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Our work is inspired by a series of papers of Gaiotto, Kapustin, Komargodski, 
Seiberg, Willet (in combinations) during 2014-2017. Features well-known to the lattice 
community are put in a new light, leading to constraints on the IR behavior of 
strongly coupled theories: new “‘t Hooft anomaly matching” conditions. 

Existence of center-symmetry (“1-form” symmetry) at the same time as other  
discrete (“0-form”) symmetries [CP, for pure-YM at         ; discrete chiral 
symmetry for QCD(adj)] lead to new mixed 1-form/0-form ‘t Hooft anomalies. 
Like continuous ‘t Hooft anomalies, these can be computed in the UV and must be 
matched by the IR theory.  Through “anomaly inflow” they also affect the domain 
walls (between vacua with broken discrete chiral or center symmetry), leading to 
rather nontrivial behavior on their worldvolume. 

New “‘t Hooft anomaly matching” conditions don’t appear all the time, 
so I decided to focus on them: new nontrivial constraints on IR behavior!

Discrete anomaly matching and 
 high-T “center vortices” in QCD(adj)

 (tangential: new phases of QCD(adj)? Anber, EP 1805.12990, Cordova, Dumitrescu 1806.09592 - not this talk)
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1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

The field strength is the 2-form:

F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

In the last step, we recognize the conventional definition Fµ⌫ = @µA⌫�@⌫Aµ+i[Aµ, A⌫ ],

or F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ � fabc

(k)A
b
µA

c
⌫ .

Thus, F =
1
2Fµ⌫dxµ ^ dx⌫

. The dual of F is ⇤F =
1
2 F̃µ⌫dxµ ^ dx⌫

, where F̃µ⌫ =

1
2✏µ⌫��F

��
. Also, dxµ ^ dx⌫ ^ dx� ^ dx�

= ✏µ⌫��d4x.1

With the above definitions, consider what is to become the action of the gauge

field:

trF ^ ⇤F =
k

4
F a
µ⌫F̃

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F

µ⌫ ad4x , (1.3)

and what is to become the topological charge:

trF ^ F =
k

4
F a
µ⌫F

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F̃

µ⌫ ad4x . (1.4)

1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.
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Discrete anomaly matching and 
 high-T “center vortices” in QCD(adj)

The choice of QCD(adj) for this study of new ’t Hooft anomalies motivated by:

As zero-N-ality, QCD(adj) has obvious 1-form center symmetry

QCD(adj) offers a rare regime where confinement and chiral symmetry 
breaking can be analytically understood in a theoretically controlled way:  
R xS   small-S   limit, periodic fermions - so anomaly matching implications can 
be seen explicitly!

In short, a good “lab” for better understanding new anomaly matching!

(because there are fermions, a step more complex than pure YM with           [Gaiotto et al])

[Unsal+… 2007- ]

Finally: do these anomaly matchings apply only to such ‘exotic’ theories? - NO!
but more involved: i.e. in massless QCD with fundamentals center symmetries w/ anomalies 
appear after gauging B, SU(Nf) …  [eg Tanizaki ’18] (…“two group” discrete version…)

on a personal level in ’15 we found properties - now understood as due to 
these anomaly matchings [Anber, Sulejmanpasic, EP,  1501.06673] - so revisit

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f} is a symmetry if Q_top=1
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales
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1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

The field strength is the 2-form:

F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

In the last step, we recognize the conventional definition Fµ⌫ = @µA⌫�@⌫Aµ+i[Aµ, A⌫ ],

or F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ � fabc

(k)A
b
µA

c
⌫ .

Thus, F =
1
2Fµ⌫dxµ ^ dx⌫

. The dual of F is ⇤F =
1
2 F̃µ⌫dxµ ^ dx⌫

, where F̃µ⌫ =

1
2✏µ⌫��F

��
. Also, dxµ ^ dx⌫ ^ dx� ^ dx�

= ✏µ⌫��d4x.1

With the above definitions, consider what is to become the action of the gauge

field:

trF ^ ⇤F =
k

4
F a
µ⌫F̃

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F

µ⌫ ad4x , (1.3)

and what is to become the topological charge:

trF ^ F =
k

4
F a
µ⌫F

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F̃

µ⌫ ad4x . (1.4)

1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

Outline:

1,2,3 all in Anber, EP 1807.00093

2.) the charge-2 Schwinger model appears as the wordvolume theory of high-T 
domain walls - which are a type of center vortex - between center-breaking vacua in 
SU(2) QCD(adj) with a single Weyl massless adjoint (& multi-flavor generalizations if 
more adjoints)

3.) Schwinger model results imply that (& perhaps can be seen on lattice):
- fermion condensate nonzero on the high-T center vortex
- Wilson loop inside center vortex (spacelike!) obeys perimeter law

Thus, high-T center vortex worldvolume (2d) mirrors behavior of low-T (4d) theory: 
4d bulk chiral symmetry broken and quarks deconfined on domain walls!

All tied by the anomalies!
seen earlier on R xS   in
Anber, Sulejmanpasic, EP 1501.06673

Discrete anomaly matching and 
 high-T “center vortices” in QCD(adj)
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

DW) between chiral-breaking vacua in the confined low-T phase (i.e. area law in the

bulk) as observed in [9], see also [10].

We find these correspondences between high-T DW physics and low-T bulk and DW physics

quite fascinating. The matching of various anomalies and the rich DW physics uncovered

make these properties worth pointing out and pursuing further.1

This paper is organized as follows. In Section 2, we study the charge-q Schwinger model,

its discrete symmetries, its ’t Hooft anomalies, and the anomaly saturation. In Section 3,

we review the DW solution in the high temperature SU(2) SYM theory and show that the

worldvolume of the DW is a charge-2 axial Schwinger model. We also discuss the anomaly

inflow and the manifestation of the anomaly on the DW. We conclude, in Section 4, by a

discussion of the generalizations to QCD(adj) with a larger number of adjoint fermions and

a proposal to study the high-T domain walls on the lattice.

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model

Consider the charge-q vector massless Schwinger model with Lagrangian

L = �
1

4e2
fklf

kl + i ̄+(@� + iqA�) + + i ̄�(@+ + iqA+) � , (2.1)

where k, l = 0, 1 are spacetime indices, @± ⌘ @t ± @x, A± ⌘ At ± Ax, t and x are the two-

dimensional Minkowski space coordinates, q � 2 is an integer and e is the gauge coupling.

The spacetime metric is gkl = diag(+,�), and we further assume that space is compactified

on a circle of circumference L, with x ⌘ x+L. The fields  + ( �) are the left (right) moving

components of the Dirac fermion and  ̄± are the hermitean conjugate fields. Our notation

follows from that of [7] and, as in that reference, we impose antiperiodic boundary conditions

on  ± around the spatial circle.2

The major di↵erence of our discussion from that in [6, 7]—where the model (2.1) with

q = 1 was solved exactly in Hamiltonian language for arbitrary values of L (see also the

textbook [11] which emphasizes the eL ⌧ 1 limit)—is in the assumption that q > 1 and

in the corresponding global issues and discrete anomalies that arise.3 Understanding the

symmetry structure and anomalies of (2.1) is of interest from multiple points of view:

1. On its own, the charge-q vectorlike Schwinger model (2.1) is an interesting example that

provides an exactly solvable setting to study the manifestation of the recently discovered

mixed discrete 0-form/1-form ’t Hooft anomalies [4, 5].

1The spirit of the correspondences outlined resembles those found in the high-T DWs of pure Yang-Mills

theory at ✓ = ⇡ [5] but the dynamics here appears richer.
2We note that we could also follow [6] and take the fermions periodic, with no change in the results regarding

symmetry realizations and anomalies; also, the utility of Weyl fermion notation will become clear further below.
3We caution the reader against concluding that the value of q is irrelevant: we are considering a compact

U(1) theory with (light) dynamical charges with quantized charge q > 1. The theory can be probed with

nondynamical q = 1 charges. One can think of the latter as of very (infinitely) massive dynamical charges.
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U(1)  :  

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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1 The DW zero modes and the axial Schwinger model

Euclidean SU(2) adjoint fermion action taken from earlier deconfinement papers:

S = 2 tr
�
�̄(@0�+ i[a0,�])� i�̄�

j
(@j�+ i[aj ,�])

�
. (1.1)

A unit 2x2 matrix is not shown in the Euclidean time direction; j = 1, 2, 3 labels space

components and 0 labels the Euclidean time. The fermions are two-component, and � and �̄

are independent variables in Euclidean space; � = �
a ⌧a

2 where ⌧
a
are SU(2) generators, the

Pauli matrices. Similarly, a0,...3 = a
a
0,...3

⌧a

2 .

The fundamental Polyakov loop (keeping the constant mode only) is

P = e
i�a30

⌧
3

2 = diag(e
i
�a

3
0

2 , e
�i

�a
3
0

2 ) (1.2)

The center symmetric point is ha30ic.c. = ⇡
� where hP i = diag(i,�i). The two center breaking

vacua are ha30ic.b.1 = 0, where hP i = 1, and ha30ic.b.2 =
2⇡
� , where hP i = �1. A DW inter-

polating between the two along the x
3
= z direction, denoted as a

3,DW
0 (z), would approach

ha30ic.b.1 as z ! �1 and ha30ic.b.2 as z ! +1. Clearly, it has to pass through the center

symmetric point, the center of the DW. At the center symmetric point, the a
3
1,2 components

of the gauge field along the DW are massless, due to the breaking of SU(2) to U(1).

Varying the action w.r.t. �̄ we obtain the equations of motion for � (and similar for �̄):

@0�+ i[a0,�]� i�
j
@j�+ �

j
[aj ,�] = 0 (1.3)

�@0�̄� i[a0, �̄] + i@j �̄�
j � [aj , �̄]�

j
= 0.
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2d U(1) Q_top!

(for 4d SU(N)… need 2 orthogonal planes…)

a Z  phase, one per 
spacetime direction 
(global symmetry)

easy to see on lattice: plaquette term in action invariant, 
fermion hopping as well, since integer charge q>1 

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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but gauging Z_N center means                                           Q_top=k/N: 

Z_{2 N n_f}:
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  lattice/continuum story, 2dU(1)…)
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1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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explained! (for 2d U(1)

remember 
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1 The DW zero modes and the axial Schwinger model

Euclidean SU(2) adjoint fermion action taken from earlier deconfinement papers:

S = 2 tr
�
�̄(@0�+ i[a0,�])� i�̄�

j
(@j�+ i[aj ,�])

�
. (1.1)

A unit 2x2 matrix is not shown in the Euclidean time direction; j = 1, 2, 3 labels space

components and 0 labels the Euclidean time. The fermions are two-component, and � and �̄

are independent variables in Euclidean space; � = �
a ⌧a

2 where ⌧
a
are SU(2) generators, the

Pauli matrices. Similarly, a0,...3 = a
a
0,...3

⌧a

2 .

