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rameter, for instance, grows as (V1 ! V1c) rather than the
usual "V1 ! V1c#1=2 [13].

Spinful fermions and the QSH state.—Next, we take into
account the spin degrees of freedom and include an on-site
Hubbard repulsion in our model Hamiltonian (! $ 0):

 

H$!
X

hiji"
t"cyi"cj"%H:c:#%U

X
i
ni"ni#

%V1

X

hi;ji
"ni!1#"nj!1#%V2

X

hhi;jii
"ni!1#"nj!1#; (7)

where ni $ ni" % ni#. Since the honeycomb lattice is bi-
partite, on-site repulsion gives rise to a SDW phase at half-
filling; a standard decomposition of the Hubbard term
introduces the SDW order parameter M: M $ 1

2 "hSiAi!
hSiBi#. As in the spinless case, nearest-neighbor repulsion
favors a CDW. Since the second-neighbor repulsion is
frustrated, we are again led to the possibility of a topologi-
cal phase similar to the QAH. However, the spin degrees of
freedom introduce two possibilities (translation invariance
along with spin conservation eliminate other possibilities):
(1) two copies of QAH states—i.e. the chirality of the
second-neighbor hopping is the same for each spin projec-
tion, (2) the QSH state, where the chiralities are opposite
for each spin projection. The latter possibility breaks a
continuous global SU"2# symmetry associated with choos-
ing the spin projection axis; however, time-reversal sym-
metry is preserved. The QSH state on the honeycomb
lattice was considered in Ref. [7], where the insulating
gap arises from the microscopic spin-orbit coupling. It
was later shown that the magnitude of the spin-orbit gap
is negligibly small in graphene [17,18]. In our case, how-
ever, the insulating gap is generated dynamically from the
many-body interaction and can be viewed as an example of
dynamic generation of spin-orbit interaction [19 ].
Introducing the Hubbard-Stratonovich fields (sum over
repeated indices implied) #!ij $ cyi$"

!
$%cj%, ! $

0; . . . ; 3, where "! $ "1;!#, the next-neighbor interac-
tions can be recast using the identity "ni ! 1#"nj ! 1# $
1! 1

2 "#
!
ij#y#!ij. Physically, h#0i ! 0 corresponds to the

QAH phase, whereas if one of the vector components
h#ii ! 0, then the QSH phase occurs. A translationally
invariant decomposition of the next-neighbor interactions
via h#!i;i%bsi $ #!ei&

!
A ; i 2 A (and similarly for the other

sublattice) gives rise to a 4& 4 Hamiltonian that is readily
diagonalized in a tensor product basis ! ' ", where ! and
" are Pauli matrices in spin and sublattice space, respec-
tively. This way, each phase corresponds to a particular
nonzero expectation value of a fermion bilinearP

~k!
y
~k
d̂" ~k#! ~k, where d̂" ~k# / '3 for the CDW and QAH,

and d̂" ~k# / "3'3 for SDW and QSH. A detailed and stan-
dard numerical study of the free-energy at T $ 0 and its
saddle point solutions produces the phase diagram shown
in Fig. 3. In addition to the ordinary CDW and SDW
insulating phases, there is a phase for V2 >V2c ( 1:2t in

which the 4-vector is purely imaginary (as in the spinless
case), collinear, and staggered from one sublattice to the
next: h#!ii%bn;Ai $ !h#

!
ii%bn;Bi, and both QAH and QSH are

equally favorable ground states, having identical free en-
ergies within mean-field theory. Additionally, there is
never a coexistence of both QAH and QSH phases; indeed,
a Landau-Ginzburg treatment in this region explicitly
shows the absence SO"4# symmetry of the vector #!.
This occurs due to the difference of the manner in which
#0 and ~# are coupled to the fermionic fields—which
favors either a phase with broken Z2 symmetry (QAH) or
with broken SU"2# symmetry, but never both simulta-
neously [16].

