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Abstract

We discuss possible definitions of the Faddeev-Popov matrix for the
minimal linear covariant gauge on the lattice and present preliminary
results for the ghost propagator.
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Abstract

We discuss possible definitions of the Faddeev-Popov matrix for the

minimal linear covariant gauge on the lattice and present preliminary
results for the ghost propagator.

Why study the linear covariant gauge?

W Study Green’s functions in the IR limit of Yang-Mills theories in
order to understand low-energy properties of the theory.

M Since they depend on the gauge, consider different gauges
(Landau gauge, Coulomb gauge, A\-gauge, MAG, etc.).

M Extend the Gribov-Zwanziger approach to the linear covariant
gauge.

M Linear covariant gauge, very popular in continuum studies,
proved quite hostile to the lattice approach.
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Some Analytic Results

What do we expect for linear covariant gauge?
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Some Analytic Results

What do we expect for linear covariant gauge?

B Transverse component of the gluon propagator is similar to the Landau case,
with D(0) decreasing when ¢ increases (F. Siringo, PRD90 2014, variational
method; M.A.L. Capri et al., EPJC75 2015, Gribov-Zwanziger setup; A.C.
Aguilar et al., PRD91 2015, SDE of the ghost prop. + Nielsen identitiies).
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Some Analytic Results

What do we expect for linear covariant gauge?

B Transverse component of the gluon propagator is similar to the Landau case,
with D(0) decreasing when ¢ increases (F. Siringo, PRD90 2014, variational
method; M.A.L. Capri et al., EPJC75 2015, Gribov-Zwanziger setup; A.C.
Aguilar et al., PRD91 2015, SDE of the ghost prop. + Nielsen identitiies).

B Ghost dressing function is flat in the IR limit (F. Siringo, PRD90 2014,
variational method).

B Ghost dressing function in the IR limit is decreasing as ¢ increases (M. Huber,
PRD91 2015, coupled system of DSEs).

M |nfrared-finite ghost propagator i.e. ghost dressing function goes to 0 in the IR
limit, (A.C. Aguilar et al., PRD77 2008 and PRD91 2015, SDE of the ghost prop.
+ Nielsen identitiies; J. Serreau et al., PRD89 2014, averaging over Gribov
copies, quartic ghost self-interaction term; M.A.L. Capri et al., PRD93 2016,
PRD93 2016, Gribov-Zwanziger setup).
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Linear Covariant Gauge on the Lattice

We want to impose the gauge condition 9, A’ (x) = A"(x), for real-
valued functions A°(z), generated using a Gaussian distribution with

width /€.
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Linear Covariant Gauge on the Lattice

We want to impose the gauge condition 9, A’ (x) = A"(x), for real-
valued functions A°(z), generated using a Gaussian distribution with
width /€.

Landau gauge [A®(z) = 0] is obtained on the lattice by minimizing the functional
Era|UY] :—Q%Tng(x L(2)gT (x4 ey) .

The set of local minima defines the first Gribov region 2.
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Linear Covariant Gauge on the Lattice

We want to impose the gauge condition 9, A’ (x) = A"(x), for real-
valued functions A°(z), generated using a Gaussian distribution with

width /€.

Landau gauge [A®(z) = 0] is obtained on the lattice by minimizing the functional

ErglUY] = —Q%Tng(x)Uu(aj)gT(x—}—eu) :
T

The set of local minima defines the first Gribov region €.

From the second variation of £ ¢ [U 9] we define the symmetric, semi-positive definite
Faddeev-Popov operator

MP(z,y) = >

d
p=1

{FZC(QC) [dr,y - 5w+eu,y} + cm(x - eu) [5w,y - 596—6,“?4}

NZ2-1
B Z fbec[AZ(x—e,u/Q) 5$—€M,y — AZ($+6[L/2) 5:c—|—eu,y] }

e=1
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The New Minimizing Functional

The lattice linear covariant gauge condition can be obtained by min-
imizing the functional (A.C., T. Mendes and E.M.S. Santos, PRL103
2009)

Ech[Ug,g,A] — gLG[Ug] T %TI‘Z Zg(iC) A(ZC) .