The fundamental Polyakov loop (keeping the constant mode only) is

P = e
i�a30

⌧
3

2 = diag(e
i
�a

3
0

2 , e
�i

�a
3
0

2 ) (1.2)

The center symmetric point is ha30ic.c. = ⇡
� where hP i = diag(i,�i). The two center breaking

vacua are ha30ic.b.1 = 0, where hP i = 1, and ha30ic.b.2 =
2⇡
� , where hP i = �1. A DW inter-

polating between the two along the x
3
= z direction, denoted as a

3,DW
0 (z), would approach

ha30ic.b.1 as z ! �1 and ha30ic.b.2 as z ! +1. Clearly, it has to pass through the center

symmetric point, the center of the DW. At the center symmetric point, the a
3
1,2 components

of the gauge field along the DW are massless, due to the breaking of SU(2) to U(1).

Varying the action w.r.t. �̄ we obtain the equations of motion for � (and similar for �̄):

@0�+ i[a0,�]� i�
j
@j�+ �

j
[aj ,�] = 0 (1.3)

�@0�̄� i[a0, �̄] + i@j �̄�
j � [aj , �̄]�

j
= 0.
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2-form Z_N gauge field = plaquette based Z_N field; ex.:
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IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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The center symmetric point is ha30ic.c. = ⇡
� where hP i = diag(i,�i). The two center breaking

vacua are ha30ic.b.1 = 0, where hP i = 1, and ha30ic.b.2 =
2⇡
� , where hP i = �1. A DW inter-

polating between the two along the x
3
= z direction, denoted as a

3,DW
0 (z), would approach

ha30ic.b.1 as z ! �1 and ha30ic.b.2 as z ! +1. Clearly, it has to pass through the center

symmetric point, the center of the DW. At the center symmetric point, the a
3
1,2 components

of the gauge field along the DW are massless, due to the breaking of SU(2) to U(1).

Varying the action w.r.t. �̄ we obtain the equations of motion for � (and similar for �̄):

@0�+ i[a0,�]� i�
j
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j
[aj ,�] = 0 (1.3)
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= 0.
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1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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The center symmetric point is ha30ic.c. = ⇡
� where hP i = diag(i,�i). The two center breaking

vacua are ha30ic.b.1 = 0, where hP i = 1, and ha30ic.b.2 =
2⇡
� , where hP i = �1. A DW inter-

polating between the two along the x
3
= z direction, denoted as a

3,DW
0 (z), would approach

ha30ic.b.1 as z ! �1 and ha30ic.b.2 as z ! +1. Clearly, it has to pass through the center

symmetric point, the center of the DW. At the center symmetric point, the a
3
1,2 components

of the gauge field along the DW are massless, due to the breaking of SU(2) to U(1).

Varying the action w.r.t. �̄ we obtain the equations of motion for � (and similar for �̄):
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

“0-form” 

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
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Both the chiral 0-form and center 1-form discrete symmetries, (2.2) and (2.3), are exact

symmetries of the quantum theory. However, they su↵er a ’t Hooft anomaly: gauging one of

the symmetries explicitly breaks the other so that they can not be simultaneously gauged.

Gauging the 1-form ZC
q center symmetry is most straightforward on the lattice: one introduces

a 2-form (plaquette-based) ZC
q gauge field to make the 1-form symmetry (acting on links)

local.5 In continuum language, introducing a 2-form ZC
q gauge field background is equivalent,

see discussion in [14], to turning on nontrivial ’t Hooft fluxes, known to carry fractional

topological charge T = k
q (k 2 Z) (see [16, 17], dimensionally reduced).

Now, as argued in the paragraph after eq. (2.2), under a discrete chiral Zd�
2q transforma-

tion, the fermion measure changes by a phase factor ei2⇡T . This factor is unity for integer T ,

but equals !q = e
i 2⇡q when a fractional topological charge (a nontrivial 2-form center gauge

background with k = 1) is introduced. The phase in the chiral transformation of the partition

function in the ’t Hooft flux background is the manifestation of the mixed Zd�
2q -ZC

q ’t Hooft

anomaly. This phase is renormalization group invariant—it is independent of the volume

of the spacetime torus and can also be viewed as the variation of a bulk 3d term [5, 12].

Ref. [4, 5] argued that this anomaly has to be matched by the infrared (IR) dynamics of the

theory and outlined various options for the way the matching can happen.

We show below that the Zd�
2q -ZC

q mixed ’t Hooft anomaly in the q � 2 Schwinger model

is reproduced by the IR theory in the “Goldstone” mode such that both the discrete chiral

and center symmetries are spontaneously broken. We also explicitly show that the mixed

anomaly in the q � 2 Schwinger model appears as a “central extension” of the algebra of the

operators generating the discrete chiral Zd�
2q and center ZC

q transformations, see Eq. (2.17) in

the next Section.6

2.2 The realization of the symmetries and their algebra

In this Section, we study the realization of the discrete symmetries and their ’t Hooft anomaly

in the charge-q Schwinger model (2.1), by borrowing the results of [6, 7]. As our focus is on the

symmetry realization, we shall be mostly concerned with the properties of the ground state.

Briefly, the strategy behind the first steps of the Hamiltonian solution of (2.1) in At = 0 gauge

is to explicitly solve the Weyl equation in the Ax background (this is possible in one space

dimension) and use its eigenfunctions and eigenvalues to construct Dirac sea states. To find

the physical ground state, one then imposes Gauss’ law, i.e., invariance under infinitesimal

gauge transformations. Finally, one demands that the vacuum states be eigenstates of the

large gauge transformations G : Ax ! e
ig(x)(Ax + i@x)e�ig(x), where e

ig(x)
⌘ e

i 2⇡x
L is the unit

winding number large gauge transformation.

5In two spacetime dimensions, there is no 3-form field strength associated to the 2-form ZC
q gauge field,

thus any background is necessarily topological, see e.g. [15].
6This is similar to the appearance of the CP/center anomaly in the quantum mechanical and field theory

models of [5, 12, 18]. Enhancement of the discrete symmetry group in Yang-Mills theory at ✓ = ⇡ due to

discrete ’t Hooft anomaly considerations was also discussed in [19].
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lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the
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:

phase in the chiral transform (in the center vortex bckgd) IS mixed ‘t Hooft anomaly
 phase independent on T   volume, RG invariant, same on all scales: UV & IR

 like for continuous symmetry ‘t Hooft anomalies must be matched by IR theory: 
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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their nonperturbative behavior becomes a daunting task. One of the powerful tools that
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Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say
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be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled
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laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say
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be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

“0-form” 

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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especially powerful in asymptotically free theories: one computes the anomaly coe�cient
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lead to a rich structure of the DWs that is in principle amenable to lattice studies. As
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[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.
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x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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The 0-form/1-form mixed anomaly was computed by Gaiotto et al by turning on 
discrete gauge backgrounds (as I showed you in the 2d case).  A ’t Hooft anomaly, 
however, should be a property of the theory without any backgrounds;  it does not 
require turning on fields. Continuous symmetry ’t Hooft anomalies are seen in <j j j >  
three-point global symmetry current correlators, as 1/q  poles 
[Frishman et al, Coleman et al, 1980s]. 

Expect the “same” should be true here. The anomalies should involve properties of 
the quantum operators representing the discrete symmetries. General statements are 
so far not known, but examples exist, notably in QM [Gaiotto et al] and 2d QFT [our 
work].  
I will spare you the details and simply state the result:
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

“0-form” 
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theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-
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& have a mixed anomaly!

Gaiotto et al, ’14-’17

 like for continuous symmetry ‘t Hooft anomalies must be matched in IR: 
- IR CFT, or 
- one or both symmetries should be broken (“Goldstone” mode), or
- IR TQFT

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}
Z_{2 N n_f} is a symmetry if Q_top=1

but gauging Z_N center means                                           Q_top=k/N: 
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

In the 2d QFT case (Schwinger model [our work]) and various QM examples [Gaiotto et al] 
the anomaly can be seen at the operator level and the IR matching decided upon:

Clearly, the |P, ✓i states are also eigenstates of G with the same eigenvalue e
�iq✓. Further,

(2.14), (2.13) and (2.9) imply that under the discrete chiral symmetry Zd�
2q the |P i states

transform cyclically into each other

X2q |P, ✓i = |P + 1(mod q), ✓i , (2.15)

while (2.12) implies that they are eigenstates of the ZC
q center symmetry

Yq |P, ✓i = |P, ✓i !
�P
q e

�i✓
. (2.16)

Further, following the discussion after (2.10), the |P, ✓i states are degenerate. The action of

X2q and Yq found above, (2.15), (2.16), implies that, when acting on the |P, ✓i states,8 they

do not commute but obey the algebra

X2q Yq = !q Yq X2q (!q = e
i 2⇡q ). (2.17)

This algebra is familiar from the ’t Hooft commutation relation between Wilson and ’t Hooft

loop operators in SU(q) gauge theories [20] (the q-dimensional representation on the |P, ✓i

states, (2.15), (2.16), was also found there). Here, however, one of the operators Yq, being a

center-symmetry generator, is indeed a (lower dimensional version of a) ’t Hooft loop operator,

but the other, X2q, is not a Wilson loop but a generator of discrete chiral transformations.

The ’t Hooft algebra (2.17) implies that even though the symmetries generated by X2q

and Yq commute classically, the discrete chiral and center symmetries Zd�
2q and ZC

q do not

commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.9

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki

ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄+(x) �(x). The fermion bilinear has charge �2 under the Zd�
2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:

hn
0
|�(x)|ni = �n0,n+1 C

0
e
�i 2⇡x

L , where �(x) ⌘  ̄+(x) �(x). (2.18)

The constant C 0 was computed in [7] in the Hamiltonian formalism for any L and was shown

to not vanish, including as L ! 1, where C
0
⇠ e. It is also clear that (2.18) is consistent

with the nature of the |ni states explained earlier. Using the matrix elements (2.18) it

is straightforward to show that �(x) has nonzero matrix elements between di↵erent |✓, ki

states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis

hP
0
, ✓|�(x)|P, ✓i = e

�i✓
!
�P
q �P,P 0C

0
, (2.19)

8A slightly more careful study of the definitions of the operators from [7] shows that the algebra (2.17)

holds in the entire Hilbert space.
9Following [5], we call the appearance of !q in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !q commutes with X2q and Yq.
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2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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operator

Classically, center and discrete 
chiral symmetries commute, but 
they do not in the QFT: anomaly!

