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The sign problem

The sign problem is a numerical difficulty that arises from the obstruction in
implementing importance sampling methods if the action is complex

Prototype example

Z(β) =

∫
[Dφ]e−βSR[φ]+iµSI [φ]

µ = 0⇒ [Dφ]e−βSR[φ] can be interpreted as a Boltzmann weight and
standard Markov Chain Monte Carlo methods can be used in numerical
studies

µ 6= 0⇒ the path integral mesure does not have an interpretation as a
Boltzmann weight and standard Markov Chain Monte Carlo methods fail
spectacularly

Examples: QCD at non-zero baryon density, dense quantum matter, strongly
correlated electron systems, . . .

Note that

There is no algorithm that solves all systems affected by the sign problem,
unless P = NP (Troyer-Wiese)

The problem might be just due to an unfortunate choice of variables (some
systems solved by duality!)
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The density of states

Let us consider an Euclidean quantum field theory

Z(β) =

∫
[Dφ]e−βS[φ]

The density of states is defined as

ρ(E) =

∫
[Dφ]δ(S[φ]− E)

which leads to
Z(β) =

∫
dEρ(E)e−βE = e−βF

↪→ if the density of states is known then free energies and expectation values are
accessible via a simple integration, e.g. for an observable that depends only on E

〈O〉 =

∫
dEρ(E)O(E)e−βE∫

dEρ(E)e−βE



DOS and Sign

Biagio Lucini

The LLR
algorithm for
real action
systems

The LLR
algorithm for
complex
action
systems

Conclusions
and outlook

The density of states

Let us consider an Euclidean quantum field theory

Z(β) =

∫
[Dφ]e−βS[φ]

The density of states is defined as

ρ(E) =

∫
[Dφ]δ(S[φ]− E)

which leads to
Z(β) =

∫
dEρ(E)e−βE = e−βF

↪→ if the density of states is known then free energies and expectation values are
accessible via a simple integration, e.g. for an observable that depends only on E

〈O〉 =

∫
dEρ(E)O(E)e−βE∫

dEρ(E)e−βE

But is the computation of ρ(E) any easier?
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LLR express

Divide the (continuum) energy interval in N sub-intervals of amplitude δE

For each interval, given its centre En, define

log ρ̃(E) = an (E − En − δE/2) + cn for En − δE/2 ≤ E ≤ En + δE/2

Obtain an as the root of the stochastic equation

〈〈∆E〉〉an = 0⇒
∫ En+

δE
2

En−
δE
2

(E − En − δE/2) ρ(E)e−anEdE = 0

using the Robbins-Monro iterative method

lim
m→∞

a(m)
n = an , a(m+1)

n = a(m)
n −

α

m

〈〈∆E〉〉
a(m)

n

〈〈∆E2〉〉
a(m)

n

At fixed m, Gaussian fluctuations of a(m)
n around an

Define

cn =
δ

2
a1 + δ

n−1∑
k=2

ak +
δ

2
an (piecewise continuity of log ρ̃(E))

[Langfeld, Lucini and Rago, Phys. Rev. Lett. 109 (2012) 111601; Langfeld, Lucini,
Pellegrini and Rago, Eur. Phys. J. C76 (2016) no.6, 306]
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LLR method – rigorous results

One can prove that:
1 For small δE, ρ̃(E) converges to the density of states ρ(E), i.e.

lim
δE→0

ρ̃(E) = ρ(E)

“almost everywhere”
2 With βµ(E) the microcanonical temperature at fixed E

lim
δE→0

an =
d log ρ(E)

dE

∣∣∣∣
E=En

= βµ(En)

3 For ensemble averages of observables of the form O(E)

〈Õ〉β =

∫
O(E)ρ̃(E)e−βEdE∫
ρ̃(E)e−βEdE

= 〈O〉β +O
(
δ2

E

)
4 ρ̃(E) is measured with constant relative error (exponential error reduction)

∆ρ̃(E)

ρ̃(E)
' constant

[Langfeld, Lucini, Pellegrini and Rago, Eur. Phys. J. C76 (2016) no.6, 306]
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Exponential error suppression – YM

Density of states (LLR result) Reconstructed plaquette for SU(2)
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Exponential error reduction is at work!

