

Competing Order in the Hexagonal Hubbard Model
Pavel Buividovich, Dominik Smith, Maksim Ulybyshev, Lorenz von Smekal

XIIIth Quark Confinement \&
Hadron Spectrum

Maynooth, 3 August 2018

Outline

- Intro Honeycomb Lattice
- Hybrid Monte-Carlo of Extended Hubbard Model
- Improvements
- Phase Diagram
- Summary and Outlook

Honeycomb Lattice

- triangular lattice - hexagonal Brillouin zone (2 atoms per unit cell)

graphene

Honeycomb Lattice

- triangular lattice - hexagonal Brillouin zone

 (2 atoms per unit cell)

graphene

- nearest-neighbor tight-binding Hamiltonian

$$
\mathcal{H}_{\mathrm{tb}}=-\kappa \sum_{\langle\boldsymbol{i}, \boldsymbol{j}\rangle, \sigma}\left(c_{\boldsymbol{i}, \sigma}^{\dagger} c_{\boldsymbol{j}, \sigma}+c_{\boldsymbol{j}, \sigma}^{\dagger} c_{\boldsymbol{i}, \sigma}\right)
$$

Honeycomb Lattice

- triangular lattice - hexagonal Brillouin zone

 (2 atoms per unit cell)
graphene

- nearest-neighbor tight-binding Hamiltonian

$$
\mathcal{H}_{\mathrm{tb}}=-\kappa \sum_{\langle\boldsymbol{i}, \boldsymbol{j}\rangle, \sigma}\left(c_{\boldsymbol{i}, \sigma}^{\dagger} c_{\boldsymbol{j}, \sigma}+c_{\boldsymbol{j}, \sigma}^{\dagger} c_{\boldsymbol{i}, \sigma}\right)
$$

- single-particle energy bands

[Wallace, 1947]

$$
\begin{aligned}
& E_{ \pm}(\mathbf{k})= \pm|\Phi(\mathbf{k})| \quad \text { structure factor: } \\
& \qquad \Phi(\mathbf{k})=t \sum_{i} e^{i \mathbf{k} \cdot \delta_{i}}
\end{aligned}
$$

Honeycomb Lattice

- mass terms (gaps)

$$
\mathcal{H}_{m}=\sum_{\boldsymbol{i}, \sigma}(-1)^{s} m_{\sigma} c_{i, \sigma}^{\dagger} c_{\boldsymbol{i}, \sigma}
$$

(pseudo-spin) staggered on-site potential

Graphene Gets a Good Gap on SiC Nevis et al., PRL 115 (2015) 136802

Honeycomb Lattice

- mass terms (gaps)

$$
\mathcal{H}_{m}=\sum_{\boldsymbol{i}, \sigma}(-1)^{s} m_{\sigma} c_{\boldsymbol{i}, \sigma}^{\dagger} c_{\boldsymbol{i}, \sigma}
$$

Graphene Gets a Good Gap on SiC Nevis et al., PRL 115 (2015) 136802
(pseudo-spin) staggered on-site potential

- spin (flavor) dependence
with strong interactions:

$$
m \rightarrow 0
$$

Mott-insulator transition

$$
\begin{array}{lll}
m_{\mathrm{cdw}}=\frac{1}{2}\left(m_{\uparrow}+m_{\downarrow}\right) & \longrightarrow & \text { charge-density wave (CDW) } \\
m_{\mathrm{Sdw}}=\frac{1}{2}\left(m_{\uparrow}-m_{\downarrow}\right) \quad \longrightarrow \quad \text { AF spin-density wave (SDW) }
\end{array}
$$

Honeycomb Lattice

- mass terms (gaps)

$$
\mathcal{H}_{m}=\sum_{\boldsymbol{i}, \sigma}(-1)^{s} m_{\sigma} c_{\boldsymbol{i}, \sigma}^{\dagger} c_{\boldsymbol{i}, \sigma}
$$

Graphene Gets a Good Gap on SiC Nevis et al., PRL 115 (2015) 136802
(pseudo-spin) staggered on-site potential