^^ ^^
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lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.
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U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
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as it acts on the local degrees of freedom.
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not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The
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is to multiply it by a Zq phase factor

ZC
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Axdx, !q ⌘ e

i 2⇡
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4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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& have a mixed anomaly!

Gaiotto et al, ’14-’17

 like for continuous symmetry ‘t Hooft anomalies must be matched in IR: 
- IR CFT, or 
- one or both symmetries should be broken (“Goldstone” mode), or
- IR TQFT

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

In the 2d QFT case (Schwinger model [our work]) and various QM examples [Gaiotto et al] 
the anomaly can be seen at the operator level and the IR matching decided upon:

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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operator

This is the famous ‘t Hooft-loop/Wilson-loop 
algebra for SU(q): q-dimensional reps!

Clearly, the |P, ✓i states are also eigenstates of G with the same eigenvalue e
�iq✓. Further,

(2.14), (2.13) and (2.9) imply that under the discrete chiral symmetry Zd�
2q the |P i states

transform cyclically into each other

X2q |P, ✓i = |P + 1(mod q), ✓i , (2.15)

while (2.12) implies that they are eigenstates of the ZC
q center symmetry

Yq |P, ✓i = |P, ✓i !
�P
q e

�i✓
. (2.16)

Further, following the discussion after (2.10), the |P, ✓i states are degenerate. The action of

X2q and Yq found above, (2.15), (2.16), implies that, when acting on the |P, ✓i states,8 they

do not commute but obey the algebra

X2q Yq = !q Yq X2q (!q = e
i 2⇡q ). (2.17)

This algebra is familiar from the ’t Hooft commutation relation between Wilson and ’t Hooft

loop operators in SU(q) gauge theories [20] (the q-dimensional representation on the |P, ✓i

states, (2.15), (2.16), was also found there). Here, however, one of the operators Yq, being a

center-symmetry generator, is indeed a (lower dimensional version of a) ’t Hooft loop operator,

but the other, X2q, is not a Wilson loop but a generator of discrete chiral transformations.

The ’t Hooft algebra (2.17) implies that even though the symmetries generated by X2q

and Yq commute classically, the discrete chiral and center symmetries Zd�
2q and ZC

q do not

commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.9

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki

ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄+(x) �(x). The fermion bilinear has charge �2 under the Zd�
2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:

hn
0
|�(x)|ni = �n0,n+1 C

0
e
�i 2⇡x

L , where �(x) ⌘  ̄+(x) �(x). (2.18)

The constant C 0 was computed in [7] in the Hamiltonian formalism for any L and was shown

to not vanish, including as L ! 1, where C
0
⇠ e. It is also clear that (2.18) is consistent

with the nature of the |ni states explained earlier. Using the matrix elements (2.18) it

is straightforward to show that �(x) has nonzero matrix elements between di↵erent |✓, ki

states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis

hP
0
, ✓|�(x)|P, ✓i = e

�i✓
!
�P
q �P,P 0C

0
, (2.19)

8A slightly more careful study of the definitions of the operators from [7] shows that the algebra (2.17)

holds in the entire Hilbert space.
9Following [5], we call the appearance of !q in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !q commutes with X2q and Yq.
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& have a mixed anomaly!

Gaiotto et al, ’14-’17

 like for continuous symmetry ‘t Hooft anomalies must be matched in IR: 
- IR CFT, or 
- one or both symmetries should be broken (“Goldstone” mode), or
- IR TQFT

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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operator

Clearly, the |P, ✓i states are also eigenstates of G with the same eigenvalue e
�iq✓. Further,

(2.14), (2.13) and (2.9) imply that under the discrete chiral symmetry Zd�
2q the |P i states

transform cyclically into each other

X2q |P, ✓i = |P + 1(mod q), ✓i , (2.15)

while (2.12) implies that they are eigenstates of the ZC
q center symmetry

Yq |P, ✓i = |P, ✓i !
�P
q e

�i✓
. (2.16)

Further, following the discussion after (2.10), the |P, ✓i states are degenerate. The action of

X2q and Yq found above, (2.15), (2.16), implies that, when acting on the |P, ✓i states,8 they

do not commute but obey the algebra

X2q Yq = !q Yq X2q (!q = e
i 2⇡q ). (2.17)

This algebra is familiar from the ’t Hooft commutation relation between Wilson and ’t Hooft

loop operators in SU(q) gauge theories [20] (the q-dimensional representation on the |P, ✓i

states, (2.15), (2.16), was also found there). Here, however, one of the operators Yq, being a

center-symmetry generator, is indeed a (lower dimensional version of a) ’t Hooft loop operator,

but the other, X2q, is not a Wilson loop but a generator of discrete chiral transformations.

The ’t Hooft algebra (2.17) implies that even though the symmetries generated by X2q

and Yq commute classically, the discrete chiral and center symmetries Zd�
2q and ZC

q do not

commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.9

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki

ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄+(x) �(x). The fermion bilinear has charge �2 under the Zd�
2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:

hn
0
|�(x)|ni = �n0,n+1 C

0
e
�i 2⇡x

L , where �(x) ⌘  ̄+(x) �(x). (2.18)

The constant C 0 was computed in [7] in the Hamiltonian formalism for any L and was shown

to not vanish, including as L ! 1, where C
0
⇠ e. It is also clear that (2.18) is consistent

with the nature of the |ni states explained earlier. Using the matrix elements (2.18) it

is straightforward to show that �(x) has nonzero matrix elements between di↵erent |✓, ki

states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis

hP
0
, ✓|�(x)|P, ✓i = e

�i✓
!
�P
q �P,P 0C

0
, (2.19)

8A slightly more careful study of the definitions of the operators from [7] shows that the algebra (2.17)

holds in the entire Hilbert space.
9Following [5], we call the appearance of !q in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !q commutes with X2q and Yq.
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^^ ^^

Finally, we also showed that both discrete chiral symmetry is broken (q discrete 
vacua, fermion condensate) and the 1-form center is broken (=perimeter law for 
q=1 Wilson loop). 
Used Manton ‘86, Iso-Murayama ’90 Hamiltonian solution

In the 2d QFT case (Schwinger model [our work]) and various QM examples [Gaiotto et al] 
the anomaly can be seen at the operator level and the IR matching decided upon:

This is the famous ‘t Hooft-loop/Wilson-loop 
algebra for SU(q): q-dimensional reps!



new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

Outline:

1,2,3 in Anber, EP 1807.00093

2.) the charge-2 Schwinger model appears as the wordvolume theory of high-T 
domain walls - which are a type of center vortex - between center-breaking vacua in 
SU(2) QCD(adj) with a single Weyl massless adjoint (& multi-flavor generalizations if 
more adjoints)

3.) Schwinger model results imply that (& perhaps can be seen on lattice):
- fermion condensate nonzero on the high-T center vortex
- Wilson loop inside center vortex (spacelike!) obeys perimeter law



2.), 3.): ... wordlvolume theory of high-T domain walls - which are a type of center vortex - 
between center-breaking vacua...

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled
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Bhattacharya et al 1991
...
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1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

The field strength is the 2-form:

F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

In the last step, we recognize the conventional definition Fµ⌫ = @µA⌫�@⌫Aµ+i[Aµ, A⌫ ],

or F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ � fabc

(k)A
b
µA

c
⌫ .

Thus, F =
1
2Fµ⌫dxµ ^ dx⌫

. The dual of F is ⇤F =
1
2 F̃µ⌫dxµ ^ dx⌫

, where F̃µ⌫ =

1
2✏µ⌫��F

��
. Also, dxµ ^ dx⌫ ^ dx� ^ dx�

= ✏µ⌫��d4x.1

With the above definitions, consider what is to become the action of the gauge

field:

trF ^ ⇤F =
k

4
F a
µ⌫F̃

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F

µ⌫ ad4x , (1.3)

and what is to become the topological charge:

trF ^ F =
k

4
F a
µ⌫F

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F̃

µ⌫ ad4x . (1.4)

1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.
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2.), 3.): ... wordlvolume theory of high-T domain walls - which are a type of center vortex - 
between center-breaking vacua...

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.

– 10 –

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.

– 10 –

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.

– 10 –

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.

– 10 –

two vacua

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.

– 10 –

broken center

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.

– 10 –

(shown for nf=1 SYM)

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):

Contents

1 Introduction 1

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model 3

2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14

1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}
Z_{2 N n_f} is a symmetry if Q_top=1

but gauging Z_N center means                                           Q_top=k/N: 

Contents

1 Introduction 1

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model 3

2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14

1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):

Contents

1 Introduction 1

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model 3

2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14

1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}
Z_{2 N n_f} is a symmetry if Q_top=1

but gauging Z_N center means                                           Q_top=k/N: 

Contents

1 Introduction 1

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model 3

2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14

1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):

Contents

1 Introduction 1

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model 3

2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14

1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}
Z_{2 N n_f} is a symmetry if Q_top=1

but gauging Z_N center means                                           Q_top=k/N: 

Contents

1 Introduction 1

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model 3

2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14

1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):

Contents

1 Introduction 1

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model 3

2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14

1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}
Z_{2 N n_f} is a symmetry if Q_top=1

but gauging Z_N center means                                           Q_top=k/N: 

Contents

1 Introduction 1

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model 3

2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14

1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

Bhattacharya et al 1991
...

SYM has Z  center 1-form and Z    chiral 0-form w/ mixed ‘t Hooft anomaly!
story similar as in Schwinger model: fractional topological charge in 4d (here: 1/2) 
background of two center vortices intersecting at a point (one along x1-x2, the other along 
x3-x4)

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):

Contents

1 Introduction 1

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model 3

2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14

1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

- at T<T    , Z  chiral broken to Z_2, matching the anomaly 
- at T>T    , Z  center broken, matching the anomaly 
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales
domain walls, in either phase, are “nontrivial”: anomaly inflow! 

