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Abstract

We discuss possible definitions of the Faddeev-Popov matrix for the

minimal linear covariant gauge on the lattice and present preliminary

results for the ghost propagator.
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Abstract

We discuss possible definitions of the Faddeev-Popov matrix for the

minimal linear covariant gauge on the lattice and present preliminary

results for the ghost propagator.

Why study the linear covariant gauge?
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Abstract

We discuss possible definitions of the Faddeev-Popov matrix for the

minimal linear covariant gauge on the lattice and present preliminary

results for the ghost propagator.

Why study the linear covariant gauge?

Study Green’s functions in the IR limit of Yang-Mills theories in

order to understand low-energy properties of the theory.

Since they depend on the gauge, consider different gauges

(Landau gauge, Coulomb gauge, λ-gauge, MAG, etc.).

Extend the Gribov-Zwanziger approach to the linear covariant

gauge.

Linear covariant gauge, very popular in continuum studies,

proved quite hostile to the lattice approach.
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Some Analytic Results

What do we expect for linear covariant gauge?
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Some Analytic Results

What do we expect for linear covariant gauge?

Transverse component of the gluon propagator is similar to the Landau case,

with D(0) decreasing when ξ increases (F. Siringo, PRD90 2014, variational

method; M.A.L. Capri et al., EPJC75 2015, Gribov-Zwanziger setup; A.C.

Aguilar et al., PRD91 2015, SDE of the ghost prop. + Nielsen identitiies).
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Some Analytic Results

What do we expect for linear covariant gauge?

Transverse component of the gluon propagator is similar to the Landau case,

with D(0) decreasing when ξ increases (F. Siringo, PRD90 2014, variational

method; M.A.L. Capri et al., EPJC75 2015, Gribov-Zwanziger setup; A.C.

Aguilar et al., PRD91 2015, SDE of the ghost prop. + Nielsen identitiies).

Ghost dressing function is flat in the IR limit (F. Siringo, PRD90 2014,

variational method).

Ghost dressing function in the IR limit is decreasing as ξ increases (M. Huber,

PRD91 2015, coupled system of DSEs).

Infrared-finite ghost propagator i.e. ghost dressing function goes to 0 in the IR

limit, (A.C. Aguilar et al., PRD77 2008 and PRD91 2015, SDE of the ghost prop.

+ Nielsen identitiies; J. Serreau et al., PRD89 2014, averaging over Gribov

copies, quartic ghost self-interaction term; M.A.L. Capri et al., PRD93 2016,

PRD93 2016, Gribov-Zwanziger setup).
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Linear Covariant Gauge on the Lattice

We want to impose the gauge condition ∂µA
b
µ(x) = Λb(x), for real-

valued functions Λb(x), generated using a Gaussian distribution with

width
√
ξ.
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Linear Covariant Gauge on the Lattice

We want to impose the gauge condition ∂µA
b
µ(x) = Λb(x), for real-

valued functions Λb(x), generated using a Gaussian distribution with

width
√
ξ.

Landau gauge [Λb(x) = 0] is obtained on the lattice by minimizing the functional

ELG[Ug ] = −ℜTr
∑

µ,x

g(x)Uµ(x)g
†(x+ eµ) .

The set of local minima defines the first Gribov region Ω.
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Linear Covariant Gauge on the Lattice

We want to impose the gauge condition ∂µA
b
µ(x) = Λb(x), for real-

valued functions Λb(x), generated using a Gaussian distribution with

width
√
ξ.

Landau gauge [Λb(x) = 0] is obtained on the lattice by minimizing the functional

ELG[Ug ] = −ℜTr
∑

µ,x

g(x)Uµ(x)g
†(x+ eµ) .

The set of local minima defines the first Gribov region Ω.

From the second variation of ELG[Ug ] we define the symmetric, semi-positive definite

Faddeev-Popov operator

Mbc(x, y) ≡

d
∑

µ=1

{

Γbc
µ (x)

[

δx, y − δx+eµ, y

]

+ Γbc
µ (x− eµ)

[

δx, y − δx−eµ, y

]

−

N2

c
−1

∑

e=1

fbec
[

Ae
µ(x− eµ/2) δx−eµ, y − Ae

µ(x+ eµ/2) δx+eµ, y

]

}

.
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The New Minimizing Functional

The lattice linear covariant gauge condition can be obtained by min-

imizing the functional (A.C., T. Mendes and E.M.S. Santos, PRL103

2009)

ELCG[U
g, g,Λ] = ELG[U

g] + ℜTr
∑

x

i g(x) Λ(x) .
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The New Minimizing Functional

The lattice linear covariant gauge condition can be obtained by min-

imizing the functional (A.C., T. Mendes and E.M.S. Santos, PRL103

2009)

ELCG[U
g, g,Λ] = ELG[U

g] + ℜTr
∑

x

i g(x) Λ(x) .

