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Outline

● Motivation
● Review of the perturbative description of bottomonium
● Non-perturbative corrections in the local condensate approach
● Phenomenological analysis

– Masses of S-wave bottomonium

– Non-relativistic moments

● Conclusions
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Motivation

● Bottomonium is very interesting for studying QCD

– Effective field theories

– Perturbation theory

– Renormalons

– Non-perturbative effects

– ...
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Motivation

● Bottomonium is very interesting for studying QCD

– Effective field theories

– Perturbation theory

– Renormalons

– Non-perturbative effects

– ...

● Determinations of the bottom-quark mass

– Fundamental parameter of nature

– Important input for flavour physics

– Dominant uncertainty for many Higgs branching ratios

– ...
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Non-relativistic description

Bottomonium is a non-relativistic system with velocity 
● Multiple scales are relevant

                 hard scale                              mass

                 soft scale                                momentum

                 ultrasoft scale                         energy

● Coulomb singularities              from n exchanges of potential gluons

● Conventional perturbation theory in     fails
● Coulomb singularities must be resummed to all orders
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Effective field theory setup

Construct EFT by integrating out the hard and soft scale.

            QCD                                    Full theory

                                                    Integrate out hard modes 

                                                    Hard subgraphs become local vertices

          NRQCD                                 Contains non-relativistic modes

                                                    Integrate out soft modes

                                                    Soft subgraphs become non-local vertices

        PNRQCD                                Contains potential tops and usoft gluons
[Pineda, Soto '98;                      
Beneke, Signer, Smirnov '99; 
Brambilla, Pineda, Soto, Vairo '00; 
Brambilla, Pineda, Soto, Vairo '05; 
Beneke, Kiyo, Schuller '13]

[Thacker, Lepage '91;            
Lepage et al. '92;           
Bodwin, Braaten, Lepage '95]
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QCD cross section

Normalized cross section:

Resummed cross section at NNNLO:
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QCD cross section

Normalized cross section:

Resummed cross section at NNNLO:
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Public implementation QQbar_threshold
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Expansion in local condensates

● Let us assume: 
● Then we can split the gluon field in the effective Lagrangian

● In Fock-Schwinger gauge 

● Corrections to the Green function
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Expansion in local condensates

● Let us assume: 
● Then we can split the gluon field in the effective Lagrangian

● In Fock-Schwinger gauge 

● Corrections to the Green function

Perturbative 
Hamiltonian Non-perturbative 

Hamiltonian

Chromo-electric 
dipole term
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Expansion in local condensates

● Let us assume: 
● Corrections to the Green function

●        and       can both be treated as perturbations
● The states factorize

Perturbative 
Hamiltonian Non-perturbative 

Hamiltonian

Chromo-electric 
dipole term

Non-perturbative 
vacuum state

Bottom-antibottom pair at 
zero spatial separation
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Expansion in local condensates

● Let us assume: 
● Corrections to the Green function

where

Dimension six 
computed in 
[Pineda '96],

Dimension six 
and eight 
computed in 
[TR '18]

Dimension four gives the results obtained 
by [Voloshin ‘79,’82, Leutwyler '81],
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NLO corrections at dimension four

● Potential corrections determined in [TR '18]

 
● Ultrasoft effects are missing, but less scale dependent
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Phenomenology

● Values of the condensates are very uncertain

– Take                                                from [Shifman, Vainshtein, Zakharov '79]

– Then use naive rescaling

– Assign generous uncertainties: 

In good agree- 
ment with     
[Pineda '96]
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Phenomenology

● Values of the condensates are very uncertain

– Take                                                from [Shifman, Vainshtein, Zakharov '79]

– Then use naive rescaling

– Assign generous uncertainties: 

● Determine scale choice from convergence of partial NLO corrections

– The logarithm              needed to cancel the scale dependence at NLO is 
contained in the potential corrections

– The missing ultrasoft correction is less scale dependent 

In good agree- 
ment with     
[Pineda '96]



T. Rauh (IPPP Durham) Condensate corrections to bottomonium observables 17

Upsilon(1S) mass
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Bottom-quark mass from spectroscopy

● Non-perturbative uncertainty “forgotten” in step from NNLO to NNNLO
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Bottom-quark mass

[TR ‘18]
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Upsilon(2S) mass

Does not even converge for scales as low as 0.8 GeV.
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Bottom-quark mass from sum rules