- high-T center vortices have mixed Z  chiral/Z  center anomaly on 2d worldvolume

Gaiotto et al 2014-17

- can be seen in the high-T theory quite explicitly:

(assume Tchi= Tc)
(…> or =)

 (“0-form”, along x )4

Z    “domain walls”, or “interfaces”, or “center vortices” of width ~1/gT

Z   0-form center restored on DW 2

2

2 4

4
2

4 2

c 
c 

U(1)unbroken on wall (Polyakov loop not ~1) Cartan of SU(2) massless; W-boson mass ~T
localized 2d U(1) on wall  not very interesting except          pure YM! Gaiotto et al 2017✓ = ⇡

h ̄+ �i 6= 0

ei
H
a ! ei

H
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ei
H
a
= ei
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q ei

H
a

�Zd�
2q
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2⇡
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1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

The field strength is the 2-form:

F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

In the last step, we recognize the conventional definition Fµ⌫ = @µA⌫�@⌫Aµ+i[Aµ, A⌫ ],

or F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ � fabc

(k)A
b
µA

c
⌫ .

Thus, F =
1
2Fµ⌫dxµ ^ dx⌫

. The dual of F is ⇤F =
1
2 F̃µ⌫dxµ ^ dx⌫

, where F̃µ⌫ =

1
2✏µ⌫��F

��
. Also, dxµ ^ dx⌫ ^ dx� ^ dx�

= ✏µ⌫��d4x.1

With the above definitions, consider what is to become the action of the gauge

field:

trF ^ ⇤F =
k

4
F a
µ⌫F̃

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F

µ⌫ ad4x , (1.3)

and what is to become the topological charge:

trF ^ F =
k

4
F a
µ⌫F

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F̃

µ⌫ ad4x . (1.4)

1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales
adjoint fermions at high-T have zero modes on the wall
 for nf=1, two normalizable:

equation of motion of �±
p reads

�
±
p, 1(x3) = exp

✓
�2⇡p0x3 ±

Z x3

dz�(z)

◆
T

�
�
±
p, 1(0) ,

�
±
p, 2(x3) = exp

✓
2⇡p0x3 ⌥

Z x3

dz�(z)

◆
T

�
�
±
p, 2(0) . (3.6)

It is easy to check that only two of these solutions, �+
p=0, 2(x3) and �

�
p=�1, 1(x3), are normal-

izable. It is crucial for our purposes to note that these two zero modes have opposite charges

under the U(1) field ai and also have opposite 2d chirality, as can be seen from (3.5).

In what follows, when writing the DW-volume theory of the zero modes, we drop the

Matsubara and 4d spinor indices, and denote the two dimensional fields corresponding to the

above zero modes by �+ and ��, respectively. Also, to emphasize the fact that � are adjoint

fermions, and therefore, carry twice the fundamental charge, we make the change of variables

A1,2 =
a1,2
2 . Then, the e↵ective 2d Lagrangian on the DW worldvolume is given by

L
axial
DW =

1

4e2
FklFkl + i�̄+ [@1 + i@2 � i2(A1 + iA2)]�+

+ i�̄� [@1 � i@2 + i2(A1 � iA2)]�� . (3.7)

where Fkl = @kAl � @lAk, k, l = 1, 2, and e
2 is the two dimensional gauge coupling.13 The

Lagrangian (3.7) describes the Euclidean axial Schwinger model of charge 2 and, from a 4d

perspective, the high-T DW worldvolume theory in SU(2) super-Yang-Mills (SYM) theory

(QCD(adj) with nf = 1).

It is interesting to note that the DW worldvolume theory (3.7) inherits the symmetries

and anomalies of the bulk SYM theory. The U(1)A, under which �± transform with opposite

charges, is gauged in the axial charge-2 model.14 The U(1)V , under which �± have the same

charge is anomalous, instead. There is a Zd�
4 discrete “chiral” (from the bulk point of view)

symmetry remaining anomaly free. In addition there is a ZC
2 center symmetry due to the fact

that the adjoint fermions carry twice the fundamental charge (this worldvolume ZC
2 symmetry

originates from the 1-form center symmetry in the R3 bulk and should not be confused with

the zero-form center symmetry along x
4). There is also a Zd�

4 -ZC
2 mixed ’t Hooft anomaly

on the DW worldvolume, as predicted by anomaly inflow [5, 8], and as follows directly by

repeating the arguments of Section 2.1 for the axial model (3.7).

13The localization of the abelian fields on the DW is due to nonperturbative e↵ects in the bulk that generate

a mass gap for the gauge fluctuations (in the absence of a bulk gap, the abelian gauge field in the DW

background would propagate in the R3 bulk). Thus, we can only estimate the value of the 2d coupling e2:

we take e2 = g2T/�, where � ⇠ 1/g2T is the bulk confining scale, much larger than the DW width, leading

to e2 ⇠ g4T 2. This estimate may raise the issue of scale separation between DW and bulk dynamics: from

the above estimate, nonperturbative e↵ects in the 2d Schwinger model occur at scales e ⇠ g2T which is

parametrically the same as the nonperturbative bulk gap. These estimates equally apply to the ✓ = ⇡ YM

case of [5, 8]. In what follows, we assume that the results from Sec. 2 apply to the DW theory and o↵er

the heuristic justification that the only light charged states near the DW are the �± zero modes, charged

W±-bosons and fermions have mass of order T on the DW, while the bulk confined states are uncharged.
14We remind the reader that gauging U(1)A is possible in 2d, due to the vector-axial duality (✏µ⌫�⌫ = �µ�5).
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axial Schwinger model of 
charge-2! 
L and R have opposite charge 

In 2d axial and vector easily mapped to each other: Z  chiral symmetry and Z  center. 

From q=2 Schwinger model results, chiral and center broken, so: 
nonzero fermion condensate + Wilson loop perimeter law on the high-T “center vortex”!

Anber EP 2018

& even richer in QCD(adj)!
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}
Z_{2 N n_f} is a symmetry if Q_top=1

but gauging Z_N center means                                           Q_top=k/N: 
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):
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U(1)unbroken on wall (Polyakov loop not ~1) Cartan of SU(2) massless; W-boson mass ~T
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1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

The field strength is the 2-form:

F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

In the last step, we recognize the conventional definition Fµ⌫ = @µA⌫�@⌫Aµ+i[Aµ, A⌫ ],

or F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ � fabc

(k)A
b
µA

c
⌫ .

Thus, F =
1
2Fµ⌫dxµ ^ dx⌫

. The dual of F is ⇤F =
1
2 F̃µ⌫dxµ ^ dx⌫

, where F̃µ⌫ =

1
2✏µ⌫��F

��
. Also, dxµ ^ dx⌫ ^ dx� ^ dx�

= ✏µ⌫��d4x.1

With the above definitions, consider what is to become the action of the gauge

field:

trF ^ ⇤F =
k

4
F a
µ⌫F̃

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F

µ⌫ ad4x , (1.3)

and what is to become the topological charge:

trF ^ F =
k

4
F a
µ⌫F

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F̃

µ⌫ ad4x . (1.4)

1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.

– 5 –



new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

Outline:

1,2,3 in Anber, EP 1807.00093

2.) the charge-2 Schwinger model appears as the wordvolume theory of high-T 
domain walls - which are a type of center vortex - between center-breaking vacua in 
SU(2) QCD(adj) with a single Weyl massless adjoint (& multi-flavor generalizations if 
more adjoints)

3.) Schwinger model results imply that (& perhaps can be seen on lattice):
- fermion condensate nonzero on the high-T center vortex
- Wilson loop inside center vortex (spacelike!) obeys perimeter law

... high-T center vortex worldvolume (2d) mirrors behavior of low-T (4d) theory: 
4d bulk chiral symmetry broken and quarks deconfined on domain walls!

All tied by the anomalies!

Finally: 

seen earlier on R xS   in
Anber, Sulejmanpasic, EP 1501.06673

3 1



... high-T center vortex worldvolume (2d) mirrors behavior of low-T (4d) theory: 
4d bulk chiral symmetry broken and quarks deconfined on domain walls!

All tied by the anomalies!

Finally: 

Z  chiral broken 

quarks are deconfined

(perimeter law for W loop on DW 
while area law in bulk)

Z   center unbroken 
(area law for W loop in bulk)

Z   center broken on DW

 on DWs:

low T high T

 in bulk:

assumed Tchi= Tdec. 
(> or =)

4

2

2

explicit confinement  on R xS   in
Anber, Sulejmanpasic, EP 1501.06673

3 1

Z   chiral unbroken 

Z  0-form center broken 

Z  1-form center unbroken 
(area law for W loop in bulk)

 on DWs:
Z  chiral  broken 
Z   1-form center broken 

(perimeter law for W loop on DW 
while area law in bulk)

 in bulk:
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... high-T center vortex worldvolume (2d) mirrors behavior of low-T (4d) theory: 
4d bulk chiral symmetry broken and quarks deconfined on domain walls!

Finally: 

low T high T

All tied by the anomalies!
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... high-T center vortex worldvolume (2d) mirrors behavior of low-T (4d) theory: 
4d bulk chiral symmetry broken and quarks deconfined on domain walls!

Finally: 

High-T DW properties mirror low-T bulk and low-T DW properties 
in a way really required by (rather, consistent with) anomaly…

low T high T

Z   chiral unbroken 

Z  0-form center broken 

Z  1-form center unbroken 
(area law for W loop in bulk)

 on DWs:
Z  chiral  broken 
Z   1-form center broken 

(perimeter law for W loop on DW 
while area law in bulk)

 in bulk:

4

2

2

4
2

Z  chiral broken 

quarks are deconfined

(perimeter law for W loop on DW 
while area law in bulk)

Z   center unbroken 
(area law for W loop in bulk)

Z   center broken on DW

 on DWs:

 in bulk:
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One wonders if n >1 high-T DWs teach us about QCD(adj) nf>1 unknown low-T phase? 

FUTURE?

on DW: multi-flavor Schwinger models with classically marginal 4-
fermi terms (reducing symmetries, generated by W-boson loops)? 
symmetry realization vs 4d low-T?

Other theories with center symmetries: two-index S, AS flavors? 
and some specific 3-, 4- index ones Anber, Vincent-Genot 1704.08277

eg Kuti et al on lattice ‘17

Is this nontrivial DW (low-T as well as high-T) physics accessible on lattice? 

How are these new discrete anomalies, found by turning on sometimes very unusual 
backgrounds, (e.g. non-spin manifolds for n =2 QCD(adj)! Cordoba, Dumitrescu 1806.09592 )
reflected in the operator algebra of the discrete symmetries involved? 