- spin (flavor) dependence

$$
m \rightarrow 0
$$

- interaction

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{int}}=\frac{1}{2} \sum_{\boldsymbol{i}, \boldsymbol{j}} V_{\boldsymbol{i} \boldsymbol{j}} q_{\boldsymbol{i}} q_{\boldsymbol{j}} \\
& q_{\boldsymbol{i}}=c_{\boldsymbol{i}, \sigma}^{\dagger} c_{\boldsymbol{i}, \sigma}-1 \\
& \text { charge at site }
\end{aligned}
$$

with strong interactions:

$$
\begin{array}{lll}
& \begin{array}{l}
m \rightarrow 0
\end{array} & \text { Mott-insulator transition } \\
m_{\mathrm{cdw}}=\frac{1}{2}\left(m_{\uparrow}+m_{\downarrow}\right) & & \text { charge-density wave (CDW) } \\
m_{\mathrm{sdw}}=\frac{1}{2}\left(m_{\uparrow}-m_{\downarrow}\right) & \longrightarrow & \text { AF spin-density wave (SDW) }
\end{array}
$$

Honeycomb Lattice

- mass terms (gaps)

$$
\mathcal{H}_{m}=\sum_{\boldsymbol{i}, \sigma}(-1)^{s} m_{\sigma} c_{\boldsymbol{i}, \sigma}^{\dagger} c_{\boldsymbol{i}, \sigma}
$$

Graphene Gets a Good Gap on SiC Nevis et al., PRL 115 (2015) 136802
(pseudo-spin) staggered on-site potential

- spin (flavor) dependence

$$
m \rightarrow 0
$$

with strong interactions:
Mott-insulator transition

$$
m_{\mathrm{cdw}}=\frac{1}{2}\left(m_{\uparrow}+m_{\downarrow}\right) \quad \longrightarrow \quad \text { charge-density wave (CDW) }
$$

$$
m_{\mathrm{sdw}}=\frac{1}{2}\left(m_{\uparrow}-m_{\downarrow}\right) \quad \longrightarrow \quad \text { AF spin-density wave (SDW) }
$$

- interaction
on-site

$$
\begin{array}{rlrl}
\mathcal{H}_{\text {int }} & =\frac{1}{2} \sum_{i, j} V_{i j} q_{i} q_{j} & V_{i j}=U \delta_{i j} \\
q_{i} & =c_{i, \sigma}^{\dagger} c_{i, \sigma}-1 & V_{i j}=V \delta_{i j \sim i} \\
\text { charge at site } &
\end{array}
$$

3 August 2018 | Lorenz von Smekal | p. 4

Honeycomb Lattice

- mass terms (gaps)

$$
\mathcal{H}_{m}=\sum_{\boldsymbol{i}, \sigma}(-1)^{s} m_{\sigma} c_{\boldsymbol{i}, \sigma}^{\dagger} c_{\boldsymbol{i}, \sigma}
$$

(pseudo-spin) staggered on-site potential

- spin (flavor) dependence

$$
m \rightarrow 0
$$

with strong interactions:

$$
\begin{array}{lll}
m_{\mathrm{cdw}} & =\frac{1}{2}\left(m_{\uparrow}+m_{\downarrow}\right) \quad \longrightarrow & \text { charge-density wave (CDW) } \\
m_{\mathrm{Sdw}} & =\frac{1}{2}\left(m_{\uparrow}-m_{\downarrow}\right) \quad \longrightarrow \quad \text { AF spin-density wave (SDW) }
\end{array}
$$

- interaction
on-site

$$
\begin{aligned}
\mathcal{H}_{\mathrm{int}} & =\frac{1}{2} \sum_{\boldsymbol{i}, \boldsymbol{j}} V_{\boldsymbol{i} \boldsymbol{j}} q_{\boldsymbol{i}} q_{\boldsymbol{j}} \\
q_{\boldsymbol{i}} & =c_{\boldsymbol{i}, \sigma}^{\dagger} c_{\boldsymbol{i}, \sigma}-1
\end{aligned}
$$

$$
V_{i j}=U \delta_{i j}
$$

nearest neighbor

$$
V_{i j}=V \delta_{i j \sim i}
$$

Graphene Gets a Good Gap on SiC Nevis et al., PRL 115 (2015) 136802

Raghu et al., PRL 100 (2008) 156401

Previous Graphene Studies

- semimetal insulator (SDW) transition:

