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Topological structure of QCD in ion-ion collisions
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Beyond QCD: Macroscopic manifestations of quantum anomalies and topology!

Condensed Matter
Weyl semimetals, high Tc superconductors, graphene... 'R AN
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Cosmology

Electroweak Baryogenesis, ...

Astrophysics

Neutron stars and supernovea, chiral instabilities, kicks etc.

Probing very profound and truly “quantum?” aspects of nature
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Motivation

Theoretical descriptions extremely challenging
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Motivation

Theoretical descriptions extremely challenging
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The need for a Chiral Kinetic Theory

- How do chirality and anomalies arise in effective descriptions?

- What do we learn of real time dynamics
and topological structure of QCD?
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Will discuss a novel approach here,
based on world-line formulation of QCD
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1. World-line approach to QFT

e One-loop effective action

I'[A] = —log |det(—D?)| = —Tr (log(—D?)) L =o' D%

5 Polyakov 80’s, Strassler 1992, D’Hoker & Gagne, Schubert
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e One-loop effective action

I'[A] = —log |det(—D?)| = —Tr (log(—D?)) L =o' D%

- Integral representation of log (heat-kernel)
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- Effective action: QM path integral of particle on circle
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[[A] = ; ?N /D:cpexp [—/0 dr (%xQ + igA|x(T)] x)] no approximations!

5 Polyakov 80’s, Strassler 1992, D’Hoker & Gagne, Schubert
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- Effective action for fermions (D’Hoker and Gagne)
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- Effective action for fermions (D’Hoker and Gagne)
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- Real and imaginary part
W[A, B] = Wgr [A, B] + Wy [A, B]
- 1st Ingredient: integral rep of logarithm
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- Effective action for fermions (D’Hoker and Gagne)

S[A, B] :/d4xz§(i@+44+7513) Y » —WI[A, B] =log det (id + A+ 75 B)

.
-----------------------------------------------------------------------------------------------------------------------

- Real and imaginary part
W[A, B] = Wgr [A, B] + Wy [A, B]
- 1st Ingredient: integral rep of logarithm
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 dimensional extension
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1. World-line approach to QFT

- 2. Ingredient: Grassmann coherent states for internal symmetry groups
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T
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Ohnuki, Kashiwa
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- 2. Ingredient: Grassmann coherent states for internal symmetry groups

1
a% — §(Friirr+3>v {ajvas_} = Ors, {ajaa;—}: {a, ;a5 } =0
(Ola, =010, a,10) =0:10)  (Ola); =010,  al[0) =0:10)  Berezin, Marinov;

D’Hoker, Gagne;
Ohnuki, Kashiwa
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1. World-line approach to QFT

- 2. Ingredient: Grassmann coherent states for internal symmetry groups

1 :
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(Ola, =016 a,|0) =06:10)  (Bla] = (016r  af|0)

0 ’9> Berezin, Marinov;
D’Hoker, Gagne;
Ohnuki, Kashiwa
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e world line action

(seen before) SUSY QM & spinning particles:
Berezin & Marinov, Barducci, Balachandran, Casalbuoni, Brink, Howe, DiVecchia (70s-80s)
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2. Towards chiral kinetic theory

- Consider simpler scalar case

[[A] = Ooo d?T./\/' /DmPexp [— /OT dr (21—8:1:2 + 1gA|x(T)] :1:)]

- World-line instanton (saddle point), EOM for semi-classical particle

ma
oo [V Dunne & Schubert, 2005;

—3 Affleck et al 1982

- Generalization to Schwinger-Keldysh (SK) out-of-equilibrium path integral!