In other words, reaching the level of understanding we have 
for continuous symmetry ’t Hooft anomalies would be nice!

 (discrete chiral/Z            center symmetries not paid attention to, so far) 

possible issues: twisting b.c. OK; but pinning down the DW? avoid averaging condensate over DWs (histograms?)

continuum “2-group” (0-form/1-form) case: 
Cordoba, Dumitrescu, Intriligator; Benini, Cordoba, Hsin ’18 

e.g. continuum: Frishman, Schwimmer, Banks, Yankielowicz; Coleman, Grossman ‘80s 

THANK YOU!

{2,3,4}

f

f



Extra slides: 



Extra technical slide I.I: Discrete anomalies and anomaly inflow from “the bulk”
anomalous variation of partition function 
= variation of a 3d bulk CS term (3d space w/ boundary = 2d spacetime); e.g. our Schwinger example:

continuum description of a Z_{2q} 1-form gauge field (gauging 0-form discrete symmetry)= pair A^1,A^0:

continuum description of a Z_q 2-form gauge field (gauging 1-form discrete symmetry)= pair B^2,B^1:

ensures Z_{2q} Wilson loop

 ensures that for closed 2 surface  
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1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

The field strength is the 2-form:

F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

In the last step, we recognize the conventional definition Fµ⌫ = @µA⌫�@⌫Aµ+i[Aµ, A⌫ ],

or F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ � fabc

(k)A
b
µA

c
⌫ .

Thus, F =
1
2Fµ⌫dxµ ^ dx⌫

. The dual of F is ⇤F =
1
2 F̃µ⌫dxµ ^ dx⌫

, where F̃µ⌫ =

1
2✏µ⌫��F

��
. Also, dxµ ^ dx⌫ ^ dx� ^ dx�

= ✏µ⌫��d4x.1

1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.
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so that closed Wilson loop gauge Z_{2q} gauge invariant
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In the last step, we recognize the conventional definition Fµ⌫ = @µA⌫�@⌫Aµ+i[Aµ, A⌫ ],

or F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ � fabc

(k)A
b
µA

c
⌫ .

Thus, F =
1
2Fµ⌫dxµ ^ dx⌫

. The dual of F is ⇤F =
1
2 F̃µ⌫dxµ ^ dx⌫

, where F̃µ⌫ =

1
2✏µ⌫��F

��
. Also, dxµ ^ dx⌫ ^ dx� ^ dx�

= ✏µ⌫��d4x.1

1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.
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similar story for 5d CS relevant for 4d theories, one extra power of B^2;  also useful to show anomaly inflow on DW

Z_f Z_f

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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Both the chiral 0-form and center 1-form discrete symmetries, (2.2) and (2.3), are exact

symmetries of the quantum theory. However, they su↵er a ’t Hooft anomaly: gauging one of

the symmetries explicitly breaks the other so that they can not be simultaneously gauged.

Gauging the 1-form ZC
q center symmetry is most straightforward on the lattice: one introduces

a 2-form (plaquette-based) ZC
q gauge field to make the 1-form symmetry (acting on links)

local.5 In continuum language, introducing a 2-form ZC
q gauge field background is equivalent,

see discussion in [14], to turning on nontrivial ’t Hooft fluxes, known to carry fractional

topological charge T = k
q (k 2 Z) (see [16, 17], dimensionally reduced).

Now, as argued in the paragraph after eq. (2.2), under a discrete chiral Zd�
2q transforma-

tion, the fermion measure changes by a phase factor ei2⇡T . This factor is unity for integer T ,

but equals !q = e
i 2⇡q when a fractional topological charge (a nontrivial 2-form center gauge

background with k = 1) is introduced. The phase in the chiral transformation of the partition

function in the ’t Hooft flux background is the manifestation of the mixed Zd�
2q -ZC

q ’t Hooft

anomaly. This phase is renormalization group invariant—it is independent of the volume

of the spacetime torus and can also be viewed as the variation of a bulk 3d term [5, 12].

Ref. [4, 5] argued that this anomaly has to be matched by the infrared (IR) dynamics of the

theory and outlined various options for the way the matching can happen.

We show below that the Zd�
2q -ZC

q mixed ’t Hooft anomaly in the q � 2 Schwinger model

is reproduced by the IR theory in the “Goldstone” mode such that both the discrete chiral

and center symmetries are spontaneously broken. We also explicitly show that the mixed

anomaly in the q � 2 Schwinger model appears as a “central extension” of the algebra of the

operators generating the discrete chiral Zd�
2q and center ZC

q transformations, see Eq. (2.17) in

the next Section.6

2.2 The realization of the symmetries and their algebra

In this Section, we study the realization of the discrete symmetries and their ’t Hooft anomaly

in the charge-q Schwinger model (2.1), by borrowing the results of [6, 7]. As our focus is on the

symmetry realization, we shall be mostly concerned with the properties of the ground state.

Briefly, the strategy behind the first steps of the Hamiltonian solution of (2.1) in At = 0 gauge

is to explicitly solve the Weyl equation in the Ax background (this is possible in one space

dimension) and use its eigenfunctions and eigenvalues to construct Dirac sea states. To find

the physical ground state, one then imposes Gauss’ law, i.e., invariance under infinitesimal

gauge transformations. Finally, one demands that the vacuum states be eigenstates of the

large gauge transformations G : Ax ! e
ig(x)(Ax + i@x)e�ig(x), where e

ig(x)
⌘ e

i 2⇡x
L is the unit

winding number large gauge transformation.

5In two spacetime dimensions, there is no 3-form field strength associated to the 2-form ZC
q gauge field,

thus any background is necessarily topological, see e.g. [15].
6This is similar to the appearance of the CP/center anomaly in the quantum mechanical and field theory

models of [5, 12, 18]. Enhancement of the discrete symmetry group in Yang-Mills theory at ✓ = ⇡ due to

discrete ’t Hooft anomaly considerations was also discussed in [19].
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A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-
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.

The field strength is the 2-form:

F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

In the last step, we recognize the conventional definition Fµ⌫ = @µA⌫�@⌫Aµ+i[Aµ, A⌫ ],

or F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ � fabc

(k)A
b
µA

c
⌫ .

Thus, F =
1
2Fµ⌫dxµ ^ dx⌫

. The dual of F is ⇤F =
1
2 F̃µ⌫dxµ ^ dx⌫

, where F̃µ⌫ =

1
2✏µ⌫��F

��
. Also, dxµ ^ dx⌫ ^ dx� ^ dx�

= ✏µ⌫��d4x.1

1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.

– 2 –

its      variation is nonzero on  boundary where              

same as we found before 

S3d CS = i
2⇡

q

Z

M3(@M3=M2)

2qA(1)
�

2⇡
^ qB(2)

C

2⇡

ei
H
A(1)

= ei
2⇡
2q Z

qB(2)
= dB(1) ,

I
dB(1) 2 2⇡Z =)

I
B(2) 2 2⇡Z

q

2qA(1)
= dA(0) ,

I
dA(0) 2 2⇡Z =)

I
A(1) 2 2⇡Z

2q

�Zd�
2q
A(1)

� = d� ,

I
d� 2 2⇡Z

eSCS

�ZC
q
B2

C = d�(1) ,

I
d�(1) 2 2⇡Z

ei
H
B(2)

= ei
2⇡
q Z

�Zd�
2q
Sq�Schwinger
bulk = i

2⇡

q

Z

@M3=M2

qB(2)
C

2⇡
2 i

2⇡

q
Z

1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

The field strength is the 2-form:

F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

– 2 –

S3d CS = i
2⇡

q

Z

M3(@M3=M2)

2qA(1)
�

2⇡
^ qB(2)

C

2⇡

ei
H
A(1)

= ei
2⇡
2q Z

qB(2)
= dB(1) ,

I
dB(1) 2 2⇡Z =)

I
B(2) 2 2⇡Z

q

2qA(1)
= dA(0) ,

I
dA(0) 2 2⇡Z =)

I
A(1) 2 2⇡Z

2q

�Zd�
2q
A(1)

� = d� ,

I
d� 2 2⇡Z

eSCS

�|M2 =
2⇡

2q

�ZC
q
B2

C = d�(1) ,

I
d�(1) 2 2⇡Z

ei
H
B(2)

= ei
2⇡
q Z

�Zd�
2q
Sq�Schwinger
bulk = i

2⇡

q

Z

@M3=M2

qB(2)
C

2⇡
2 i

2⇡

q
Z

1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

– 2 –

Z_f Z_f

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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Both the chiral 0-form and center 1-form discrete symmetries, (2.2) and (2.3), are exact

symmetries of the quantum theory. However, they su↵er a ’t Hooft anomaly: gauging one of

the symmetries explicitly breaks the other so that they can not be simultaneously gauged.

Gauging the 1-form ZC
q center symmetry is most straightforward on the lattice: one introduces

a 2-form (plaquette-based) ZC
q gauge field to make the 1-form symmetry (acting on links)

local.5 In continuum language, introducing a 2-form ZC
q gauge field background is equivalent,

see discussion in [14], to turning on nontrivial ’t Hooft fluxes, known to carry fractional

topological charge T = k
q (k 2 Z) (see [16, 17], dimensionally reduced).

Now, as argued in the paragraph after eq. (2.2), under a discrete chiral Zd�
2q transforma-

tion, the fermion measure changes by a phase factor ei2⇡T . This factor is unity for integer T ,

but equals !q = e
i 2⇡q when a fractional topological charge (a nontrivial 2-form center gauge

background with k = 1) is introduced. The phase in the chiral transformation of the partition

function in the ’t Hooft flux background is the manifestation of the mixed Zd�
2q -ZC

q ’t Hooft

anomaly. This phase is renormalization group invariant—it is independent of the volume

of the spacetime torus and can also be viewed as the variation of a bulk 3d term [5, 12].

Ref. [4, 5] argued that this anomaly has to be matched by the infrared (IR) dynamics of the

theory and outlined various options for the way the matching can happen.

We show below that the Zd�
2q -ZC

q mixed ’t Hooft anomaly in the q � 2 Schwinger model

is reproduced by the IR theory in the “Goldstone” mode such that both the discrete chiral

and center symmetries are spontaneously broken. We also explicitly show that the mixed

anomaly in the q � 2 Schwinger model appears as a “central extension” of the algebra of the

operators generating the discrete chiral Zd�
2q and center ZC

q transformations, see Eq. (2.17) in

the next Section.6

2.2 The realization of the symmetries and their algebra

In this Section, we study the realization of the discrete symmetries and their ’t Hooft anomaly

in the charge-q Schwinger model (2.1), by borrowing the results of [6, 7]. As our focus is on the

symmetry realization, we shall be mostly concerned with the properties of the ground state.