Ulybyshev, Buividovich, Katsnelson, Polikarpov, PRL 111 (2013) 056801

Smith, LvS, PRB 89 (2014) 195429

Previous Graphene Studies

- semimetal insulator (SDW) transition:

Ulybyshev, Buividovich, Katsnelson, Polikarpov, PRL 111 (2013) 056801
Smith, LvS, PRB 89 (2014) 195429

- Lifshitz transition:

Körner, Smith, Buividovich, Ulybyshev, LvS, PRB 96 (2017) 195408

Previous Graphene Studies

- semimetal insulator (SDW) transition:

Ulybyshev, Buividovich, Katsnelson, Polikarpov, PRL 111 (2013) 056801
Smith, LvS, PRB 89 (2014) 195429

- Lifshitz transition:

Körner, Smith, Buividovich, Ulybyshev, LvS, PRB 96 (2017) 195408

- adatom (RKKY) interactions:

Buividovich, Smith, Ulybyshev, LvS, PRB 96 (2017) 165411

Extended Hubbard Model

- on-site + nearest neighbour interaction

$$
V_{i j}=U \delta_{i j}+V \delta_{i j \sim i}
$$

- Dyson-Schwinger eqns., Hartree-Fock

from PoS (LATTICE 2016) 244, arXiv:1610.09855
Katja Kleeberg et al., in preparation
Araki and Semenoff, PRB 86 (2012) 121402(R)
fermion self-energy

femion selfenergy

Extended Hubbard Model

- on-site + nearest neighbour interaction

$$
V_{i j}=U \delta_{i j}+V \delta_{i j \sim i}
$$

- Dyson-Schwinger eqns., Hartree-Fock

from PoS (LATTICE 2016) 244, arXiv:1610.09855
Katja Kleeberg et al., in preparation
Araki and Semenoff, PRB 86 (2012) 121402(R)
fermion self-energy

- ε-expansion, functional renormalization group

Classen, Herbut, Janssen, Scherer, PRB 92 (2015) 035429
Classen, Herbut, Janssen, Scherer, PRB 93 (2016) 125119

Hybrid Monte-Carlo

- positivity of interaction matrix \quad requires $|V|<|U| / 3$

$$
V_{i j}=U \delta_{i j}+V \delta_{i j \sim i}
$$

Hybrid Monte-Carlo

- positivity of interaction matrix \quad requires $|V|<|U| / 3$

$$
V_{i j}=U \delta_{i j}+V \delta_{i j \sim i}
$$

Hybrid Monte-Carlo

- positivity of interaction matrix \quad requires $|V|<|U| / 3$

$$
V_{i j}=U \delta_{i j}+V \delta_{i j \sim i}
$$

Hybrid Monte-Carlo

- positivity of interaction matrix requires $|V|<|U| / 3$

$$
V_{i j}=U \delta_{i j}+V \delta_{i j \sim i}
$$

Hybrid Monte-Carlo

- positivity of interaction matrix
requires $\quad|V|<|U| / 3$

$$
V_{i j}=U \delta_{i j}+V \delta_{i j \sim i}
$$

simulate without
sign problem at

$$
U=0
$$

Chandrasekharan, Wiese, PRL 83 (1999) 3116
Huffman, Chandrasekharan, PRB 89 (2014) 111101(R)

Hybrid Monte-Carlo

- positivity of interaction matrix
requires $\quad|V|<|U| / 3$

$$
V_{i j}=U \delta_{i j}+V \delta_{i j \sim i}
$$

simulate without
sign problem at $\quad U=0$
Chandrasekharan, Wiese, PRL 83 (1999) 3116
Huffman, Chandrasekharan, PRB 89 (2014) 111101(R)
identical interaction energies at strong coupling

Gross-Neveu

SDW, chiral Heisenberg
Gross-Neveu universality
have Majorana-timereversal invariance

Li, Jiang, Yao, PRB 91 (2015) 241117
Li, Jiang, Yao, PRL 117 (2016) 267002

Hybrid Monte-Carlo

- positivity of interaction matrix requires $|V|<|U| / 3$

$$
V_{i j}=U \delta_{i j}+V \delta_{i j \sim i}
$$

CDW, chiral Heisenberg Gross-Neveu universality
simulate without
sign problem at $\quad U=0$
Chandrasekharan, Wiese, PRL 83 (1999) 3116
Huffman, Chandrasekharan, PRB 89 (2014) 111101(R)
identical interaction energies at strong coupling

