ¼ 0 there is no entropy and
the free and internal energies are identical, splitting be-
tween the two shall be expected at T > 0 and may carry
key information about the medium and deconfinement
transition near Tc.
The lattice results indeed show remarkably different

potentials FðT; rÞ and VðT; rÞ near Tc (see e.g. Fig. 1–4
in [6] and also here Fig. 1 adapted from [3]). In particular
let us emphasize two important points. (i) The tensions
(slopes of the potentials at r about 0.3–1 fm) have very
different temperature dependences: while the tension of the

FIG. 1 (color online). The static !QQ potential at T # Tc

(adapted from [3]). The boxes (blue) are for the internal energy
VðrÞ while the diamonds (red) are for free energy FðrÞ, with the
dashed line (green) indicating the strong linear rise in VðrÞ for
r 2 ð0:5; 1Þ fm and the solid curve (black) showing the vacuum
!QQ potential.

*jliao@bnl.gov
†shuryak@tonic.physics.sunysb.edu
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free energy !F decreases with T, to near zero at Tc (an
expected signal of deconfinement), the tension of the in-
ternal energy !V remains nonzero till about T ¼ 1:3Tc,
with a peak value at Tc about 5 times (!) the vacuum
tension !vac (see Fig. 2). (ii) This drastically different
behavior persists to very large distances, where linear
behavior changes to saturated values. Near Tc the internal
energy flattens to a huge asymptotic value at large r ! 1,
e.g. VðT;1Þ $ 4 GeV at Tc with the corresponding en-
tropy SðTc;1Þ % 20 implying huge number of states in-
volved, $ expð20Þ. These features indicate a strikingly
strong interaction between the static color charges and
the medium near Tc, which persists into the deconfined
phase.

Such static !QQ potentials at finite T are closely con-
nected with a number of phenomenological issues. For
example, the consequence of these features for the survival
of quarkonium in deconfined plasma is much debated, e.g.
on what/which potential should be used [7–9]. If, as sug-
gested in [10,11], the internal energy is used, J=c state
would exist even in the deconfined plasma in 1–2Tc.
Persistence of some baryonic states above Tc is also in-
dicated by other observable like the baryonic susceptibil-
ities [12,13]. These potentials also imply significant
interaction energy in the quark-gluon plasma and in the
many body context this may lead to a large classical
plasma parameter " (defined as the ratio of average inter-
action energy to average kinetic energy): indeed the "
value in strongly coupled QGP has been estimated to be
above one (about three) and thus in a typical liquid regime
(see for example [14–16]). If so, QGP would be a strongly
coupled Coulombic liquid, in agreement with the strong
collective flow observed at RHIC (see more in reviews
[17,18]). Apart from QGP phenomenology, it is important
to understand the microscopic origin of the potentials,
especially the strong splitting between two potentials and
the large energy/entropy associated with the static !QQ pair
near Tc. Earlier attempts can be found in e.g. [19–21].

In this paper wewill specifically focus on the ‘‘tensions’’
!F and !V (as shown in Fig. 2) related to the linear part of
the potentials (while leaving the discussion of ‘‘screening’’
behavior at very large distances to further studies). We will
provide an explanation in the framework of the magnetic
scenario of QCD plasma near Tc [15,22–25]. In such a
scenario, the near Tc QCD plasma is strongly influenced by
the magnetic component, made of relatively light and
abundant chromo-magnetic monopoles. Those are quasi-
particles above Tc which undergo the Bose-Einstein con-
densation (BEC) below Tc, enforcing color confinement
(for reviews see e.g. [26]). Two key points of the present
model for the potentials are: First, we identify the !QQ
free energy as been probed by an adiabatically ‘‘slow
separation’’ process while the internal energy by a ‘‘fast
separation’’ process. Second, we further relate the linear
part of potentials with the flux tube formation, enabled by
condensed monopoles below Tc while thermal monopoles
above Tc, between the !QQ pair during the separation
process [27], and relate the free/internal energy tensions
with the condensed/thermal monopoles, respectively.
These ideas will be elaborated more in Sec. II and III.
The rest of the paper is structured as follows. In Sec. IV

we will develop an analytic ‘‘elliptic flux bag’’ model for a
static charge-anti-charge pair by solving the Laplace equa-
tion for electric field inside it. This allows to get the
potentials correctly interpolating between a Coulomb at
short distance and linear behavior at larger distance. The
model will then be used in Sec. V to determine the free and
potential energies and relate the extracted !FðTÞ and
!VðTÞ with the monopole condensate and the thermal
monopole density, respectively. Finally we summarize
the results in Sec. VI.

II. FREE VS INTERNAL ENERGYAND
SLOW VS FAST SEPARATION

Let us start by examining the difference between the free
energy and the internal energy. We already introduced the
effective string tensions !FðTÞ and !VðTÞ as the slopes of
linear parts in FðT; rÞ and VðT; rÞ respectively, and empha-
sized their quite different T dependencies shown in Fig. 2.
While!F vanishes at T > Tc,!V survives to at least 1:3Tc.
While !F monotonously decreases with T, !V peaks at Tc

to a maximal value of 5 times the vacuum string tension
!vac. What is the difference in the meaning of F and V, and
why do they have such different T dependence? As has
been emphasized in [10], the free and internal energies
actually correspond to slow and fast (relative) motion of
the charges, respectively. Let us explain this idea in more
details.
Consider the system made of the medium as a thermal

bath and the static !QQ pair separated by a distance L.
Because of interaction between the medium particles and
the static pair, the medium’s various eigentstates have their
energies depending on the distance L. When the medium is

FIG. 2 (color online). Effective string tensions in the free
energy !FðTÞ (from [4]) and the internal energy !VðTÞ (ex-
tracted from [3]).