Briefly, the strategy behind the first steps of the Hamiltonian solution of (2.1) in At = 0 gauge

is to explicitly solve the Weyl equation in the Ax background (this is possible in one space

dimension) and use its eigenfunctions and eigenvalues to construct Dirac sea states. To find

the physical ground state, one then imposes Gauss’ law, i.e., invariance under infinitesimal

gauge transformations. Finally, one demands that the vacuum states be eigenstates of the

large gauge transformations G : Ax ! e
ig(x)(Ax + i@x)e�ig(x), where e

ig(x)
⌘ e

i 2⇡x
L is the unit

winding number large gauge transformation.

5In two spacetime dimensions, there is no 3-form field strength associated to the 2-form ZC
q gauge field,

thus any background is necessarily topological, see e.g. [15].
6This is similar to the appearance of the CP/center anomaly in the quantum mechanical and field theory

models of [5, 12, 18]. Enhancement of the discrete symmetry group in Yang-Mills theory at ✓ = ⇡ due to

discrete ’t Hooft anomaly considerations was also discussed in [19].
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its      variation is                  so a charge-1 Wilson line                                                )
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1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

The field strength is the 2-form:

F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

In the last step, we recognize the conventional definition Fµ⌫ = @µA⌫�@⌫Aµ+i[Aµ, A⌫ ],

or F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ � fabc

(k)A
b
µA

c
⌫ .

Thus, F =
1
2Fµ⌫dxµ ^ dx⌫

. The dual of F is ⇤F =
1
2 F̃µ⌫dxµ ^ dx⌫

, where F̃µ⌫ =

1
2✏µ⌫��F

��
. Also, dxµ ^ dx⌫ ^ dx� ^ dx�

= ✏µ⌫��d4x.1

With the above definitions, consider what is to become the action of the gauge

field:

trF ^ ⇤F =
k

4
F a
µ⌫F̃

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F

µ⌫ ad4x , (1.3)

and what is to become the topological charge:

trF ^ F =
k

4
F a
µ⌫F

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F̃

µ⌫ ad4x . (1.4)

1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.
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F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

In the last step, we recognize the conventional definition Fµ⌫ = @µA⌫�@⌫Aµ+i[Aµ, A⌫ ],

or F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ � fabc

(k)A
b
µA

c
⌫ .

Thus, F =
1
2Fµ⌫dxµ ^ dx⌫

. The dual of F is ⇤F =
1
2 F̃µ⌫dxµ ^ dx⌫

, where F̃µ⌫ =

1
2✏µ⌫��F

��
. Also, dxµ ^ dx⌫ ^ dx� ^ dx�

= ✏µ⌫��d4x.1

With the above definitions, consider what is to become the action of the gauge

field:

trF ^ ⇤F =
k

4
F a
µ⌫F̃

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F

µ⌫ ad4x , (1.3)

1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.
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(in broken phase, such holonomy induces DW)

anomaly ‘inflow’ to DW: consider nonzero          (inside M2 boundary) in broken phase;
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Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.
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1
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1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
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, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-
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or in form notation A ! UAU�1 � iUdU�1
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The field strength is the 2-form:
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1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.

– 3 –

�ZC
q
B2

C = d�(1) ,

I
d�(1) 2 2⇡Z

ei
H
B(2)

= ei
2⇡
q Z

�ZC
q
S3dCS = i

2⇡

q
Z

I
qA(1)

2⇡

S2dCS = i
2⇡

q

I

�2;@�2=�DW

qB(2)

2⇡

�ZC
q
S2dCS = i

2⇡

q

I

�DW

q�(1)

2⇡
= i

2⇡

q

ei
H
a ! ei

H
�(1)

ei
H
a
= ei

2⇡
q ei

H
a

�Zd�
2q
S3dCS = i

2⇡

q

2q �|M2

2⇡

Z

@M3=M2

qB(2)
C

2⇡
2 i

2⇡

q
Z

1 Form notation and conventions; action and topological term
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= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,
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] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

The field strength is the 2-form:

F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

In the last step, we recognize the conventional definition Fµ⌫ = @µA⌫�@⌫Aµ+i[Aµ, A⌫ ],

or F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ � fabc

(k)A
b
µA

c
⌫ .

Thus, F =
1
2Fµ⌫dxµ ^ dx⌫

. The dual of F is ⇤F =
1
2 F̃µ⌫dxµ ^ dx⌫

, where F̃µ⌫ =

1
2✏µ⌫��F

��
. Also, dxµ ^ dx⌫ ^ dx� ^ dx�

= ✏µ⌫��d4x.1

1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.
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whose center variation localizes on DW

then 3d bulk term reduces to 2d CS, whose boundary is the DW worldvolume (1-dim)

and shows DW has center charge-1, exactly as a q=1 Wilson loop



Extra technical slide I.III: Discrete anomalies and anomaly inflow from “the bulk”

The long-distance theory of the       - broken Schwinger model
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1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

The field strength is the 2-form:
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=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

– 2 –

a sort of “Z_q sigma model”: “chiral lagrangian” yielding q degenerate states and nothing else (as 
theory is gapped); this is a topological theory, as no dynamics or d.o.f.: only captures vacuum 
states and symmetries in IR! IR theory can be coupled to background gauge fields for the 
global symmetries, reproducing the ’t Hooft anomalies of the UV theory.

broken phase long distance theory and anomaly matching:

lattice description: a Zq topological Ising model, equiv. Zq topological GT [w/ global 0-form Z_q and a 1-form Z_q]

continuum description: a Zq topological BF theory 0-form     and 1-form        both compact:    �
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0-form global Z_q:
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1-form global Z_q:

EOMs imply both fields are flat (topological). On              fix a_0=0 gauge (Gauss law=constant     on S^1).           
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a_x only d.o.f. (or rather                   ). Lagrangian for    ,     is QM:   �

a(1)

S3d CS = i
2⇡

q

Z

M3(@M3=M2)

2qA(1)
�

2⇡
^ qB(2)

C

2⇡

ei
H
A(1)

= ei
2⇡
2q Z

qB(2)
= dB(1) ,

I
dB(1) 2 2⇡Z =)

I
B(2) 2 2⇡Z

q

2qA(1)
= dA(0) ,

I
dA(0) 2 2⇡Z =)

I
A(1) 2 2⇡Z

2q

�(x) : M2 ! {0, 1, ..., q � 1}

�Zd�
2q
A(1)

� = d� ,

I
d� 2 2⇡Z

Zd�
2q : Z ! ei

2⇡
q Z

eSCS

Z ⇠ e
i 2⇡q

R

M2

� qB(2)

2⇡

ZC
q

Zd�
2q : � ! �+ 1(mod q)

I
q�(1)

2⇡
|M2 2 Z

�ZC
q
a(1) =

q�(1)

2⇡
, s.t. ei

2⇡
q

H
a(1) ! ei

2⇡
q

H
�(1)

ei
2⇡
q

H
a(1)

– 2 –

�

a(1)

a

S3d CS = i
2⇡

q

Z

M3(@M3=M2)

2qA(1)
�

2⇡
^ qB(2)

C

2⇡

� ⌘ �+ 2⇡

I
da(1) = 2⇡Z

I
d�(0)

a
(1) ! a(1) + 1

q�
(1)

+ d�(0)

iSIR = i
q

2⇡

Z

Rt⇥S1

� da(1)

Zd�
2q : � ! �+

2⇡

q

ei
H
A(1)

= ei
2⇡
2q Z

qB(2)
= dB(1) ,

I
dB(1) 2 2⇡Z =)

I
B(2) 2 2⇡Z

q

2qA(1)
= dA(0) ,

I
dA(0) 2 2⇡Z =)

I
A(1) 2 2⇡Z

2q

�(x) : M2 ! {0, 1, ..., q � 1}

�Zd�
2q
A(1)

� = d� ,

I
d� 2 2⇡Z

– 2 –

Hamiltonian=0

�

a(1)

a

iSIR = i
q

2⇡

Z

Rt

dt � ȧ
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us that this is taken with the assumed normalization of the trace. The gauge transfor-
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both variables are angular (      period inherited from compactness)
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(+                               , trivial as operators)



Extra technical slide I.IV: Discrete anomalies and anomaly inflow from “the bulk”

broken phase long distance theory and anomaly matching:

continuum description: a Zq topological BF theory 0-form     and 1-form        both compact:    �

a(1)

S3d CS = i
2⇡

q

Z

M3(@M3=M2)

2qA(1)
�

2⇡
^ qB(2)

C

2⇡

ei
H
A(1)

= ei
2⇡
2q Z

qB(2)
= dB(1) ,

I
dB(1) 2 2⇡Z =)

I
B(2) 2 2⇡Z

q

2qA(1)
= dA(0) ,

I
dA(0) 2 2⇡Z =)

I
A(1) 2 2⇡Z

2q

�(x) : M2 ! {0, 1, ..., q � 1}

�Zd�
2q
A(1)

� = d� ,

I
d� 2 2⇡Z

Zd�
2q : Z ! ei

2⇡
q Z

eSCS

Z ⇠ e
i 2⇡q

R

M2

� qB(2)

2⇡

ZC
q

Zd�
2q : � ! �+ 1(mod q)

I
q�(1)

2⇡
|M2 2 Z

�ZC
q
a(1) =

q�(1)

2⇡
, s.t. ei

2⇡
q

H
a(1) ! ei

2⇡
q

H
�(1)

ei
2⇡
q

H
a(1)

– 2 –

�

a(1)

S3d CS = i
2⇡

q

Z

M3(@M3=M2)

2qA(1)
�

2⇡
^ qB(2)

C

2⇡

ei
H
A(1)

= ei
2⇡
2q Z

qB(2)
= dB(1) ,

I
dB(1) 2 2⇡Z =)

I
B(2) 2 2⇡Z

q

2qA(1)
= dA(0) ,

I
dA(0) 2 2⇡Z =)

I
A(1) 2 2⇡Z

2q

�(x) : M2 ! {0, 1, ..., q � 1}

�Zd�
2q
A(1)

� = d� ,

I
d� 2 2⇡Z

Zd�
2q : Z ! ei

2⇡
q Z

eSCS

Z ⇠ e
i 2⇡q

R

M2

� qB(2)