Gross-Neveu

SDW, chiral Heisenberg
Gross-Neveu universality
have Majorana-timereversal invariance

Li, Jiang, Yao, PRB 91 (2015) 241117
Li, Jiang, Yao, PRL 117 (2016) 267002

Hybrid Monte-Carlo

Buividovich, Smith, Ulybyshev, LvS, arXiv:1807.7025

Hybrid Monte-Carlo

Buividovich, Smith, Ulybyshev, LvS, arXiv:1807.7025

$V=0: \quad U_{c} \approx 3.8$
Assaad, Herbut, PRX 3 (2013) 031010
Parisen Toldin, Hohenadler, Assaad, Herbut, PRD 91 (2015) 165108

Hybrid Monte-Carlo

Buividovich, Smith, Ulybyshev, LvS, arXiv:1807.7025

no trace of multicritical (or triple) point there

$$
N_{\tau}=128, T=0.046 \kappa \approx 0.124 \mathrm{eV}
$$

$$
V=0: \quad U_{c} \approx 3.8
$$

Assaad, Herbut, PRX 3 (2013) 031010
Parisen Toldin, Hohenadler, Assaad, Herbut, PRD 91 (2015) 165108

Basics of Formulation

- particle-hole transformation

$$
\begin{aligned}
c_{\uparrow} \rightarrow a & c_{\downarrow} \rightarrow(-1)^{s} b^{\dagger} \\
c_{\uparrow}^{\dagger} \rightarrow a^{\dagger} & c_{\downarrow}^{\dagger} \rightarrow(-1)^{s} b
\end{aligned}
$$

(nearest-neighbor) tight-binding Hamiltonian unchanged

Basics of Formulation

- particle-hole transformation

$$
\begin{aligned}
c_{\uparrow} \rightarrow a & c_{\downarrow} \rightarrow(-1)^{s} b^{\dagger} \\
c_{\uparrow}^{\dagger} \rightarrow a^{\dagger} & c_{\downarrow}^{\dagger} \rightarrow(-1)^{s} b
\end{aligned}
$$

(nearest-neighbor) tight-binding Hamiltonian unchanged

- charge

$$
q=n_{\uparrow}+n_{\downarrow}-1=n_{a}-n_{b}=\left(a^{\dagger}, b^{\dagger}\right) \sigma_{3}\binom{a}{b}
$$

Basics of Formulation

- particle-hole transformation

$$
\begin{aligned}
c_{\uparrow} \rightarrow a & c_{\downarrow} \rightarrow(-1)^{s} b^{\dagger} \\
c_{\uparrow}^{\dagger} \rightarrow a^{\dagger} & c_{\downarrow}^{\dagger} \rightarrow(-1)^{s} b
\end{aligned}
$$

(nearest-neighbor) tight-binding Hamiltonian unchanged

- charge

$$
q=n_{\uparrow}+n_{\downarrow}-1=n_{a}-n_{b}=\left(a^{\dagger}, b^{\dagger}\right) \sigma_{3}\binom{a}{b}
$$

- Fierz identity

$$
q^{2}=\left(c_{\uparrow}^{\dagger} c_{\uparrow}+c_{\downarrow}^{\dagger} c_{\downarrow}-1\right)^{2}=-\frac{1}{3}\left(c^{\dagger} \vec{\sigma} c\right) \cdot\left(c^{\dagger} \vec{\sigma} c\right)
$$

Basics of Formulation

- particle-hole transformation

$$
\begin{aligned}
c_{\uparrow} \rightarrow a & c_{\downarrow} \rightarrow(-1)^{s} b^{\dagger} \\
c_{\uparrow}^{\dagger} \rightarrow a^{\dagger} & c_{\downarrow}^{\dagger} \rightarrow(-1)^{s} b
\end{aligned}
$$

(nearest-neighbor) tight-binding Hamiltonian unchanged

- charge

$$
q=n_{\uparrow}+n_{\downarrow}-1=n_{a}-n_{b}=\left(a^{\dagger}, b^{\dagger}\right) \sigma_{3}\binom{a}{b}
$$