7 — / d€] exp (~Ce]) / dA] exp (iSe)

C

1
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2. Towards chiral kinetic theory

- Real-time saddle point and SK: Truncated Wigner Approximation
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- Lorentz covariant, gauge invariant (+ world line reparametrization and SUSY)



2. Towards chiral kinetic theory

- Real-time saddle point and SK: Truncated Wigner Approximation

“ S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEDR [ ] .‘
: i 1 e
. VU o DU ¥y waof ~ -
: XM = ePH + it//’ Y — 66’ P o st :
E i)/l — ¢P FHa L€ anH [ ( FHa y E
- — &L, - 7‘// ( apy/ + 5 VaX -
E s U U P¥ r i uvaf ~ l , Uy Py iiAr1 O E
E yt = eF™y at 71 + Z € P/)’V/ Wal — Eéa/)‘,inf VAU 4 E
T e m e A e R AR A AR R R AR R A R AR R A R AR R A R AR R E A EEEEEEEEEEE e .’

- Lorentz covariant, gauge invariant (+ world line reparametrization and SUSY)

- Equivalent representation in terms of Pauli-Lubanski spin vector
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2. Towards chiral kinetic theory

- Real-time saddle point and SK: Truncated Wigner Approximation
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- Lorentz covariant, gauge invariant (+ world line reparametrization and SUSY)

- Equivalent representation in terms of Pauli-Lubanski spin vector
. pH — Lelﬂ/aﬁp IS
Sap = —1Pa¥p 2P0 voas

- Reduces to covariant generalization of Bargmann-Michel-Telegdi equation
(and Wong’s equation for color)
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- Wigner distribution f, at linear order in /, follows Liouville equation

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

— — —
9, 0 J -
{faH}:f((?—x'u—l_aP'u “‘Fwi?“):()

L 4
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

10



2. Towards chiral kinetic theory

Grassmann phase space (z#, p") — (=¥, p", ¥") in preparation

- Wigner distribution f, at linear order in /, follows Liouville equation

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

0 0 o
(Lo D Ty
O HY =Gt + gpa T+ Gun?
from world-line initial density matrix,  (x + §| plr — §> = / d*p f(xz,p)e®™

10



2. Towards chiral kinetic theory

Grassmann phase space (z#, p") — (=¥, p", ¥") in preparation

- Wigner distribution f, at linear order in /, follows Liouville equation

] - ¢ - :
" 0 0 o g
HY = (_ 7 p u) —0 -
O HY =Gt + gpa T+ Gun? E
from world-line initial density matrix,  (x + §|p\a: — §> = / d*p f(xz,p)e®™

- Grassmann variables representation of Dirac algebra
—> Integration = trace over Dirac matrix

/d4lp — 1r Yt — 2757“

10



2. Towards chiral kinetic theory

Grassmann phase space (z#, p") — (=¥, p", ¥") in preparation

- Wigner distribution f, at linear order in /, follows Liouville equation

I
{faH}:f(a—x“‘Fapu M+w¢ﬂ):0

- Grassmann variables representation of Dirac algebra
—> Integration = trace over Dirac matrix

/d4’(p — 1r Yt — 2757“

- Chiral distributions are analytically known (see PRD 97 (2018), 051901, Barducci et al. 1981)
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2. Towards chiral kinetic theory

e SK path integral specifies (quantum and statistical) ensemble, through
initial density matrix / Wigner distribution. Fluctuations understood naturally.

f — i + 5f l-particle distribution function ,—;,
\Z
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2. Towards chiral kinetic theory

e SK path integral specifies (quantum and statistical) ensemble, through
initial density matrix / Wigner distribution. Fluctuations understood naturally.
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3. The origin of anomalies and Berry’s phase

Berry’s phase conjectured to be the origin of the chiral anomaly

- Phase of fermion determinant well known to be origin of anomaly
Fujikawa 1979, Alvarez-Gaume & Witten, Polyakov 80s

WA, B] = Wi[A, B] + iWi[A, B

- World-line representation ?
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Berry’s phase conjectured to be the origin of the chiral anomaly

- Phase of fermion determinant well known to be origin of anomaly
Fujikawa 1979, Alvarez-Gaume & Witten, Polyakov 80s

WA, B] = WxlA, B] +iWi[A, B]

- World-line representation ? D’Hoker, Gagne

1
Wy = — 5 I8 det|(2]

O =T,(p, — A,) —il7T,TsTsB,

- heat-kernel representation exists, when giving up chiral symmetry
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1
Wy = — 5 I8 det|(2]