(K. Langfeld, B. Lucini and A. Rago, Phys. Rev. Lett. 109 (2012) 111601)
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Exponential error suppression – YM

Density of states (LLR result) Reconstructed plaquette for SU(3)
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(K. Langfeld, B. Lucini and A. Rago, Phys. Rev. Lett. 109 (2012) 111601)
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Application: U(1) LGT

Probability distribution on a 204 lattice at pseudo-critical point
(current “world record”)
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[K. Langfeld, B. Lucini, R. Pellegrini and A. Rago, Eur. Phys. J. C76 (2016) no.6,

306]
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Brief overview of results

For real-action systems, the LLR algorithm

Provides a controlled procedure for computing the density of states in
models with a continuum spectrum

I Tested in SU(2) and SU(3) LGT in K. Langfeld, B. Lucini and A. Rago,
Phys. Rev. Lett. 109 (2012) 111601

I Tested in U(1) LGT in K. Langfeld, B. Lucini, R. Pellegrini and A.
Rago, Eur. Phys. J. C76 (2016) no.6, 306

Can be used for efficient studies of metastable systems
I Tested in U(1) LGT in (see above)
I Tested in the Potts model in B. Lucini, W. Fall and K. Langfeld, PoS

LATTICE 2016 (2016) 275

Allows to determine partition functions and free energies
I Tested in the Potts model (see above)
I Tested for the EM tensor in SU(2) LGT in R. Pellegrini, B. Lucini,

A. Rago and D. Vadacchino, PoS LATTICE 2016 (2017) 276.

Fastly decorrelates topological charge
I Tested for SU(3) LGT in G. Cossu, B. Lucini, R. Pellegrini and

A. Rago, EPJ Web Conf. 175 (2018) 02005
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The generalised density of states

Let us consider an Euclidean quantum field theory with complex action

Z(β) =

∫
[Dφ]e−βS[φ]+iµQ[φ]

The generalised density of states is defined as

ρ(q) =

∫
[Dφ]e−βS[φ]δ(Q[φ]− q)

which leads to
Z(µ) =

∫
dqρ(q)eiµq

The integral is strongly oscillating and hence ρ(q) needs to be known with an
extraordinary accuracy
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Sign problem as an overlap problem

The severity of the sign problem is indicated by the vev of the phase factor in the
phase quenched ensemble:

〈eiµq〉 =
Z(µ)

Z(0)
= e−V∆f → 0 exponentially in V

In this language, the sign problem is an overlap problem

The LLR algorithm can solve severe overlap problems

However, one still needs to perform the integral with the required accuracy, and for
this the most direct approach does not work

Proposed solutions:
compression of the generalised density of states, e.g.

log ρ(q) =
k∑

i=1

αiq2i

with the polynomium to be fitted (Langfeld and Lucini)
cumulant expansion through polynomial fit (Garron and Langfeld)
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The Z(3) spin model

At strong coupling and for large fermion mass, for finite temperature and non-zero
chemical potential QCD described by the three-dimensional spin model

Z(µ) =
∑
{φ}

exp
{
τ
∑
x,ν

(
φx φ

∗
x+ν + c.c.

)
+
∑

x

(
ηφx + η̄φ∗x

)}
=

∑
{φ}

exp
{

Sτ [φ] + Sη [φ]
}

with φ ∈ Z(3) , η = κeµ and η̄ = κe−µ

The action is complex, but the partition function is real

The model has been simulated using complex Langevin techniques and the worm
algorithm
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Z(3): Phase twist

p(µ) = i

√
3

V
〈Nz − Nz∗ 〉 =

I1(µ)

I2(µ)

[K. Langfeld and B. Lucini, Phys. Rev. D90 (2014) no.9, 094502]
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The Bose Gas

The model

S =
∑

i

[
1
2

(
2d + m2

)
φ2

a,i +
λ

4

(
φ2

a,i

)2
−
∑

i

3∑
ν=1

φa,iφa,i+ν̂

]
∑

i

[
− cosh(µ)φa,iφa,i+4̂ + i sinh(µ) εabφa,iφb,i+4̂

]
= SR + i sinh(µ)SI

Oscillations of the piecewise approximation need to be treated through smoothing
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(Example for V = 84, m = λ = 1, µ = 0.8)
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Controlling the fit