- Fierz identity

$$
q^{2}=\left(c_{\uparrow}^{\dagger} c_{\uparrow}+c_{\downarrow}^{\dagger} c_{\downarrow}-1\right)^{2}=-\frac{1}{3}\left(c^{\dagger} \vec{\sigma} c\right) \cdot\left(c^{\dagger} \vec{\sigma} c\right)
$$

- on-site interaction

$$
\frac{U}{2} q^{2}=\alpha \frac{U}{6}\left(\left(a^{\dagger}, b^{\dagger}\right) \vec{\sigma}\binom{a}{b}\right)^{2}-(1-\alpha) \frac{U}{2}\left(a^{\dagger} a+b^{\dagger} b-1\right)^{2}
$$

Basics of Formulation

- particle-hole transformation

$$
\begin{aligned}
& c_{\uparrow} \rightarrow a \quad c_{\downarrow} \rightarrow(-1)^{s} b^{\dagger} \\
& c_{\uparrow}^{\dagger} \rightarrow a^{\dagger} \quad c_{\downarrow}^{\dagger} \rightarrow(-1)^{s} b
\end{aligned}
$$

(nearest-neighbor) tight-binding Hamiltonian unchanged

- charge

$$
q=n_{\uparrow}+n_{\downarrow}-1=n_{a}-n_{b}=\left(a^{\dagger}, b^{\dagger}\right) \sigma_{3}\binom{a}{b}
$$

- Fierz identity

$$
q^{2}=\left(c_{\uparrow}^{\dagger} c_{\uparrow}+c_{\downarrow}^{\dagger} c_{\downarrow}-1\right)^{2}=-\frac{1}{3}\left(c^{\dagger} \vec{\sigma} c\right) \cdot\left(c^{\dagger} \vec{\sigma} c\right)
$$

- on-site interaction

$$
\frac{U}{2} q^{2}=\alpha \frac{U}{6}\left(\left(a^{\dagger}, b^{\dagger}\right) \vec{\sigma}\binom{a}{b}\right)^{2}-(1-\alpha) \frac{U}{2}\left(a^{\dagger} a+b^{\dagger} b-1\right)^{2}
$$

repulsive model:
$U>0$
linearize with: imaginary Hubbard field
real Hubbard field

Basics of Formulation

- particle-hole transformation

$$
\begin{aligned}
& c_{\uparrow} \rightarrow a \quad c_{\downarrow} \rightarrow(-1)^{s} b^{\dagger} \\
& c_{\uparrow}^{\dagger} \rightarrow a^{\dagger} \quad c_{\downarrow}^{\dagger} \rightarrow(-1)^{s} b
\end{aligned}
$$

(nearest-neighbor) tight-binding Hamiltonian unchanged

- charge

$$
q=n_{\uparrow}+n_{\downarrow}-1=n_{a}-n_{b}=\left(a^{\dagger}, b^{\dagger}\right) \sigma_{3}\binom{a}{b}
$$

- Fierz identity

$$
q^{2}=\left(c_{\uparrow}^{\dagger} c_{\uparrow}+c_{\downarrow}^{\dagger} c_{\downarrow}-1\right)^{2}=-\frac{1}{3}\left(c^{\dagger} \vec{\sigma} c\right) \cdot\left(c^{\dagger} \vec{\sigma} c\right)
$$

- on-site interaction

$$
\frac{U}{2} q^{2}=\alpha \frac{U}{6}\left(\left(a^{\dagger}, b^{\dagger}\right) \vec{\sigma}\binom{a}{b}\right)^{2}-(1-\alpha) \frac{U}{2}\left(a^{\dagger} a+b^{\dagger} b-1\right)^{2}
$$

repulsive model:
$U>0$
linearize with: imaginary Hubbard field
real Hubbard field

