Constraints on the QCD EOS from neutron-star mergers

Luciano Rezzolla
Institute for Theoretical Physics, Frankfurt
Frankfurt Institute for Advanced Studies, Frankfurt

Plan of the talk

✴ The richness of merging binary NSs
✴ Anatomy of GW signal: frequencies and EOS
✴ Constraints from GW170817
✴ Quark-matter before/after merger
✴ Viscous effects at nuclear densities
✴ r-process nucleosynthesis and kilonovae
The two-body problem in GR

• For BHs we know what to expect:
 \[\text{BH} + \text{BH} \rightarrow \text{BH} + \text{GWs} \]

• For NSs the question is more subtle: the merger leads to a hyper-massive neutron star (HMNS), i.e., a metastable equilibrium:
 \[\text{NS} + \text{NS} \rightarrow \text{HMNS}+\ldots?\rightarrow \text{BH+torus+}\ldots?\rightarrow \text{BH + GWs} \]

• HMNS phase can provide clear information on EOS
The two-body problem in GR

• For BHs we know what to **expect**:

 \[\text{BH} + \text{BH} \rightarrow \text{BH} + \text{GWs} \]

• For NSs the question is more **subtle**: the merger leads to an hyper-massive neutron star (HMNS), ie a metastable equilibrium:

 \[\text{NS} + \text{NS} \rightarrow \text{HMNS} + \ldots \ ? \rightarrow \text{BH} + \text{torus} + \ldots \ ? \rightarrow \text{BH} + \text{GWs} \]

• **ejected matter** undergoes nucleosynthesis of heavy elements
The two-body problem in GR

• For BHs we know what to **expect**:

 BH + BH \rightarrow BH + GWs

• For NSs the question is more **subtle**; the merger leads to an hyper-massive neutron star (HMNS), ie a metastable equilibrium:

 NS + NS \rightarrow HMNS+... $?\rightarrow$ BH+torus+... $?\rightarrow$ BH + GWs

• **ejected matter** undergoes nucleosynthesis of heavy elements
The equations of numerical relativity

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi T_{\mu\nu}, \quad \text{(field equations)} \]

\[\nabla_\mu T^{\mu\nu} = 0, \quad \text{(cons. energy/momentum)} \]

\[\nabla_\mu (\rho u^\mu) = 0, \quad \text{(cons. rest mass)} \]

\[p = p(\rho, \epsilon, Y_e, \ldots), \quad \text{(equation of state)} \]

\[\nabla_\nu F^{\mu\nu} = I^\mu, \quad \nabla^*_\nu F^{\mu\nu} = 0, \quad \text{(Maxwell equations)} \]

\[T_{\mu\nu} = T^{\text{fluid}}_{\mu\nu} + T^{\text{EM}}_{\mu\nu} + \ldots \quad \text{(energy – momentum tensor)} \]

In GR these equations do not possess an analytic solution in the regimes we are interested in.
merger \rightarrow HMNS \rightarrow BH + torus
How to constrain the EOS from the GWs
Anatomy of the GW signal
Anatomy of the GW signal

binary black holes (2006)

Chirp signal
Anatomy of the GW signal

Chirp signal

black-hole ringdown

binary black holes (2006)
Anatomy of the GW signal

$\text{GNH3, } \bar{M} = 1.350M_\odot$
Anatomy of the GW signal

Inspiral: well approximated by PN/EOB; tidal effects important
Anatomy of the GW signal

Merger: highly nonlinear but analytic description possible
Anatomy of the GW signal

post-merger (HMNS)

post-merger: quasi-periodic emission of bar-deformed HMNS

GNH3, $\tilde{M} = 1.350 M_\odot$
Anatomy of the GW signal

Collapse-ringdown: signal essentially shuts off.
What we can do nowadays

Extracting information from the EOS

Extracting information from the EOS

There are lines! Logically not different from emission lines from stellar atmospheres.
This is GW spectroscopy!
A new approach to constrain the EOS