T
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The New Minimizing Functional

The lattice linear covariant gauge condition can be obtained by min-
imizing the functional (A.C., T. Mendes and E.M.S. Santos, PRL103
2009)

ErcalU?,9,A] = Erc|U?] + %Trz ig(x)A(z) .
One can interpret the Landau-gauge functional £.,¢[UY] as a spin-
glass Hamiltonian for the spin variables g(x) with a random interac-
tion given by U, (x). Then, the extra term corresponds to a random
external magnetic field A(z). Note: the functional £r.c¢|U?, g, A is
linear in the gauge transformation {g(z)}.
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The New Minimizing Functional

The lattice linear covariant gauge condition can be obtained by min-
imizing the functional (A.C., T. Mendes and E.M.S. Santos, PRL103
2009)

ErcalU?,9,A] = Erc|U?] + %Trz ig(x)A(z) .
One can interpret the Landau-gauge functional £.,¢[UY] as a spin-
glass Hamiltonian for the spin variables g(x) with a random interac-
tion given by U, (x). Then, the extra term corresponds to a random
external magnetic field A(z). Note: the functional £r.c¢|U?, g, A is
linear in the gauge transformation {g(z)}.

By considering a one-parameter subgroup, it is easy to check that
the stationarity condition implies the lattice linear covariant gauge
condition V-A°(x) = D AZ(:H—eM/Q) — AZ(:U—@M/Z) = A°(z).
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Numerical Gauge Fixing

Conceptual problem: using the standard compact discretization, the
gluon field is bounded while the four-divergence of the gluon field
satisfies a Gaussian distribution, i.e. it is unbounded. This can give
rise to convergence problems when a numerical implementation of
the linear covariant gauge is attempted (A.C. et al., PRL103 2009,
PoS QCD-TNT09, PoS FACESQCD 2010, AIP Conf.Proc.1354
2011; P. Bicudo et al., PRD92 2015, PoS LATTICE2015).
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Numerical Gauge Fixing

Conceptual problem: using the standard compact discretization, the
gluon field is bounded while the four-divergence of the gluon field
satisfies a Gaussian distribution, i.e. it is unbounded. This can give
rise to convergence problems when a numerical implementation of
the linear covariant gauge is attempted (A.C. et al., PRL103 2009,
PoS QCD-TNT09, PoS FACESQCD 2010, AIP Conf.Proc.1354
2011; P. Bicudo et al., PRD92 2015, PoS LATTICE2015).

Moreover, the dimensionless gauge-fixing condition is given by
a*go0, Al () = a*goA°(x), in a generic d-dimensional space. Since

B =2N./(a*"%g2) in the case, we have that
6/<2N6> b d b
[a go\°( d°x A

2 Zb : é/ Z

in formal continuum limit ¢ — 0.
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Longitudinal Gluon Propagator

— z: 7 | | | We have checked that

% 0.53 1 T

e 0.52 | | } } ” - pQDl (pQ) =§
i fﬂ . as predicted by perturbation the-
0.49 | | | l ‘ T ‘ J .1 ory. Inthe SU(2) case, for V =
048 F ! 1 16% B =4and ¢ = 0.5 afit a/p°
ZZ } for D;(p?) gives a = 0.502(5) and

o 1 2 3 4 5 b=2.01(1) with a x?/dof = 1.1.

(A.C. etal., PRL103 2009, PoS QCD-TNTQ09; in agreement with
P. Bicudo et al., PRD92 2015, PoS LATTICE2015).
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Transverse Gluon Propagator (I)

= Transverse gluon propagator
= _ D (p?) [using the stereographic
| projection in the SU(2) case] as
a function of the momentum p
(both in physical units) for the

3 1 lattice volume V = 164, 8 = 2.3
| ” — and £ = 0(+),0.05(x), 0.1 (%)
L} . . (A.C. et al., PRL103 2009, PoS
e e, L, QCD-TNT09).

D;(0) decreases as ¢ increases (in agreement with L. Giusti et
al. NP Proc.Supp.94 2001 and P. Bicudo et al., PRD92 2015,
PoS LATTICE2015).
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Transverse Gluon Propagator (II)

Transverse gluon propagator
D, (p*) [using the stereographic
| projection in the SU(2) case]
’ | as a function of the momentum
| p (both in physical units) for
.l ) ¢ = 0.05, g = 2.3, and the lattice
A | volumes V = 8% (+),16% (%),
L % | 24* (x) (A.C. et al., PRL103
e e o 2009, PoS QCD-TNTO09).

Dy(p?)