JINFENG LIAO AND EDWARD SHURYAK PHYSICAL REVIEW D 82, 094007 (2010)

094007-2

and earlier works

E.g. there are plenty  of flux tubes on the Sun

 on the lattice one cannot study
unstable objects

But one can have string tension
For free energy and potential energy

JINFENG LIAO AND EDWARD SHURYAK PHYSICAL REVIEW C 77, 064905 (2008)

QCD confining string and the resulting heavy-quark potentials
have been discussed extensively: see, for example, the reviews
by Baker et al. [20] and more recently by Ripka [21] (with an
exhaustive list for further reference).

Lattice studies (e.g., Ref. [22]) provided substantial support
to these works. Flux tube behavior at finite T was also
extensively discussed: In particular, Polyakov [23] has shown
how the exponential growth of flux tube entropy leads to
vanishing of the effective tension in free energy F (r, T ) and
a Hagedorn-like phase transition. This scenario would predict
gradual deconfinement with the string tension vanishing at Tc:
In fact for Nc > 2 it jumps to zero. Deconfinement transition
for various number of colors, Nc, was studied in detail (see,
e.g., Ref. [24], where Nc up to 12 was studied). By working
with metastable “overheated” confined phase it was found that
the Hagedorn-like transition [at which the string tension of
the free energy vanishes: σ (T ) → 0] can be approximately
located at a universal (Nc independent) TH/Tc = 1.116(9).

Heating the usual superconductors above the critical tem-
perature destroys not only the condensate but also the Cooper
pairs themselves. Although the normal (metallic) phase is
a plasma of electric objects (electrons), their characteristic
momenta p ∼ pF are orders of magnitude larger than the
momenta of Cooper pairs; thus there is no analog of Abrikosov
vortices in the normal phase. The reason of such absence
is NOT because the presence of a quantum condensate is
necessary for the flux tube’s existence: A counterexample can
be provided, for example, by quite spectacular magnetic flux
tubes in solar plasma.2 Whether charges are Bose-condensed
or not, their scattering on a flux tube may provide a pressure
that may lead to its stabilization. It is just a matter of certain
quantitative conditions for tube stabilization being met.

Two questions are to be addressed in this work: Is a QGP
like an electric plasma in a metal, without magnetic flux
tubes, or like other plasmas that have them? What exactly
are the necessary conditions for flux tube formation? In the
following we will ignore electric quasiparticles, which would
induce screening and termination of electric flux lines [25],
and consider purely magnetic plasma. We will perform a
quantum mechanical study of monopole scattering on the tube
and examine its back-reaction to the tube field through the
associated magnetic current. This will answer these questions.

But before we do so, let us explain a few important
issues classically, related to the very essence of the electric-
magnetic competition, that is, the “expulsion” of the sub-
dominant component into flux tubes and their stabilization.
A full quantum mechanical calculation will be presented in
Secs. III–V.

We first start with an electric charge e being placed within
a free gas of monopoles with mass M and charge ±g. The
monopole gas should be neutral (i.e., with equal numbers of
positive and negative charges). We emphasize in advance that
monopoles with either sign have the same effect: This will be
seen in the appearance of g2 rather than ±g in the final results.

2They have very large fluxes and sizes, and thus a macroscopic
theory—magnetohydrodynamics—can be used for their description,
which unfortunately it is not applicable in our case, for microscopi-
cally small tubes.

FIG. 1. (Color online) Schematic demonstration of antiscreening
effect and flux tube formation in a magnetic medium. (See text for a
detailed discussion.)

At a distance R⃗ from the charge (see Fig. 1, left), the
(unmodified) electric field E⃗R⃗ = e

4πR2 R̂ will stir the magnetic
monopoles into Larmor motion with radius rL. As Poincaré
has shown [4,5,9] a century ago, the radius shrinks near the
charge, restricting the motion to a cone—a small patch of the
whole space solid angle. The cone angle is determined by

cot θ = (ge)/4πc

Mvtr
, (2)

where vt is the monopole velocity transverse to r̂ . The
numerator is precisely the field angular momentum of a charge-
monopole pair LEM = (ge)/4πc, as first computed by J. J.
Thompson in 1896 [4,5,9]; the denominator is the monopole’s
kinetic angular momentum Lv = Mvtr with respect to the
origin. Theis formula, rewritten as cot θ = LEM/Lv , reflects
the interplay between angular momenta of the electromagnetic
field and that of the particle motion. Though superficially Lv

is defined through vt and r , it is actually a conserved quantity
uniquely related to the cone angle θ (see Ref. [9] for a detailed
discussion).

In turn, these monopoles form loops of magnetic current
gnLLv/Mr (where nL is their density) on the cone. The
direction of the current explains the sign of the induced electric
dipole.3 Using dual Maxwell’s equation ∇⃗ × E⃗ = − 1

c
J⃗M , one

finds that such an electric dipole is opposite to the induced
dipoles in a dielectric, so in this sense it is an antiscreening
effect. The charge repels such a dipole; thus a monopole will
fly away from the charge.

To make this statement quantitative, let us calculate the
curl of the magnetic current around R⃗. To do that we need to
require that the Larmor circle be fairly small, for two important
reasons: (i) If it is not small then one has to take into account the
variation of electric field strength, which will warp the circle;

3Note that although monopoles with ±g rotate in opposite direc-
tions, they produce currents of the same sign, so it is not necessary to
distinguish them.
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peak of the density of monopoles at Tc 
explains not only a dip in viscosity (m.f.p.)

but also other things such as jet quenching
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