A spectroscopic approach to the EOS

Semi-analytical modelling and MC analysis

Modelling the post-merger signal analytically, it is possible to run Monte Carlo simulations and estimate error in radius

- stiff EOSs: $|\Delta R/\langle R \rangle| < 10\%$ for $N \sim 20$ detections
- soft EOSs: $|\Delta R/\langle R \rangle| \sim 10\%$ for $N \sim 50$ detections
- soft EOSs will inevitably have larger uncertainties
- golden binary: SNR ~ 6 at 30 Mpc
 \[|\Delta R/\langle R \rangle| \lesssim 2\% \text{ at 90\% confidence} \]
GW170817, maximum mass, radii and tidal deformabilities

LR, Most, Weih (2018)
Most, Weih, LR, Schaffner-Bielich (2018)
The outcome of GW170817

- The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial gravitational mass \(M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_\odot \)

- Sequences of equilibrium models of nonrotating stars will have a maximum mass: \(M_{\text{TOV}} \)

- This is true also for uniformly rotating stars at mass shedding limit: \(M_{\text{max}} \)

- \(M_{\text{max}} \) simple and quasi-universal function of \(M_{\text{TOV}} \) (Breu & LR 2016)

\[
M_{\text{max}} = \left(1.20^{+0.02}_{-0.05}\right) M_{\text{TOV}}
\]
The outcome of GW170817

- The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial gravitational mass

\[M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_\odot \]

- Green region is for uniformly rotating equilibrium models.
The outcome of GW170817

• The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial gravitational mass $M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_\odot$

• **Green** region is for uniformly rotating equilibrium models.

• **Salmon** region is for differentially rotating equilibrium models.
The outcome of GW170817

- The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial gravitational mass $M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_\odot$

- **Green** region is for uniformly rotating equilibrium models.
- **Salmon** region is for differentially rotating equilibrium models.
The outcome of GW170817

- GW170817 produced object as "x"; GRB implies a BH has been formed: "x" followed two possible tracks: fast (2) and slow (1).

- It rapidly produced a BH when still differentially rotating (2).

- It lost differential rotation leading to a uniformly rotating core (1).

- (1) is more likely because of large ejected mass (long lived).

- Final mass is near M_{max} and we know this is universal!
let’s recap…

• The merger product of GW170817 was initially **differentially** rotating but collapsed as **uniformly** rotating object.

• Measured **gravitational mass** of GW170817

 \[M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_\odot \]

• Ejected **rest mass** deduced from kilonova emission

 \[M_{\text{ej}}^{\text{blue}} = 0.014^{+0.010}_{-0.010} M_\odot \]

• Use **universal relations** and account errors to obtain

\[2.01^{+0.04}_{-0.04} \leq M_{\text{TOV}}/M_\odot \lesssim 2.16^{+0.17}_{-0.15} \]
Limits on radii and deformabilities

• Constraining NS radii of neutron stars is an effort with thousands of papers published over the last 40 years.
• Question is deeply related with EOS of nuclear matter.
• Can new constraints be set by GW170817?

• Ignorance can be parameterised and EOSs can be built arbitrarily as long as they satisfy specific constraints on low and high densities.
Mass-radius relations

- We have produced 10^6 EOSs with about 10^9 stellar models.

- Can impose differential constraints from the maximum mass and from the tidal deformability from GW170817.
Mass-radius relations

- We have produced 10^6 EOSs with about 10^9 stellar models.

- Can impose differential constraints from the maximum mass and from the tidal deformability from GW170817.
Mass-radius relations

- We have produced \(10^6\) EOSs with about \(10^9\) stellar models.

- Can impose differential constraints from the maximum mass and from the tidal deformability from GW170817
Mass-radius relations

- We have produced 10^6 EOSs with about 10^9 stellar models.