D;(0) decreases as V' increases (as in Landau gauge).
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Ghost Sector (I)

Can we extend to the linear covariant gauge the Iattice
Landau-gauge approach? Can we define the first Gribov re-
gion 27
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Ghost Sector (I)

Can we extend to the linear covariant gauge the Iattice

Landau-gauge approach? Can we define the first Gribov re-
gion 27

In the continuum we have three possible setups:

1) complex ghost fields ¢ = ¢': the FP matrix —9 - D* and
the Lagrangian density are not Hermitian;

2) complex ghost fields ¢ = c': a symmetric FP matrix —(0 -
D 1 D.9) /2, plus a quartic ghost self-interaction term;

3) real independent ghost/anti-ghost fields u,iv: the “effec-

| 0 — 0 - Db
tive” FP matrix 3 Is Hermitian.
D" -9 0
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Second Variation of £,-(UY, g, A

The second variation of the term i g(x) A(x) is purely imagi-
nary and it does not contribute to the Faddeev-Popov matrix.
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Second Variation of £,-(UY, g, A

The second variation of the term i g(x) A(x) is purely imagi-
nary and it does not contribute to the Faddeev-Popov matrix.

The second variation of the (Landau-gauge) term £, (UY] can
only give the symmetric Landau FP matrix M!
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Second Variation of £,-(UY, g, A

The second variation of the term i g(x) A(x) is purely imagi-
nary and it does not contribute to the Faddeev-Popov matrix.

The second variation of the (Landau-gauge) term £, (UY] can
only give the symmetric Landau FP matrix M!

One can write the lattice Landau FP matrix as

1 [, N T
M=— VL)DMJrDM(VL))].

This would correspond, in the continuum, to case 2).
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Second Variation of £,-(UY, g, A

The second variation of the term i g(x) A(x) is purely imagi-
nary and it does not contribute to the Faddeev-Popov matrix.

The second variation of the (Landau-gauge) term £.,4|UY] can
only give the symmetric Landau FP matrix M!

One can write the lattice Landau FP matrix as

1 [, SRR
M=— VL)DMJrDM(VL))].

This would correspond, in the continuum, to case 2).

But, how do we simulate the quartic ghost self-interaction
term?
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Second Variation of £,-(UY, g, A

Can we obtain the continuum case 1)? The matrix

N2-1

M (z,y) = MP(a,y) + 3 A (2) s,

e=1

is a lattice discretization of the continuum operator — 9 - D%,
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Second Variation of £,-(UY, g, A

Can we obtain the continuum case 1)? The matrix

N2-1

M (z,y) = MP(a,y) + 3 A (2) s,

e=1
is a lattice discretization of the continuum operator — 9 - D%,

The extra term is skew-symmetric, under the simultaneous ex-
changes b <+ c and = <+ y, and it cannot be obtained from a second
variation!
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The extra term is skew-symmetric, under the simultaneous ex-
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Second Variation of £,-(UY, g, A

Can we obtain the continuum case 1)? The matrix

N2-1

M (z,y) = MP(a,y) + 3 A (2) s,

e=1
is a lattice discretization of the continuum operator — 9 - D%,

The extra term is skew-symmetric, under the simultaneous ex-
changes b <+ c and = <+ y, and it cannot be obtained from a second
variation! It should be added by hand!

Equivalently, we could add to the minimizing functional £ ¢g|U; A; h],
the null term —RTr >__ i [g(z), A(z)] g(z). Indeed, by expanding
to second order the above expression, we find (by a convenient re-
ordering of the null terms) the term f%¢¢ A¢(z) 6, ,,.
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Second Variation of £,-(UY, g, A

Can we obtain the continuum case 3)? The “effective” FP matrix

0 —8. Db
(without the factor ) 1 is skew-symmetric
Db .9 0

and it cannot be obtained from a second variation!
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Second Variation of £,-(UY, g, A

Can we obtain the continuum case 3)? The “effective” FP matrix

0 —8. Db
(without the factor ) 1 is skew-symmetric
Db .9 0

and it cannot be obtained from a second variation!

Should we just consider a proper lattice discretization of this “effec-
tive” FP matrix?
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Second Variation of £,-(UY, g, A

Can we obtain the continuum case 3)? The “effective” FP matrix

Db . 9 0

and it cannot be obtained from a second variation!

0 —8. Db
(without the factor ) 1 is skew-symmetric

Should we just consider a proper lattice discretization of this “effec-
tive” FP matrix?

We can also consider the bilinear form =, . 49 (z) M (z, y)v5(y)
and extend it to the complex case [y?(z),v5(z) € C]. Then, the cor-
responding sesquilinear form is a positive semi-definite Hermitian
form. Moreover, its imaginary part is skew-symmetric and gives us
a natural way of obtaining the above FP matrix.
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Spectrum of the FP Matrices

The three real FP matrices considered have a rather different spec-
trum.
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Spectrum of the FP Matrices

The three real FP matrices considered have a rather different spec-
trum.