2⇡

ZC
q

Zd�
2q : � ! �+ 1(mod q)

I
q�(1)

2⇡
|M2 2 Z

�ZC
q
a(1) =

q�(1)

2⇡
, s.t. ei

2⇡
q

H
a(1) ! ei

2⇡
q

H
�(1)

ei
2⇡
q

H
a(1)

– 2 –

�

a(1)

S3d CS = i
2⇡

q

Z

M3(@M3=M2)

2qA(1)
�

2⇡
^ qB(2)

C

2⇡

iSIR = i
q

2⇡

Z

Rt⇥S1

� da(1)

ei
H
A(1)

= ei
2⇡
2q Z

qB(2)
= dB(1) ,

I
dB(1) 2 2⇡Z =)

I
B(2) 2 2⇡Z

q

2qA(1)
= dA(0) ,

I
dA(0) 2 2⇡Z =)

I
A(1) 2 2⇡Z

2q

�(x) : M2 ! {0, 1, ..., q � 1}

�Zd�
2q
A(1)

� = d� ,

I
d� 2 2⇡Z

Zd�
2q : Z ! ei

2⇡
q Z

eSCS

Z ⇠ e
i 2⇡q

R

M2

� qB(2)

2⇡

ZC
q

Zd�
2q : � ! �+ 1(mod q)

I
q�(1)

2⇡
|M2 2 Z

– 2 –

�

a(1)

S3d CS = i
2⇡

q

Z

M3(@M3=M2)

2qA(1)
�

2⇡
^ qB(2)

C

2⇡

� ⌘ �+ 2⇡

I
da(1) = 2⇡Z

iSIR = i
q

2⇡

Z

Rt⇥S1

� da(1)

ei
H
A(1)

= ei
2⇡
2q Z

qB(2)
= dB(1) ,

I
dB(1) 2 2⇡Z =)

I
B(2) 2 2⇡Z

q

2qA(1)
= dA(0) ,

I
dA(0) 2 2⇡Z =)

I
A(1) 2 2⇡Z

2q

�(x) : M2 ! {0, 1, ..., q � 1}

�Zd�
2q
A(1)

� = d� ,

I
d� 2 2⇡Z

Zd�
2q : Z ! ei

2⇡
q Z

eSCS

Z ⇠ e
i 2⇡q

R

M2

� qB(2)

2⇡

ZC
q

– 2 –

�

a(1)

S3d CS = i
2⇡

q

Z

M3(@M3=M2)

2qA(1)
�

2⇡
^ qB(2)

C

2⇡

� ⌘ �+ 2⇡

I
da(1) = 2⇡Z

iSIR = i
q

2⇡

Z

Rt⇥S1

� da(1)

ei
H
A(1)

= ei
2⇡
2q Z

qB(2)
= dB(1) ,

I
dB(1) 2 2⇡Z =)

I
B(2) 2 2⇡Z

q

2qA(1)
= dA(0) ,

I
dA(0) 2 2⇡Z =)

I
A(1) 2 2⇡Z

2q

�(x) : M2 ! {0, 1, ..., q � 1}

�Zd�
2q
A(1)

� = d� ,

I
d� 2 2⇡Z

Zd�
2q : Z ! ei

2⇡
q Z

eSCS

Z ⇠ e
i 2⇡q

R

M2

� qB(2)

2⇡

ZC
q

– 2 –

0-form global Z_q:

�

a(1)

S3d CS = i
2⇡

q

Z

M3(@M3=M2)

2qA(1)
�

2⇡
^ qB(2)

C

2⇡

� ⌘ �+ 2⇡

I
da(1) = 2⇡Z

iSIR = i
q

2⇡

Z

Rt⇥S1

� da(1)

Zd�
2q : � ! �+

2⇡

q

ei
H
A(1)

= ei
2⇡
2q Z

qB(2)
= dB(1) ,

I
dB(1) 2 2⇡Z =)

I
B(2) 2 2⇡Z

q

2qA(1)
= dA(0) ,

I
dA(0) 2 2⇡Z =)

I
A(1) 2 2⇡Z

2q

�(x) : M2 ! {0, 1, ..., q � 1}

�Zd�
2q
A(1)

� = d� ,

I
d� 2 2⇡Z

Zd�
2q : Z ! ei

2⇡
q Z

eSCS

Z ⇠ e
i 2⇡q

R

M2

� qB(2)

2⇡

– 2 –

EOMs imply both fields are flat (topological). On              fix a_0=0 gauge (Gauss law=constant     on S^1).           
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both variables are angular (      period inherited from compactness)
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anomaly matching!
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: IR action with gauged 1-form center
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then:
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1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.
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( )recall

anomaly matching!recalling

(the anomaly matching part can be done rather nicely on the lattice, too)

q degenerate states = the q vacua, |P>, of the SM
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quantize:
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(+                               , trivial as operators)



Extra technical slide II.I: Schwinger model discrete-symmetries operator algebra

To introduce some of the notation of [7], the holonomy of the gauge field around the

spatial circle is
H
Axdx ⌘ cL, with cL shifted by 2⇡ under large gauge transformations G.

The action of the center symmetry (2.3) on the holonomy cL is

ZC
q : cL ! cL+

2⇡

q
. (2.4)

The Dirac sea states obeying Gauss’ law can be found as was briefly outlined above. The

end result is that the states are labeled by an integer n and we shall simply denote them by

|ni, not displaying their dependence on cL; the explicit form is in [7]. The Dirac sea state

|ni is the one where the states of all left moving particles of (gauge non-invariant) momenta


2⇡(n�1)

L are occupied and the rest are empty, and, simultaneously, all states of the right

moving particles of momenta �
2⇡n
L are occupied. This left vs. right moving “Fermi level”

matching ensures validity of the Gauss’ law [6, 7].

We now list the properties of the Dirac sea states |ni that matter to us. See [7] for precise

definitions and derivations. We notice that q > 1 is easily incorporated and is seen to lead to

important new points, see items 3, 5, and 6 below:

1. The di↵erent |ni states are orthogonal; their norm can be defined as unity, hn|mi = �mn.
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chiral transforms

4. The Dirac sea states |ni are eigenstates of the fermion Hamiltonian H
F in the Ax

background and their energies are

E
F
n =

2⇡

L


Q

2
5

4
�

1

12

�
=

2⇡

L

"
1

4

✓
2n�

qcL

⇡

◆2

�
1

12

#
. (2.10)

(Here and elsewhere we take the liberty to denote operators and eigenvalues with the

same letter, hoping that this does not cause undue confusion.)

As eigenstates of the total Hamiltonian, however, the |ni states, supplemented by a

holonomy wave function [6, 7], are degenerate; one way to see this is by noting that

the holonomy fluctuations cL obtain the same “mass” from the fermion vacuum energy

(2.10) in all |ni Dirac sea states.7

5. Under large gauge transformations G, shifting cL by 2⇡, the |ni states are not invariant

but transform into each other as

G|ni = |n+ qi . (2.11)

6. The center symmetry ZC
q , a

2⇡
q shift of cL (2.4), acts on the |ni states as

Yq|ni = |n+ 1i , (2.12)

where we introduced the Yq operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [6, 7], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience, we

introduce a ✓ parameter (it is unobservable in the massless theory [6]) and define the linear

combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘

X

n2Z
e
i(k+qn)✓

|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e
�iq✓. We note

also that h✓0, k0|✓, ki = �k,k0(mod q) �(✓ � ✓
0(mod2⇡

q )), with �(✓ � ✓
0(mod2⇡

q )) =
P
m2Z

e
iqm(✓�✓0).

For further use (cluster decomposition, see below), we also define the Zq Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):

|P, ✓i ⌘
1
p
q

q�1X

k=0

!
kP
q |✓, ki, P = 0, . . . , q � 1,

hP
0
, ✓

0
|P, ✓i = �P,P 0(mod q) �(✓ � ✓

0(mod
2⇡

q
)). (2.14)

7Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language

used here involves a Bogolyubov transformation [7], but the details will not be relevant for us.
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under large gauge transforms n shifts by q units 

center symmetry shifts n by 1 units 

but  then, clearly:  



Extra technical slide II.II: Schwinger model discrete-symmetries operator algebra

is invariant under large gauge transforms: 
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The Dirac sea states obeying Gauss’ law can be found as was briefly outlined above. The

end result is that the states are labeled by an integer n and we shall simply denote them by

|ni, not displaying their dependence on cL; the explicit form is in [7]. The Dirac sea state

|ni is the one where the states of all left moving particles of (gauge non-invariant) momenta


2⇡(n�1)

L are occupied and the rest are empty, and, simultaneously, all states of the right

moving particles of momenta �
2⇡n
L are occupied. This left vs. right moving “Fermi level”

matching ensures validity of the Gauss’ law [6, 7].

We now list the properties of the Dirac sea states |ni that matter to us. See [7] for precise

definitions and derivations. We notice that q > 1 is easily incorporated and is seen to lead to

important new points, see items 3, 5, and 6 below:

1. The di↵erent |ni states are orthogonal; their norm can be defined as unity, hn|mi = �mn.

2. Their U(1)V charge vanishes, but the chiral (or axial U(1)A, recall (2.2)) charge Q5, is

nonzero and depends on the holonomy of the gauge field

Q5|ni = |ni

✓
2n�

qcL

⇡

◆
. (2.5)

The gauge field-dependence of the axial charge Q5 is a reflection of the chiral anomaly.

One can define a gauge-field independent Q̃5 with integer eigenvalues

Q̃5 ⌘ Q5 +
qcL

⇡
, (2.6)

but this operator shifts under large gauge transformations

G : Q̃5 ! Q̃5 + 2q . (2.7)

3. It is clear, however, that the operator

X2q ⌘ e
i 2⇡2q Q̃5 (2.8)

is invariant under large gauge transformations. It generates the Zd�
2q anomaly free sub-

group of the chiral transformations (2.2) and acts on the |ni states as

X2q|ni = |ni !
n
q (!q ⌘ e

i 2⇡q ). (2.9)
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4. The Dirac sea states |ni are eigenstates of the fermion Hamiltonian H
F in the Ax

background and their energies are
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(Here and elsewhere we take the liberty to denote operators and eigenvalues with the

same letter, hoping that this does not cause undue confusion.)