- Can impose differential constraints from the maximum mass and from the tidal deformability from GW170817.
Mass-radius relations

- We have produced 10^6 EOSs with about 10^9 stellar models.

- Can impose differential constraints from the maximum mass and from the tidal deformability from GW170817
one-dimensional cuts

- Closer look at a mass of $M = 1.40 \, M_\odot$
- Can play with different constraints on maximum mass and tidal deformability.
one-dimensional cuts

• Closer look at a mass of $M = 1.40 \, M_\odot$

• Can play with different constraints on maximum mass and tidal deformability.

• Overall distribution is very robust

$12.00 < R_{1.4}/\text{km} < 13.45$

$R_{1.4} = 12.45 \, \text{km}$
one-dimensional cuts

- Closer look at a mass of $M = 1.40 \, M_\odot$
- Can play with different constraints on maximum mass and tidal deformability.
- Overall distribution is very robust

$12.00 < R_{1.4}/\text{km} < 13.45$

$R_{1.4} = 12.45 \, \text{km}$

- When considering strong phase transitions, small stars can be found

$8.53 < R_{1.4}/\text{km} < 13.74$

$\bar{R}_{1.4} = 13.06 \, \text{km}$
Constraining tidal deformability

- Can explore statistics of all properties of our 10^9 models.
- In particular can study PDF of tidal deformability: $\tilde{\Lambda}$

- LIGO has already set upper limit:
 $$\tilde{\Lambda}_{1.4} \lesssim 800$$
- Our sample naturally sets a lower limit:
 $$\tilde{\Lambda}_{1.4} > 375$$
Constraining tidal deformability: PTs

- Can repeat considerations with EOSs having PTs
- Lower limit much weaker: $\tilde{\Lambda}_{1.4} \gtrsim 35$
- Large masses have sharp cut-off on upper limit:
 $\tilde{\Lambda}_{1.7} \lesssim 460$

Hence, detection with $\tilde{\Lambda}_{1.7} \sim 600$ would rule out twin stars!
Phase transitions and their signatures

Most, Papenfort, Dexheimer, Hanauske, Schramm, Stoecker, LR (2018)
$t - t_{mgr} = -2.5 \text{ ms}$
• EOS based on Chiral Mean Field (CMF) model, based on a nonlinear SU(3) sigma model.
• Quarks appear at sufficiently large temperatures and densities.
• For EOS without quarks, the dynamics is very similar, but no PT.
Comparing with the phase diagram

- Reported are the evolution of the max. temperature and density.
- Quarks appear already early on, but only in small fractions.
- Once sufficient density is reached, a full phase transition takes place.
Gravitational-wave emission

“low-mass” binary

“high-mass” binary

- **In low-mass binary**, after \(\sim 5 \) ms, quark fraction is large enough to change quadrupole moment and yield differences in the waveforms.
- **In high-mass binary**, phase transition takes place rapidly after \(\sim 5 \) ms. Waveforms are similar but ringdown is different (free fall for PT).
- Mismatch between inspiral and postmerger: clear **signature** of a PT.
Conclusions

✴ Spectra of post-merger shows peaks, some "quasi-universal".
✴ When used together with tens of observations, they will set tight constraints on EOS: radius known with ~ 1 km precision.
✴ GW170817 provided new limits on maximum mass and radii:

$$2.01^{+0.04}_{-0.04} \leq \frac{M_{\text{TOV}}}{M_{\odot}} \lesssim 2.16^{+0.17}_{-0.15}$$

$$12.00 < \bar{R}_{1.4}/\text{km} < 13.45 \quad \bar{R}_{1.4} = 12.45 \text{ km}$$

$$8.53 < \bar{R}_{1.4}/\text{km} < 13.74 \quad \bar{R}_{1.4} = 13.06 \text{ km}$$

✴ Phase transition can take place after merger leading to clear signatures: mismatch between inspiral and postmerger.

Neutron stars and their mergers have great potential to provide complementary constraints on QCD. More to come…