- need both to avoid ergodicity problems

Beyl, Goth, Assaad, PRB 97 (2017) 085144
Ulybyshev, Valgushev, 1712.02188

Lagrangian

- continuous (Euclidean) time

$$
\begin{array}{rlrl}
\mathcal{L}_{i}= & \psi_{i}^{\dagger}\left(\partial_{t}+\left(\rho_{\boldsymbol{i}}+i \vec{\sigma} \vec{\varphi}_{\boldsymbol{i}}\right)\right) \psi_{\boldsymbol{i}}-\kappa \sum_{\boldsymbol{j} \sim \boldsymbol{i}} \psi_{\boldsymbol{j}}^{\dagger} \psi_{\boldsymbol{i}} & \begin{array}{l}
\text { tight-binding and } \\
\text { Hubbard-field couplings }
\end{array} \\
& +(-1)^{s}\left(m_{\mathrm{sdw}} \psi_{\boldsymbol{i}}^{\dagger} \psi_{\boldsymbol{i}}+m_{\mathrm{cdw}} \psi_{\boldsymbol{i}}^{\dagger} \sigma_{3} \psi_{\boldsymbol{i}}\right) \quad \text { mass terms (gaps) } \\
& -\left(\mu_{Q} \psi_{\boldsymbol{i}}^{\dagger} \sigma_{3} \psi_{\boldsymbol{i}}+\left(\mu_{S}-\frac{U}{2}\right) \psi_{\boldsymbol{i}}^{\dagger} \psi_{\boldsymbol{i}}\right) & \text { chemical potentials (charge } \mathbf{Q} \text { and spin } \mathrm{S}) \\
& +\frac{3}{2 \alpha U} \vec{\varphi}_{\boldsymbol{i}}^{2}+\frac{1}{2(1-\alpha) U} \rho_{\boldsymbol{i}}^{2} & \text { Hubbard-fields (on-site repulsion) }
\end{array}
$$

Lagrangian

- continuous (Euclidean) time

$$
\begin{aligned}
\mathcal{L}_{\boldsymbol{i}}= & \psi_{\boldsymbol{i}}^{\dagger}\left(\partial_{t}+\left(\rho_{\boldsymbol{i}}+i \vec{\sigma} \vec{\varphi}_{\boldsymbol{i}}\right)\right) \psi_{\boldsymbol{i}}-\kappa \sum_{\boldsymbol{j} \sim \boldsymbol{i}} \psi_{j}^{\dagger} \psi_{\boldsymbol{i}} & \begin{array}{l}
\text { tight-binding and } \\
\text { Hubbard-field couplings }
\end{array} \\
& +(-1)^{s}\left(m_{\mathrm{sdw}} \psi_{\boldsymbol{i}}^{\dagger} \psi_{\boldsymbol{i}}+m_{\mathrm{cdw}} \psi_{\boldsymbol{i}}^{\dagger} \sigma_{3} \psi_{\boldsymbol{i}}\right) & \text { mass terms (gaps) } \\
& -\left(\mu_{Q} \psi_{\boldsymbol{i}}^{\dagger} \sigma_{3} \psi_{\boldsymbol{i}}+\left(\mu_{S}-\frac{U}{2}\right) \psi_{\boldsymbol{i}}^{\dagger} \psi_{\boldsymbol{i}}\right) & \text { chemical potentials (charge } \mathbf{Q} \text { and spin S) } \\
& +\frac{3}{2 \alpha U} \vec{\varphi}_{\boldsymbol{i}}^{2}+\frac{1}{2(1-\alpha) U} \rho_{\boldsymbol{i}}^{2} & \text { Hubbard-fields (on-site repulsion) }
\end{aligned}
$$

- identical to attractive Hubbard model with

$$
\psi=\binom{\psi_{\uparrow}}{\psi_{\downarrow}} \quad \text { and map } \quad \begin{array}{ll}
U \rightarrow-U & m_{\mathrm{sdw}} \leftrightarrow m_{\mathrm{cdw}} \\
\alpha \rightarrow 1-\alpha & \mu_{Q} \leftrightarrow \mu_{S}
\end{array}
$$

without particle-whole transformation
i.e. SDW \leftrightarrow CDW

Time Discretization

- symmetric Suzuki-Trotter

$$
e^{-\delta\left(\mathcal{H}_{\mathrm{tb}}+\mathcal{H}_{\mathrm{int}}\right)}=e^{-\frac{\delta}{2} \mathcal{H}_{\mathrm{tb}}} e^{-\delta \mathcal{H}_{\mathrm{int}}} e^{-\frac{\delta}{2} \mathcal{H}_{\mathrm{tb}}}+\mathcal{O}\left(\delta^{3}\right)
$$