The order of the fit is arbitrary⇒ we need to make sure we are not under- or
over-fitting

For under-fitting, the χ2 gives a good criterion

For over-fitting, we extract from the data the second derivative and we use it to
check how well our analytic derivative of the data describe those points

The second derivative can be extracted from an independent measurement

d2

dS2
I

log ρ
∣∣∣∣
SI ,k

=
360
∆4

(
s2 −

∆2

12

)
+O(∆2) ,

with s2 order two cumulant evaluated with an average restricted to the k-th interval
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Constraints on the second derivative

Quality of the first two derivatives
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Results for V = 44
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Region of fit stability not obvious when µ increases
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Results for V = 84
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Fit stability seems to get worse as V increases
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Higher statistics results for µ = 0.8

◆

◆

◆
◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆

◆

◆ ◆ ◆ ◆

◆
◆ ◆ ◆ ◆ ◆
◆ ◆

◆ ◆ ◆
◆

◆ V=44

◆ V=64

◆ V=84

◆ V=104

◆ V=124

2 4 6 8 10 12 14

0.0110

0.0115

0.0120

0.0125

Fit order

ΔF

Good control also for V = 124

Good agreement with mean field [see also Aarts, JHEP 0905 (2009) 052]
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Overlap free energy in the thermodynamic limit
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Expected asymptotics seem to describe the data accurately

Small deviation from mean-field visible
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Conclusions and outlook

For systems with a real action, the LLR algorithm has advantages over
traditional importance sampling in cases in which exponentially suppressed
signals need to be measured

Supplemented with some smoothing technique or cumulant expansion, the
LLR algorithm can solve the sign problem (tested in the Z(3) model, λφ4

and Heavy-Dense QCD)

Systematic study of the algorithm and polynomial interpolation of the
density of states currently under way for λφ4

Possible future applications:
I Systems with fermions
I Proof of concept of the solution of the sign problem in QCD (e.g.

small lattices)
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Replica exchange

We use a second set of simulations, with centres of intervals shifted by δE/2

i2n-2	 i2n	 i2n+2	

	
i2n-3	

	
i2n-1	

	
i2n+1	

	
i2n+3	

E2n-2													E2n													 E2n+2													 E2n+4													

E2n-3													 E2n-1													 E2n+1													 E2n+3													 E2n+5													

E	i2n	

E	i2n-1	

After a certain number m of Robbins-Monro steps, we check if both energies in two
overlapping intervals are in the common region and if this happens we swap
configurations with probability

Pswap = min
(

1, e
(

a(m)
2n −a(m)

2n−1

)(
Ei2n−Ei2n−1

))
Subsequent exchanges allow any of the configuration sequences to travel through
all energies, hence overcoming trapping
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U(1) LGT: δE dependence of observables

Example: peak of the specific heat at various volumes
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δE/V

2.0e-04

3.0e-04

4.0e-04

5.0e-04
C

V(β
c(L

))/
(6

V)
L=8
L=10
L=12
L=14
L=16

A quadratic dependence in δE/V fits well the data
The cost of the algorithm seems to be quadratic in V
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U(1) LGT: LLR and multicanonical

Lattice 124
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The LLR method performs at least on pair with specialised methods such as
the Multicanonical Algorithm

The LLR algorithm reproduces the results of Arnold et al. at a more modest
computational cost
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U(1) LGT: a vs E0
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The non-monotonicity is a signature of a first order phase transition

The a seem to converge to their thermodynamic limit
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Potts models – phase transition in D=3

〈E〉 vs β, lattice size L = 16
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βc from Bazavov, Berg and Dubey, Nucl. Phys. B802 (2008) 421-434
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Potts: replica swapping for D=2 q=20
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The hopping of configurations across intervals is reminiscent of a random walk (as
expected)
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Replica and diffusive dynamics
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fit: 19.67 (time)
1/2

q=20 Potts model, 64
2
 lattice, dE = 29

Mean path in energy space: 〈(Ef − Eı)2〉1/2 = Dt1/2
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Probability density at criticality
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The value of β for which P(E/V) has two equal-height maxima is a possible
definition of βc(V−1)

The minimal depth of the valley between the peaks is related to the
order-disorder interface
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Finite Size Scaling – βc
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Fit

Fitted β
c
(0)

Analytic β
c
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For first order phase transitions

βc(V−1) = βfit
c +

aβ
V

+ . . .