O =T,(p, — A,) —il7T,TsTsB,

- heat-kernel representation exists, when giving up chiral symmetry

e .
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3. The origin of anomalies and Berry’s phase
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3. The origin of anomalies and Berry’s phase

* In non-relativistic, adiabatic limit

2
H=mc+ (P;m'?) +A%x) — S'([V/C—;i(:zcz)} xE) Bn-zs
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3. The origin of anomalies and Berry’s phase

* In non-relativistic, adiabatic limit

2
HEmcz_J_(P;n?)+A0(x)_S-([v/c—424n/1(cmc2)} x E) _Bn.15

- real part of world-line effective action contains a Berry phase

WR:/@x@p exp (i/d’ [X'p_ﬁ])

A = mc®+ AL | 40(x) —p- o (p) o (p) = =iy (P)|V, |y ()
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3. The origin of anomalies and Berry’s phase

* In non-relativistic, adiabatic limit

(p—2)°

2m

S-([v/c—A/(mc*)] X E) ~B-S

H = mc* -+
2mc m

+A%(x) —

- real part of world-line effective action contains a Berry phase

WR:/@x@p exp (i/d’ [""p_ﬁ])

~

A = mc?+ @A | A%(x) —p- o/ (p) o (p) = —i(y(p)|V, |y (p))

- while the anomaly is due to the imaginary part...

Berry’s phase as the origin of the chiral anomaly
in Chiral Kinetic Theory (8+ PRLs and many more papers)
IS misconception!

13 see also K. Fujikawa Phys.Rev. D97 (2018) no.1, 016018



4. Real-time Sphaleron transitions

Chiral Transport as probe of topological structure of QCD
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4. Real-time Sphaleron transitions

Chiral Transport as probe of topological structure of QCD

1 2\ = topological
C(t,0t) = V((Ncs(t +6t) — Nos(t)) ) fluctuation -------------

-
-
-
e
-

—’—
-
-

-
-
-
-
-
L e
-

- Real-time dynamics for topological transitions, via stochastic
Boltzmann-Vlasov equations Arnold, Son, Yaffe; Bodecker
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- Real-time dynamics for topological transitions, via stochastic
Boltzmann-Vlasov equations Arnold, Son, Yaffe; Bodecker

* Without fermions, derived from world-lines (Jalilian-Marian, Jeon,
Venugopalan, Wirstam) —> generalize to out-of-equilibrium
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Summary

- Effective descriptions of ‘guantum’ phenomena, such as chiral anomalies,
topological transitions and spin transport challenging

- Possible ab-initio approach: World-line representation of QFT

 Origin of anomaly clear in world-line framework: clarification of role of
Berry’s phase

- Saddle-Point limit (real-time SK!): generalized Grassmann extended semi-
classical phase space

- Lorentz-covariant, Gauge covariant

* Fluctuations from initial density matrix, naturally understood
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Backup

More details on Schwinger Keldysh formulation of World-lines

- Important work by S. Mathur 1993: SK world-line representation for scalar
propagator in thermal equilibrium

DIXIDIPIDIAL i [ deip (s x5 (2 A /2( (2 () 2
G(X2, X1) = N/ [V] 7] He fod[PM( )XH 2 (1) =A/2(T) (" (T) )]

ol[Diff]
Crsolp) = = [ ax(r)e 2@t o-m®) !
. 47t J, p? —m? + i€’
L —iX/2(p* (r)—m?) —
GA<0(p) — E . d)‘(T)e — pg —m2 — je

« Generalization:

z~ [ lagexp (<Gl2]) [ [aa)exp(iS.a)

Jc
where

1 [ b . .
Serr[A. 6] = — 7 /( d*xF,, F*" +T[A,¢]. in preparation
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Backup

Chiral Phase Space

(v-p)(1+£4°)¥ =0.

0| =

Weyl equation

£ . . , i :
H = 3 [P* + it Fu (2)9"] + eaxs — 5 e-x-

—_

| ™

Weyl Hamiltonian

1 > ) LopvaB Dol ol ol
2 (£P.YH + 5P Puabyatp).