Time Discretization

- symmetric Suzuki-Trotter

$$
e^{-\delta\left(\mathcal{H}_{\mathrm{tb}}+\mathcal{H}_{\mathrm{int}}\right)}=e^{-\frac{\delta}{2} \mathcal{H}_{\mathrm{tb}}} e^{-\delta \mathcal{H}_{\mathrm{int}}} e^{-\frac{\delta}{2} \mathcal{H}_{\mathrm{tb}}}+\mathcal{O}\left(\delta^{3}\right)
$$

- fermionic coherent states

$$
\langle\bar{\xi}| e^{-\delta h_{i j} c_{i}^{\dagger} c_{j}}|\xi\rangle=e^{\bar{\xi}_{i}\left(e^{-\delta h}\right)_{i j} \xi_{j}}
$$

Time Discretization

- symmetric Suzuki-Trotter

$$
e^{-\delta\left(\mathcal{H}_{\mathrm{tb}}+\mathcal{H}_{\mathrm{int}}\right)}=e^{-\frac{\delta}{2} \mathcal{H}_{\mathrm{tb}}} e^{-\delta \mathcal{H}_{\mathrm{int}}} e^{-\frac{\delta}{2} \mathcal{H}_{\mathrm{tb}}}+\mathcal{O}\left(\delta^{3}\right)
$$

- fermionic coherent states

$$
\langle\bar{\xi}| e^{-\delta h_{i j} c_{i}^{\dagger} c_{j}}|\xi\rangle=e^{\bar{\xi}_{i}\left(e^{-\delta h}\right)_{i j} \xi_{j}}
$$

- fermion matrices

$$
M(\pm \phi)=\left(\begin{array}{cccccc}
1 & -e^{-\delta h} & 0 & 0 & 0 & \cdots \\
0 & 1 & -e^{ \pm i \phi_{1}} & 0 & 0 & \cdots \\
0 & 0 & 1 & -e^{-\delta h} & 0 & \cdots \\
0 & 0 & 0 & 1 & -e^{ \pm i \phi_{2}} & \cdots \\
\vdots & & & & \ddots & \\
e^{ \pm i \phi_{N_{\tau}}} & 0 & 0 & & \cdots & 1
\end{array}\right)
$$

CRC-TR 211

Time Discretization

- symmetric Suzuki-Trotter

$$
e^{-\delta\left(\mathcal{H}_{\mathrm{tb}}+\mathcal{H}_{\mathrm{int}}\right)}=e^{-\frac{\delta}{2} \mathcal{H}_{\mathrm{tb}}} e^{-\delta \mathcal{H}_{\mathrm{int}}} e^{-\frac{\delta}{2} \mathcal{H}_{\mathrm{tb}}}+\mathcal{O}\left(\delta^{3}\right)
$$

- fermionic coherent states

$$
\langle\bar{\xi}| e^{-\delta h_{i j} c_{i}^{\dagger} c_{j}}|\xi\rangle=e^{\bar{\xi}_{i}\left(e^{-\delta h}\right)_{i j} \xi_{j}}
$$

- fermion matrices

$$
\text { ices } M(\pm \phi)=\left(\begin{array}{cccccc}
1 & -e^{-\delta h} & 0 & 0 & 0 & \cdots \\
0 & 1 & -e^{ \pm i \phi_{1}} & 0 & 0 & \cdots \\
0 & 0 & 1 & -e^{-\delta h} & 0 & \cdots \\
0 & 0 & 0 & 1 & -e^{ \pm i \phi_{2}} & \cdots \\
\vdots & & & & \ddots & \\
e^{ \pm i \phi_{N_{\tau}}} & 0 & 0 & & \cdots & 1
\end{array}\right)
$$

- partition function

$$
Z=\int D \phi|\operatorname{det} M(\phi)|^{2} e^{-S_{\phi}}
$$

Particle-Hole and Spin Symmetry

from PoS (LATTICE 2016) 244, arXiv:1610.09855

Particle-Hole and Spin Symmetry

exact sublattice-particle-hole
\& spin symmetry

$$
\begin{array}{r}
\Sigma e^{-\delta h} \Sigma=e^{\delta h} \\
=e^{-\delta h}
\end{array}
$$