With a linear fit, we find

βfit
c = 0.8498350(21) ,

βfit
c − βexact

c

βexact
c

= 1.7(2.5)× 10−6
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Finite Size Scaling – order-disorder interface
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At finite L

2σod(L) = −
1
L

log Pmin,valley

Ansatz

2σod(L)−
log L
2L

= 2σod +
cσ
L

⇒ 2σod = 0.36853(88)
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Finite Size Scaling – order-disorder interface
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Ansatz

2σod(L)−
log L
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= 2σod +
cσ
L

⇒ 2σod = 0.36853(88)

Strong coupling calculation (Borgs-Janke):

2σod(L) = 0.3709881649 . . . ∆σ/σ = 0.0066(23)
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Energy-momentum tensor in SU(N) YM

On the lattice
Tµν = ZT

{
T[1]
µν + ztT

[3]
µν + zs

(
T[2]
µν − 〈T

[2]
µν〉
)}

with ZT , zt, zs renormalisation constants to be determined non-perturbatively

Using shifted boundary condition

A(L0, x) = A(0, x− L0ξ)

It is possible to write Ward Identities that fix the normalisation constant ZT [L.
Giusti and M. Pepe Phys. Rev. D 91, 114504]

ZT(β) =
f (β, L0, ξ − ak̂L0)− f (β, L0, ξ + ak̂L0)

2a
1

〈T[1]
0k (β)〉ξ

where

f (β, L0, ξ) =
log
∫

dEe(−βEρ(E)

V
+ c
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The DoS in SU(2)

Computation time 48 hours per point, but covers a range of β.

Figure: Vol = 123x3 and shift =
( 4

3 , 0, 0
)
,
( 2

3 , 0, 0
)
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The probability density in SU(2)

∆f = 1
V

[
log
(∫

dSe−βSρξ(S)
)
− log

(∫
dSe−βSρξ′ (S)

)]
= 0.002319(21)

Figure: β=2.36869, vol = 123x3 and shift =
( 4

3 , 0, 0
)
,
( 2

3 , 0, 0
)
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Sharp vs. smooth cut-off

Algorithmic modification: for double-angle expectation values 〈〈O(E)〉〉, we have
replaced

θ(Ei + δ/2− E)θ(E − Ei + δ/2) → e−
(E−Ei)

2

2σ2

Minimal modification of the recursion relation, but amenable to simulations with an
unconstrained global HMC (and hence to parallelisation)



DOS and Sign

Biagio Lucini

The LLR
algorithm for
real action
systems

The LLR
algorithm for
complex
action
systems

Conclusions
and outlook

Sharp vs. smooth cut-off

Algorithmic modification: for double-angle expectation values 〈〈O(E)〉〉, we have
replaced

θ(Ei + δ/2− E)θ(E − Ei + δ/2) → e−
(E−Ei)

2

2σ2

Minimal modification of the recursion relation, but amenable to simulations with an
unconstrained global HMC (and hence to parallelisation)
↪→ First step towards inclusion of dynamical fermions?
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The average phase factor
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HDQCD, beta=5.6, kappa=0.12, 8
4

Good overall agreement, more precision reached with the LLR method
(Garron and Langfeld, arXiv:1605.02709)
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Cumulant expansion: convergence

The cumulant expansion is quickly convergent
(Garron and Langfeld, talks at Lattice 2016)
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Cumulant expansion: precision

LLR can deliver the high precision needed for higher orders
(Garron and Langfeld, talks at Lattice 2016)
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Cumulant expansion: precision

LLR can deliver the high precision needed for higher orders
(Garron and Langfeld, talks at Lattice 2016)
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