C4+ =

Phase space measure d' = (—i/(V2))du3 dp? dip* dy°

;o i ves . A
efr =2((£P, " + Q(““) P,y Yag)e? " e

o
o

The above expression can be guantized by identifyin
y* — 454# /\/2. This gives
e _ 1, 5\ 0 923
fe s pe=300PYIELN,  (23)

{ZC“J)V} — 57/ ;
{4y} = —idf]
{5, 95} = —1,
{¢", s} =0. |

19, Q) = —2iH



Backup

Non-relativistic limit

Large fermion mass or chemical potential

2 ) . . ' L 2 2 2 . L
L= TR (1 T ) o 5 () — T (B 1 T | ) mp =m" + "
2 mi 2 2 Z 2my mpg
- .
L 8@ g e
c 2mpc

Well know Weyl Hamiltonian is recovered.

S - ([v/e—A/(mc?)] x E) N S-B.

1 i . .
LNR:—mc2+—mv2+3(¢¢—wo¢o) A4 YAy
2 2 c

— 4y - |v/C— mc?)| x :
HEmc2—|—(p2mC) _|_A0(x)_s ([/ ?nii )] E)_B_S
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Backup

Son, Yamamto; Stephanov, Yin: Berry phase

Adiabatic limit, large chemical potential has a Berry phase

S = /dt [pzxz + A;(z)2" — A;(p)p* — H(p, x)]

€k By
iA, = uLVpup, {pi, pj} = — 1+B.Q
and a nonzero Berry curvature, {xi’ CCj} _ lijl;?)g.kﬂ |
= = L 52 QZB
Q, =V, XAp_i2|p’27 {pi, xj} _ 13—:_]3.93 |
1 ~ ~ on ~ on
hp + <E+\7><B+ E-BQ)-—er(\?JrExQJr\?-Q B)-—p —0
P 1 + B . Qp [ ( ) p ap P ( p) aX

i d’ 0
8tn—|—V-J:—/#<Qp-aLpp)E-B

What happens away from that limit?



Backup

Son, Yamamto; Stephanov, Yin: Berry phase

Fujikawa’s lament... hep-ph/0501166

The notion of Berry’s phase is known to be useful in various physical contexts [17]-[18],
and the topological considerations are often crucial to obtain a qualitative understanding
of what is going on. Our analysis however shows that the topological interpretation of
Berry’s phase associated with level crossing generally fails in practical physical settings
with any finite 7°. "The notion of “approximate topologv” has no rigorous meaning, and
it 1s important to keep this approximate topological property of geometric phases asso-
ciated with level crossing in mind when one applies the notion of geometric phases to
concrete physical processes. This approximate topological property is in sharp contrast
to the Aharonov-Bohm phase [8] which is induced by the time-independent gauge poten-
tial and topologically exact for any finite time interval 7. The similarity and difference
between the geometric phase and the Aharonov-Bohm phase have been recognized in the
early literature [1, 8], but our second quantized formulation, in which the analysis of the
geometric phase is reduced to a diagonalization of the effective Hamiltonian, allowed us
to analyze the topological properties precisely in the infinitesimal neighborhood of level
crossing.

and... hep-ph/0511142

What we have shown in the present paper is that this

expectation is not realized, and the similarity between the two is superfi-

cial.
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Backup

Color
Jalilian-Marian, Jeon, Venugopalan, Wirstam, Phys.Rev. D62 (2000) 045020

T -2 1 ) )
/D/\TD/\ T (ATA) exp {/ dr (g—g + S ¥ata + AT — Mﬂm)
0

T(ATN) = (F)N Y, explig(ATA + N/2 — 1)].
Phase space and color: Wong’s equations from world-lines
ot = ot

Pl = gF®1"Q%,
Yo abc Ab Nec
Q T _gf AMQ /U'u

0
8—.P,/f(x’P,Q)

See also Litim and Manuel: Bodeker’s effective theory is recovered!

P*D, f(x,P.Q) = gP"Q"F,,
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