$\mathcal{O}(\delta)$ improved
from PoS (LATTICE 2016) 244, arXiv:1610.09855

Particle-Hole and Spin Symmetry

exact sublattice-particle-hole
\& spin symmetry

$$
\begin{aligned}
\Sigma e^{-\delta h} \Sigma & =e^{\delta h} \\
= & e^{-\delta h}
\end{aligned}
$$

$\mathcal{O}(\delta)$ improved
\rightsquigarrow no-longer sparse
Schur complement solver
Ulybyshev, Kintscher,
Kahl, Buividovich, arXiv:1803.05478
from PoS (LATTICE 2016) 244, arXiv:1610.09855

CRC-TR 211

Spin and Charge per Sublattice

- for competing order (zero-mass) simulations use

$$
O=\frac{1}{L^{2}} \sqrt{\left\langle\left(\sum_{i \in A} O_{i}\right)^{2}\right\rangle+\left\langle\left(\sum_{i \in B} O_{i}\right)^{2}\right\rangle}
$$

for

- spin-density wave:
with

$$
\mathcal{O}_{i} \rightarrow \vec{S}_{i}=\frac{1}{2}\left(c_{i, \uparrow}^{\dagger}, c_{i, \downarrow}^{\dagger}\right) \vec{\sigma}\binom{c_{i, \uparrow}}{c_{i, \downarrow}}
$$

- charge-density wave:
with

$$
\mathcal{O}_{i} \rightarrow q_{i}=c_{i, \uparrow}^{\dagger} c_{i, \uparrow}+c_{i, \downarrow}^{\dagger} c_{i, \downarrow}-1=a_{i}^{\dagger} a_{i}-b_{i}^{\dagger} b_{i}
$$

Finite-Size Scaling

- extract critical coupling and exponents

$$
\left.\left\langle S_{i}^{2}\right\rangle\right|_{U_{c}} \propto L^{-2 \beta / \nu}
$$

3 August 2018 | Lorenz von Smekal | p. 14

Finite-Size Scaling

- extract critical coupling and exponents

consistent with chiral
Heisenberg Gross-Neveu

$$
\left\langle S_{i}^{2}\right\rangle=L^{-2 \beta / \nu} f(x)
$$

Ergodicity

- two Hubbard fields (real and imaginary)

$$
\frac{U}{2} q^{2}=\alpha \frac{U}{6}\left(\left(a^{\dagger}, b^{\dagger}\right) \vec{\sigma}\binom{a}{b}\right)^{2}-(1-\alpha) \frac{U}{2}\left(a^{\dagger} a+b^{\dagger} b-1\right)^{2}
$$

Phase Diagram

3 August 2018 | Lorenz von Smekal | p. 17

Summary and Outlook

- Extended Hubbard Model on Hexagonal Lattice

Summary and Outlook

- Extended Hubbard Model on Hexagonal Lattice

Summary and Outlook

- Extended Hubbard Model on Hexagonal Lattice

Summary and Outlook

- Extended Hubbard Model on Hexagonal Lattice

Graphene Update

- partially screened, long-range Coulomb

staggered spin (SDW), chiral GN or Miranksy?

Summary and Outlook

- Extended Hubbard Model on Hexagonal Lattice
chiral fermion action, complex Hubbard fields, non-iterative Schur complement solver
- Update on Graphene with realistically screened long-range Coulomb interactions
no sign problem, in progress
- Generalised Density of States, LLR, reweighting
finite charge carrier density away form half filling, with Kurt Langfeld, in progress
- Gross-Neveu NJL model
staggered lattice regularisation without doubling, study inhomogeneous phases

Summary and Outlook

- Extended Hubbard Model on Hexagonal Lattice
chiral fermion action, complex Hubbard fields, non-iterative Schur complement solver
- Update on Graphene with realistically screened long-range Coulomb interactions
no sign problem, in progress
- Generalised Density of States, LLR, reweighting
finite charge carrier density away form half filling, with Kurt Langfeld, in progress
- Gross-Neveu NJL model
staggered lattice regularisation without doubling, study inhomogeneous phases

Thank you for your attention!