As eigenstates of the total Hamiltonian, however, the |ni states, supplemented by a

holonomy wave function [6, 7], are degenerate; one way to see this is by noting that

the holonomy fluctuations cL obtain the same “mass” from the fermion vacuum energy

(2.10) in all |ni Dirac sea states.7

5. Under large gauge transformations G, shifting cL by 2⇡, the |ni states are not invariant

but transform into each other as

G|ni = |n+ qi . (2.11)

6. The center symmetry ZC
q , a

2⇡
q shift of cL (2.4), acts on the |ni states as

Yq|ni = |n+ 1i , (2.12)

where we introduced the Yq operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [6, 7], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience, we

introduce a ✓ parameter (it is unobservable in the massless theory [6]) and define the linear

combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘

X

n2Z
e
i(k+qn)✓

|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e
�iq✓. We note

also that h✓0, k0|✓, ki = �k,k0(mod q) �(✓ � ✓
0(mod2⇡

q )), with �(✓ � ✓
0(mod2⇡

q )) =
P
m2Z

e
iqm(✓�✓0).

For further use (cluster decomposition, see below), we also define the Zq Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):

|P, ✓i ⌘
1
p
q

q�1X

k=0

!
kP
q |✓, ki, P = 0, . . . , q � 1,

hP
0
, ✓

0
|P, ✓i = �P,P 0(mod q) �(✓ � ✓

0(mod
2⇡

q
)). (2.14)

7Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language

used here involves a Bogolyubov transformation [7], but the details will not be relevant for us.
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Clearly, the |P, ✓i states are also eigenstates of G with the same eigenvalue e
�iq✓. Further,

(2.14), (2.13) and (2.9) imply that under the discrete chiral symmetry Zd�
2q the |P i states

transform cyclically into each other

X2q |P, ✓i = |P + 1(mod q), ✓i , (2.15)

while (2.12) implies that they are eigenstates of the ZC
q center symmetry

Yq |P, ✓i = |P, ✓i !
�P
q e

�i✓
. (2.16)

Further, following the discussion after (2.10), the |P, ✓i states are degenerate. The action of

X2q and Yq found above, (2.15), (2.16), implies that, when acting on the |P, ✓i states,8 they

do not commute but obey the algebra

X2q Yq = !q Yq X2q (!q = e
i 2⇡q ). (2.17)

This algebra is familiar from the ’t Hooft commutation relation between Wilson and ’t Hooft

loop operators in SU(q) gauge theories [20] (the q-dimensional representation on the |P, ✓i

states, (2.15), (2.16), was also found there). Here, however, one of the operators Yq, being a

center-symmetry generator, is indeed a (lower dimensional version of a) ’t Hooft loop operator,

but the other, X2q, is not a Wilson loop but a generator of discrete chiral transformations.

The ’t Hooft algebra (2.17) implies that even though the symmetries generated by X2q

and Yq commute classically, the discrete chiral and center symmetries Zd�
2q and ZC

q do not

commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.9

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki

ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄+(x) �(x). The fermion bilinear has charge �2 under the Zd�
2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:

hn
0
|�(x)|ni = �n0,n+1 C

0
e
�i 2⇡x

L , where �(x) ⌘  ̄+(x) �(x). (2.18)

The constant C 0 was computed in [7] in the Hamiltonian formalism for any L and was shown

to not vanish, including as L ! 1, where C
0
⇠ e. It is also clear that (2.18) is consistent

with the nature of the |ni states explained earlier. Using the matrix elements (2.18) it

is straightforward to show that �(x) has nonzero matrix elements between di↵erent |✓, ki

states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis

hP
0
, ✓|�(x)|P, ✓i = e

�i✓
!
�P
q �P,P 0C

0
, (2.19)

8A slightly more careful study of the definitions of the operators from [7] shows that the algebra (2.17)

holds in the entire Hilbert space.
9Following [5], we call the appearance of !q in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !q commutes with X2q and Yq.
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Iso-Murayama ’90
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the famous q-dim representation of the ’t Hooft algebra



Extra technical slide II.III: Schwinger model discrete-symmetries operator algebra
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the famous q-dim representation of the ’t Hooft algebra

Discrete chiral symmetry:

Breaking of center symmetry: 

perimeter law for q=1 Wilson loop - all charges are screened in the massless Schwinger 
model due to vacuum polarization. 
Screening length at infinite L is ~ 1/e. Iso-Murayama ’90

clearly broken, q-vacua (1st relation above). 

This establishes all claims in the 2d part of the talk.



Extra technical slide III: further properties of charge-q Schwinger model
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commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.9

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki

ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄+(x) �(x). The fermion bilinear has charge �2 under the Zd�
2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:

hn
0
|�(x)|ni = �n0,n+1 C

0
e
�i 2⇡x

L , where �(x) ⌘  ̄+(x) �(x). (2.18)

The constant C 0 was computed in [7] in the Hamiltonian formalism for any L and was shown

to not vanish, including as L ! 1, where C
0
⇠ e. It is also clear that (2.18) is consistent

with the nature of the |ni states explained earlier. Using the matrix elements (2.18) it

is straightforward to show that �(x) has nonzero matrix elements between di↵erent |✓, ki

states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis

hP
0
, ✓|�(x)|P, ✓i = e

�i✓
!
�P
q �P,P 0C

0
, (2.19)

8A slightly more careful study of the definitions of the operators from [7] shows that the algebra (2.17)

holds in the entire Hilbert space.
9Following [5], we call the appearance of !q in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !q commutes with X2q and Yq.
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Center symmetry and chiral symmetries broken, at any T in the 2d charge-q model: 

- at T >> qe, condensate still nonzero, exponential e^(- T/qe) falloff 
 
- at T>> qe, A_0 component has a center-breaking vev, “GPY” potential

There are no dynamical DWs between the |P> vacua (these would be new particles in this 1d world);
a q=1 Wilson static loop instead serves the purpose (**)

The story flows into the theta=Pi pure YM upon adding mass (with right phase). 

[see also older work by Hansson, Nielsen, Zahed ’94, 
no mention of chiral symmetry or anomalies, but breaking of Z_q center discussed]

[(**) also matches with discussion of Gaiotto et al ’17]

Using Shifman/Smilga ’94, one can see, in eL<<1 weak coupling semiclassical limit, quite explicitly 
fractional-I/fractional-I* pairs (“fractons”) contributing to bilinear condensate 
essentially:                                                          + clustering: 

�ZC
q
B2

C = d�(1) ,

I
d�(1) 2 2⇡Z

ei
H
B(2)

= ei
2⇡
q Z

�ZC
q
S3dCS = i

2⇡

q
Z

I
qA(1)

2⇡

S2dCS = i
2⇡

q

I

�2;@�2=�DW

qB(2)

2⇡

�ZC
q
S2dCS = i

2⇡

q

I

�DW

q�(1)

2⇡
= i

2⇡

q

ZC
q : Z ! e

i 2⇡q
R

M2

d�^ q�(1)

2⇡

Z = e
i 2⇡q

R

�DW

d�

h ̄+ �(x)  ̄� +(0)i
��
x!1 6= 0

ei
H
a ! ei

H
�(1)

ei
H
a
= ei

2⇡
q ei

H
a

�Zd�
2q
S3dCS = i

2⇡

q

2q �|M2

2⇡

Z

@M3=M2

qB(2)
C

2⇡
2 i

2⇡

q
Z

1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

The field strength is the 2-form:

F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)
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1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.
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+ eL<<1 weak coupling:

fracton/anti-fracton (each of charge |1/q|) saddle point (x-apart)

1

2

3

4



Extra technical slide IV: nonabelian/multiflavor case - richness…

center breaking vacua for SU(N) QCD(adj) labeled by w_0=0, w_1,…w_r (r=N-1, w_k=k-th fund. weight)

DWs labeled by:  k, k=1,…,N-1: w_0 —> w_k

S3d CS = i
2⇡

q

Z

M3(@M3=M2)

2qA(1)
�

2⇡
^ qB(2)

C

2⇡

ei� eia = ei
2⇡
q eia ei�

[�, a] = �i
2⇡

q

fermion SU(N � k)gauge SU(k)gauge U(1)gauge U(1)A,global

�+ ⇤ ⇤ N 1

�� ⇤ ⇤ -N 1

� ⌘ �+ 2⇡

I
da(1) = 2⇡Z

I
d�(0)

iSIR = i
q

2⇡

Z
� (da(1) � B(2)

)

�Zd�
2q
iSIR = i

Z

Rt⇥S1

(da(1) � B(2)
) = i

2⇡

q
Z

Zd�
2q : � ! �+

2⇡

q

ei
H
A(1)

= ei
2⇡
2q Z

qB(2)
= dB(1) ,

I
dB(1) 2 2⇡Z =)

I
B(2) 2 2⇡Z

q

2qA(1)
= dA(0) ,

I
dA(0) 2 2⇡Z =)

I
A(1) 2 2⇡Z

2q

�(x) : M2 ! {0, 1, ..., q � 1}
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 gauge group on k-wall  

matter

There is a Z_N 1-form center symmetry on the 2d k-wall (min. U(1) charge is 1)

Again, inherits bulk chiral/center ’t Hooft anomaly… 

S3d CS = i
2⇡

q

Z

M3(@M3=M2)

2qA(1)
�

2⇡
^ qB(2)

C

2⇡

Z2N(N�k)k

ZN�k ⇥ Zk

ei� eia = ei
2⇡
q eia ei�

[�, a] = �i
2⇡

q

h�+��i 6= 0

fermion SU(N � k)gauge SU(k)gauge U(1)gauge U(1)A,global

�+ ⇤ ⇤ N 1

�� ⇤ ⇤ -N 1

� ⌘ �+ 2⇡

I
da(1) = 2⇡Z

I
d�(0)

iSIR = i
q

2⇡

Z
� (da(1) � B(2)

)

�Zd�
2q
iSIR = i

Z

Rt⇥S1

(da(1) � B(2)
) = i

2⇡

q
Z

Zd�
2q : � ! �+

2⇡

q

ei
H
A(1)

= ei
2⇡
2q Z

qB(2)
= dB(1) ,

I
dB(1) 2 2⇡Z =)

I
B(2) 2 2⇡Z

q

2qA(1)
= dA(0) ,

I
dA(0) 2 2⇡Z =)

I
A(1) 2 2⇡Z

2q
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Presumably saturated on the wall  by

but remains to be shown… 

nf dependence?

 (for nf=1, as in the low-T 4d bulk) 

anomalous

[…centers of worldvolume gauge groups, 
  + emergent 1-form 2d worldvolume center…]

[2d-4d relations…?]