● Consider moments for large n (around 10)

● Known at NNNLO
● Depend strongly on the mass: 
● Saturated by the Upsilon resonances

[Beneke, Maier, Piclum, TR '14]
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Bottom-quark mass from sum rules

[Beneke, Piclum, 
Maier, TR '14, '16]
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Leading order condensate corrections

● Huge cancellations between the contribution to the 1S resonance 
and the rest (at scale mb)

● Corrections are small compared to the expectation from power 
counting

● From p.c. we expect a breakdown for                                  where 
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Dimension four at partial NLO

● Cancellations become more effective for larger scales and 
overcompensate the growth of the factor  

● Stabilization of scale dependence from partial NLO corrections
● Taking a small scale ~1.5 GeV the results indicate a breakdown 

around n = 20 close to the p.c. expectation
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Dimensions six and eight

● Tiny compared to expectation
● Huge cancellations: at scale mb

– Dimension six: one part in 

– Dimension eight: one part in 

● Only looking at the convergence from dimension four to six and eight, we 
would naively conclude that we can calculate the 50th moment reliably
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Higher dimensions vs duality violations
● Recall that the moments are an off-shell quantity

● Off-shellness acts as very efficient IR cutoff, cf. also the smallness of charm-
quark mass effects which affect the extracted PS mass by only 1 MeV
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Higher dimensions vs duality violations
● Recall that the moments are an off-shell quantity

● Off-shellness acts as very efficient IR cutoff, cf. also the smallness of charm-
quark mass effects which affect the extracted PS mass by only 1 MeV

● The assumption of quark-hadron duality must be questioned when the 
moments are saturated by the 1S resonance (95% for n=20)

● Corrections of the form                                   are not captured in the 
condensate expansion (trivial Taylor expansion)

● Originates from “coherent soft fluctuations” [Shifman ‘00]:

– Emission of many soft lines

– Off-shellness can be distributed among soft lines pushing the      on-shell

– Therefore not/less affected by effective IR cutoff mechanism

● Can affect mb determination at a relevant level for n~20.                            
For n~10 duality violations are exponentially suppressed.
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Conclusions

● Computed local condensates up to dimension eight and partial NLO 
corrections at dimensions four

● Partial NLO corrections provide preferred scale choice
● Good convergence for              allows the determination of the 

bottom-quark mass with a non-perturbative uncertainty of about 20 
MeV

● No convergence for excited states, non-local condensates?
● Description of moments is not limited by convergence of 

condensate expansion, but our knowledge (or rather lack thereof) 
about violations of quark-hadron duality

● Conservative approaches should use 
● Sum rule for n~10 very clean, most reliable method for mb 

determination from the Upsilon system
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Thank you!
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Upsilon(2S) mass

● A more promising approach is
● The dipole interaction        can still be treated as a perturbation, but not the 

non-perturbative Hamiltonian
● The non-perturbative contribution takes the form of a non-local condensate

● Results for this are currently not available
● Estimate for the size of                      from power counting gives

[Voloshin ‘79; Brambilla, Pineda, 
Soto, Vairo ‘99, Pineda ‘01]
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Upsilon sum rules

● Derive a dispersion relation using analyticity
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Upsilon sum rules

● Derive a dispersion relation using analyticity
● Sum rule follows from derivatives at 

● Left hand side is experimental observable
● Right hand side can be computed within condensate expansion

– For n~10 dominated by threshold region

–            plays the role of the velocity

– Strong dependence on the bottom quark mass: 

● Assuming quark-hadron duality, the bottom quark mass can be determined 
by fitting the RHS to the LHS

[Novikov, Okun, Shifman, Vainshtein, 
Voloshin, Zakharov '77-'78]
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PNRQCD

● Potential NRQCD is given by the Lagrangian

- Contains potential (anti)quark fields         with                              and heavy 
quark potentials 

- The ultrasoft gluon field is multipole expanded
● The colour-singlet projection of the potential has the form
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Non-relativistic Green function

● LO Coulomb potential is of the same order as the leading kinetic terms

– Must be treated non-perturbatively

– LO Lagrangian describes propagation of quark-antiquark pairs, where ladder 
diagrams with exchange of of potential gluons have been resummed

● Green function satisfies d-dimensional Lippmann-Schwinger equation
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Leptonic Upsilon(1S) width

[Beneke et al. '14 +    
NNLO charm mass effects]
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