One can interpret the Landau-gauge functional ELG[U
g] as a spin-

glass Hamiltonian for the spin variables g(x) with a random interac-

tion given by Uµ(x). Then, the extra term corresponds to a random

external magnetic field Λ(x). Note: the functional ELCG[U
g, g,Λ] is

linear in the gauge transformation {g(x)}.
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The New Minimizing Functional

The lattice linear covariant gauge condition can be obtained by min-

imizing the functional (A.C., T. Mendes and E.M.S. Santos, PRL103

2009)

ELCG[U
g, g,Λ] = ELG[U

g] + ℜTr
∑

x

i g(x) Λ(x) .

One can interpret the Landau-gauge functional ELG[U
g] as a spin-

glass Hamiltonian for the spin variables g(x) with a random interac-

tion given by Uµ(x). Then, the extra term corresponds to a random

external magnetic field Λ(x). Note: the functional ELCG[U
g, g,Λ] is

linear in the gauge transformation {g(x)}.

By considering a one-parameter subgroup, it is easy to check that

the stationarity condition implies the lattice linear covariant gauge

condition ∇·Ab(x) =
∑

µ Ab
µ(x+eµ/2) − Ab

µ(x−eµ/2) = Λb(x).
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Numerical Gauge Fixing

Conceptual problem: using the standard compact discretization, the

gluon field is bounded while the four-divergence of the gluon field

satisfies a Gaussian distribution, i.e. it is unbounded. This can give

rise to convergence problems when a numerical implementation of

the linear covariant gauge is attempted (A.C. et al., PRL103 2009,

PoS QCD-TNT09, PoS FACESQCD 2010, AIP Conf.Proc.1354

2011; P. Bicudo et al., PRD92 2015, PoS LATTICE2015).
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Numerical Gauge Fixing

Conceptual problem: using the standard compact discretization, the

gluon field is bounded while the four-divergence of the gluon field

satisfies a Gaussian distribution, i.e. it is unbounded. This can give

rise to convergence problems when a numerical implementation of

the linear covariant gauge is attempted (A.C. et al., PRL103 2009,

PoS QCD-TNT09, PoS FACESQCD 2010, AIP Conf.Proc.1354

2011; P. Bicudo et al., PRD92 2015, PoS LATTICE2015).

Moreover, the dimensionless gauge-fixing condition is given by

a2g0∂µA
b
µ(x) = a2g0Λ

b(x), in a generic d-dimensional space. Since

β = 2Nc/(a
4−dg20) in the SU(Nc) case, we have that

β/(2Nc)

2ξ

∑

x,b

[

a2g0Λ
b(x)

]2 → 1

2ξ

∫

ddx
∑

b

[

Λb(x)
]2

in formal continuum limit a → 0.
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Longitudinal Gluon Propagator

We have checked that

p2Dl(p
2) = ξ

as predicted by perturbation the-

ory. In the SU(2) case, for V =

164, β = 4 and ξ = 0.5 a fit a/pb

for Dl(p
2) gives a = 0.502(5) and

b = 2.01(1) with a χ2/dof = 1.1.

(A.C. et al., PRL103 2009, PoS QCD-TNT09; in agreement with

P. Bicudo et al., PRD92 2015, PoS LATTICE2015).

Confinement XIII, Maynooth U. 3 August 2018



Transverse Gluon Propagator (I)
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p

Transverse gluon propagator

Dt(p
2) [using the stereographic

projection in the SU(2) case] as

a function of the momentum p

(both in physical units) for the

lattice volume V = 164, β = 2.3

and ξ = 0 (+), 0.05 (×), 0.1 (∗)
(A.C. et al., PRL103 2009, PoS

QCD-TNT09).

Dt(0) decreases as ξ increases (in agreement with L. Giusti et

al. NP Proc.Supp.94 2001 and P. Bicudo et al., PRD92 2015,

PoS LATTICE2015).
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Transverse Gluon Propagator (II)
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Transverse gluon propagator

Dt(p
2) [using the stereographic

projection in the SU(2) case]

as a function of the momentum

p (both in physical units) for

ξ = 0.05, β = 2.3, and the lattice

volumes V = 84 (+), 164 (×),

244 (∗) (A.C. et al., PRL103

2009, PoS QCD-TNT09).