1) The FP matrix M has complex-conjugate eigenvalues (and
eigenvectors) with a non-negative real part.
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Spectrum of the FP Matrices

The three real FP matrices considered have a rather different spec-
trum.

1) The FP matrix M has complex-conjugate eigenvalues (and
eigenvectors) with a non-negative real part.

2) The FP matrix M has real non-negative eigenvalues and real
eigenvectors.
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Spectrum of the FP Matrices

The three real FP matrices considered have a rather different spec-
trum.

1) The FP matrix M has complex-conjugate eigenvalues (and
eigenvectors) with a non-negative real part.

2) The FP matrix M has real non-negative eigenvalues and real
eigenvectors.

Db . 9 0

symmetric, its eigenvalues are complex-conjugate and purely
imaginary, and they are related to the SVD of M ., i.e. to the
eigenvalues of M4 M.

0 —9-D
3) Since the FP matrix is skew-
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Numerical Simulations: Ghost Propagator

We have done some preliminary tests, evaluating the ghost
propagator for the continuum case 1), i.e. with the FP matrix
M (z,y) = M (2, y) + 32, fPON(2)0z,y-
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Numerical Simulations: Ghost Propagator

We have done some preliminary tests, evaluating the ghost
propagator for the continuum case 1), i.e. with the FP matrix

ME(z,y) = MP(z,y) + 32, f°A°(2)0z,y-

Since the matrix is real and not symmetic, we cannot use
the CG algorithm, as in Landau gauge. We are using the
bi-conjugate gradient stabilized algorithm for the numerical in-
version [P. Silva is using the generalized conjugate residual for
the SU(3) casel.
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Numerical Simulations: Ghost Propagator

We have done some preliminary tests, evaluating the ghost
propagator for the continuum case 1), i.e. with the FP matrix
M (z,y) = M (2, y) + 32, fPON(2)0z,y-

Since the matrix is real and not symmetic, we cannot use
the CG algorithm, as in Landau gauge. We are using the
bi-conjugate gradient stabilized algorithm for the numerical in-
version [P. Silva is using the generalized conjugate residual for
the SU(3) casel.

For the moment, SU (2) gauge group, # = 2.4469, correspond-
ing to a ~ 0.1 fm [and 8 = 6.0 in the SU(3) case], with
£ ~ 0.163472, corresponding to £ = 0.1 in the continuum, using
a point source for the inversion.
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Ghost Propagator (Real Part)

Ghost propagator G(p?), in the
SU(2) case, as a function of
10 f ; the square of the momentum p?

| | (both in lattice units) for the lat-
tice volume V = 244, B = 2.4469
and ¢ ~ 0.163472, using 60 con-
figurations and 20 sets of {A(x)}
for each configuration: compar-
— ison of Landau gauge (+) with

p® ().

G(p?)

0.1 F

Similar results for SU(3) by P. Silva.
Here, p,.in =~ 500 MeV and p,,.. ~ 7.8 GeV.
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Conclusions

Confinement Xlll, Maynooth U. 3 August 2018



Conclusions

m Numerical evaluation of the ghost
propagator in linear covariant gauge seems
feasible.
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Conclusions

m Numerical evaluation of the ghost
propagator in linear covariant gauge seems
feasible.

m We should consider case 1) for larger
physical volumes and evaluate the ghost
propagator for case 3).
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Conclusions

m Numerical evaluation of the ghost
propagator in linear covariant gauge seems
feasible.

m We should consider case 1) for larger
physical volumes and evaluate the ghost
propagator for case 3).

m Can we simulate case 2)7

m Can we define the first Gribov region 2?

Confinement Xlll, Maynooth U. 3 August 2018



	Abstract
	�lue Some Analytic Results
	�lue Linear Covariant Gauge on the Lattice
	�lue The New Minimizing Functional
	�lue Numerical Gauge Fixing
	�lue Longitudinal Gluon Propagator
	�lue Transverse Gluon Propagator (I)
	�lue Transverse Gluon Propagator (II)
	�lue Ghost Sector (I)
	�lue Second Variation of ${cal E}_{LCG}[U^{g}, g, Lambda ]$
	�lue Second Variation of ${cal E}_{LCG}[U^{g}, g, Lambda ]$
	�lue Second Variation of ${cal E}_{LCG}[U^{g}, g, Lambda ]$
	�lue Spectrum of the FP Matrices
	�lue Numerical Simulations: Ghost Propagator
	�lue Ghost Propagator (Real Part)
	�lue Conclusions