Dt(0) decreases as V increases (as in Landau gauge).
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Ghost Sector (I)

Can we extend to the linear covariant gauge the lattice

Landau-gauge approach? Can we define the first Gribov re-

gion Ω?
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Ghost Sector (I)

Can we extend to the linear covariant gauge the lattice

Landau-gauge approach? Can we define the first Gribov re-

gion Ω?

In the continuum we have three possible setups:

1) complex ghost fields c = c†: the FP matrix −∂ · Dab and

the Lagrangian density are not Hermitian;

2) complex ghost fields c = c†: a symmetric FP matrix −(∂ ·
Dab+Dab ·∂)/2, plus a quartic ghost self-interaction term;

3) real independent ghost/anti-ghost fields u, iv: the “effec-

tive” FP matrix i
2







0 − ∂ ·Dbc

Dbc · ∂ 0






is Hermitian.
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Second Variation of ELCG[U
g, g,Λ]

The second variation of the term i g(x) Λ(x) is purely imagi-

nary and it does not contribute to the Faddeev-Popov matrix.
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Second Variation of ELCG[U
g, g,Λ]

The second variation of the term i g(x) Λ(x) is purely imagi-

nary and it does not contribute to the Faddeev-Popov matrix.

The second variation of the (Landau-gauge) term ELG[Ug] can

only give the symmetric Landau FP matrix M!
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Second Variation of ELCG[U
g, g,Λ]

The second variation of the term i g(x) Λ(x) is purely imagi-

nary and it does not contribute to the Faddeev-Popov matrix.

The second variation of the (Landau-gauge) term ELG[Ug] can

only give the symmetric Landau FP matrix M!

One can write the lattice Landau FP matrix as

M = − 1

2

[

∇(−)
µ Dµ + DT

µ

(

∇(−)
µ

)T
]

.

This would correspond, in the continuum, to case 2).
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Second Variation of ELCG[U
g, g,Λ]

The second variation of the term i g(x) Λ(x) is purely imagi-

nary and it does not contribute to the Faddeev-Popov matrix.

The second variation of the (Landau-gauge) term ELG[Ug] can

only give the symmetric Landau FP matrix M!

One can write the lattice Landau FP matrix as

M = − 1

2

[

∇(−)
µ Dµ + DT

µ

(

∇(−)
µ

)T
]

.

This would correspond, in the continuum, to case 2).

But, how do we simulate the quartic ghost self-interaction

term?
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Second Variation of ELCG[U
g, g,Λ]

Can we obtain the continuum case 1)? The matrix

Mbc
+ (x, y) ≡ Mbc(x, y) +

N2

c
−1

∑

e=1

f bec Λe(x) δx, y

is a lattice discretization of the continuum operator − ∂ ·Dbc.
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Second Variation of ELCG[U
g, g,Λ]

Can we obtain the continuum case 1)? The matrix

Mbc
+ (x, y) ≡ Mbc(x, y) +

N2

c
−1

∑

e=1

f bec Λe(x) δx, y

is a lattice discretization of the continuum operator − ∂ ·Dbc.

The extra term is skew-symmetric, under the simultaneous ex-

changes b ↔ c and x ↔ y, and it cannot be obtained from a second

variation!
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is a lattice discretization of the continuum operator − ∂ ·Dbc.
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changes b ↔ c and x ↔ y, and it cannot be obtained from a second

variation! It should be added by hand!
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Second Variation of ELCG[U
g, g,Λ]

Can we obtain the continuum case 1)? The matrix

Mbc
+ (x, y) ≡ Mbc(x, y) +

N2

c
−1

∑

e=1

f bec Λe(x) δx, y

is a lattice discretization of the continuum operator − ∂ ·Dbc.

The extra term is skew-symmetric, under the simultaneous ex-

changes b ↔ c and x ↔ y, and it cannot be obtained from a second

variation! It should be added by hand!

Equivalently, we could add to the minimizing functional ELCG[U ; Λ;h],

the null term −ℜTr
∑

x i [ g(x), Λ(x) ] g(x)†. Indeed, by expanding

to second order the above expression, we find (by a convenient re-

ordering of the null terms) the term f bec Λe(x) δx, y.
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Second Variation of ELCG[U
g, g,Λ]

Can we obtain the continuum case 3)? The “effective” FP matrix

(without the factor i) 1

2





0 − ∂ ·Dbc

Dbc · ∂ 0



 is skew-symmetric

and it cannot be obtained from a second variation!
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Second Variation of ELCG[U
g, g,Λ]

Can we obtain the continuum case 3)? The “effective” FP matrix

(without the factor i) 1

2





0 − ∂ ·Dbc

Dbc · ∂ 0



 is skew-symmetric

and it cannot be obtained from a second variation!

Should we just consider a proper lattice discretization of this “effec-

tive” FP matrix?
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Second Variation of ELCG[U
g, g,Λ]

Can we obtain the continuum case 3)? The “effective” FP matrix

(without the factor i) 1

2





0 − ∂ ·Dbc

Dbc · ∂ 0



 is skew-symmetric

and it cannot be obtained from a second variation!

Should we just consider a proper lattice discretization of this “effec-

tive” FP matrix?

We can also consider the bilinear form
∑

b,c,x,y γ
b
1(x)Mbc(x, y)γc

2(y)

and extend it to the complex case [γb
1(x), γ

b
2(x) ∈ C]. Then, the cor-

responding sesquilinear form is a positive semi-definite Hermitian

form. Moreover, its imaginary part is skew-symmetric and gives us

a natural way of obtaining the above FP matrix.
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Spectrum of the FP Matrices

The three real FP matrices considered have a rather different spec-

trum.
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Spectrum of the FP Matrices

The three real FP matrices considered have a rather different spec-

trum.

1) The FP matrix M+ has complex-conjugate eigenvalues (and

eigenvectors) with a non-negative real part.
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Spectrum of the FP Matrices

The three real FP matrices considered have a rather different spec-

trum.

1) The FP matrix M+ has complex-conjugate eigenvalues (and

eigenvectors) with a non-negative real part.

2) The FP matrix M has real non-negative eigenvalues and real

eigenvectors.
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Spectrum of the FP Matrices

The three real FP matrices considered have a rather different spec-

trum.

1) The FP matrix M+ has complex-conjugate eigenvalues (and

eigenvectors) with a non-negative real part.

2) The FP matrix M has real non-negative eigenvalues and real

eigenvectors.

3) Since the FP matrix 1

2





0 − ∂ ·Dbc

Dbc · ∂ 0



 is skew-

symmetric, its eigenvalues are complex-conjugate and purely

imaginary, and they are related to the SVD of M+, i.e. to the

eigenvalues of MT
+M+.
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Numerical Simulations: Ghost Propagator

We have done some preliminary tests, evaluating the ghost

propagator for the continuum case 1), i.e. with the FP matrix

Mbc
+(x, y) = Mbc(x, y) +

∑

e f
becΛe(x)δx, y.
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Numerical Simulations: Ghost Propagator

We have done some preliminary tests, evaluating the ghost

propagator for the continuum case 1), i.e. with the FP matrix

Mbc
+(x, y) = Mbc(x, y) +

∑

e f
becΛe(x)δx, y.

Since the matrix is real and not symmetic, we cannot use

the CG algorithm, as in Landau gauge. We are using the

bi-conjugate gradient stabilized algorithm for the numerical in-

version [P. Silva is using the generalized conjugate residual for

the SU(3) case].
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Numerical Simulations: Ghost Propagator

We have done some preliminary tests, evaluating the ghost

propagator for the continuum case 1), i.e. with the FP matrix

Mbc
+(x, y) = Mbc(x, y) +

∑

e f
becΛe(x)δx, y.

Since the matrix is real and not symmetic, we cannot use

the CG algorithm, as in Landau gauge. We are using the

bi-conjugate gradient stabilized algorithm for the numerical in-

version [P. Silva is using the generalized conjugate residual for

the SU(3) case].

For the moment, SU(2) gauge group, β = 2.4469, correspond-

ing to a ≈ 0.1 fm [and β = 6.0 in the SU(3) case], with

ξ ≈ 0.163472, corresponding to ξ = 0.1 in the continuum, using

a point source for the inversion.
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Ghost Propagator (Real Part)
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Ghost propagator G(p2), in the

SU(2) case, as a function of

the square of the momentum p2

(both in lattice units) for the lat-

tice volume V = 244, β = 2.4469

and ξ ≈ 0.163472, using 60 con-

figurations and 20 sets of {Λ(x)}
for each configuration: compar-

ison of Landau gauge (+) with

Linear Covariant gauge (∗).

Similar results for SU(3) by P. Silva.

Here, pmin ≈ 500 MeV and pmax ≈ 7.8 GeV.
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Conclusions
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Conclusions

Numerical evaluation of the ghost

propagator in linear covariant gauge seems

feasible.
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Conclusions

Numerical evaluation of the ghost

propagator in linear covariant gauge seems

feasible.

We should consider case 1) for larger

physical volumes and evaluate the ghost

propagator for case 3).
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Conclusions

Numerical evaluation of the ghost

propagator in linear covariant gauge seems

feasible.

We should consider case 1) for larger

physical volumes and evaluate the ghost

propagator for case 3).

Can we simulate case 2)?
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