Quantum fluctuations, however, lift the mean-field
degeneracy between the QAH and QSH phases. To qua-
dratic order in quantum fluctuations (RPA) about
the QSH phase, we obtain an effective action Seff $P

~k(#
!" ~k;"#K!)" ~k;"#(#)"! ~k;!"#, which shows the

presence of six modes (2 longitudinal and 4 transverse
modes), and 2 of the transverse modes correspond to
degenerate Goldstone modes whose dispersion is given

by ""q# $
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
jtk%qj2 ! jtktk%qj

q
, which for q small is linear

with velocity v ( vf $ 3t=2jaj. Thus, the zero-point mo-
tion associated with these gapless modes lowers the free-
energy of the QSH state relative to the QAH state. In the
presence of spin-orbit coupling (SOC), considering for
concreteness the Rashba SOC HR $ *R"s& p# ) ẑ, the
Goldstone modes become gapped and do not interfere
with the gapless edge excitations. Thus, by breaking the
SU"2# spin symmetry, the Rashba term stabilizes the QSH
phase by ensuring that the only low energy excitations in
the system are the helical edge modes of the QSH phase.

Renormalization Group Analysis.—Next, we go beyond
mean-field theory and RPA using the temperature (T)-flow
functional renormalization group (fRG)[20]. In this
scheme, we discretize the ~k- dependence of the interaction
[21] and consider all possible scattering processes between
a set of initial and final momenta that occur between points
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FIG. 3 (color online). Complete mean-field phase diagram for
the spinful model. The transitions from the semimetal (SM) to
the insulating phases are continuous, whereas transitions be-
tween any two insulating phases are first order.
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FIG. 1. (Color online) (a) Schematic phase diagram of the ex-
tended Hubbard model on the honeycomb lattice with on-site
interaction U and nearest-neighbor interaction V . Neutral suspended
graphene is found to be in the semimetallic state indicated by the star.
The neighborhood of the multicritical point (gray shaded area) may
be governed by a (b) tetracritical or (c) bicritical structure or by a
(d) first-order multicritical point. Solid lines denote second-order and
dashed lines first-order phase transitions.

descriptions of the Mott-insulator transitions. This implies
tetracritical behavior and a decoupled mixed phase of the two
order parameters. For intermediate fermion flavor numbers,
all transitions are of first order. Finally, for a large number of
flavors, the phase diagram displays a bicritical structure with
a first-order transition between the CDW and SDW state.

The remainder of the paper is organized as follows. In
the next section, we present the effective model with two
dynamical order parameters. We then compute the fixed-point
structure as a function of Nf within first-order ϵ expansion in
Sec. III. In Sec. IV, we discuss the resulting phase diagram
and give concluding remarks.

II. EXTENDED HUBBARD MODEL ON THE
HONEYCOMB LATTICE

To describe the behavior of electrons on the honeycomb lat-
tice, we start with the tight-binding Hamiltonian supplemented
by the interaction terms, H = H0 + Hint, with

H0 = −t
∑

R⃗,δ⃗i ,s

u†
s(R⃗)vs(R⃗ + δ⃗i) + H.c., (1)

Hint = U
∑

i

ni,↑ni,↓ + V
∑

⟨i,j⟩,s,s ′

ni,snj,s ′ , (2)

where us and vs are the electron annihilation operators at the
two triangular sublattices of the honeycomb lattice with spin
projection s = ↑ , ↓ and R⃗ denotes the sites of one triangular
sublattice. The δ⃗i are the vectors to the three nearest neighbors
on the second sublattice. Explicitly, the position vectors of
the bipartite lattice are spanned by R⃗T

1 = a(
√

3/2,−1/2)
and R⃗T

2 = a(0,1), where a is the lattice spacing which
in the following is set to a = 1. The second sublattice
is generated by R⃗ + δ⃗i with the three nearest-neighbor
vectors δ⃗T

1 = (1/(2
√

3),1/2), δ⃗T
2 = (1/(2

√
3),−1/2), and

δ⃗T
3 = (1/

√
3,0). Then, for the noninteracting part of the

Hamiltonian, the energy spectrum is described by two bands
ϵk⃗ = ± t |

∑3
i=1 exp(k⃗ · δ⃗i)| which are linear and isotropic

close to zero energy near the K,K ′ points at the border of the
Brillouin zone, where K⃗T = (2π/

√
3,2π/3) and K⃗ ′ = −K⃗ .

Employing only Fourier modes near the K,K ′ points, the
continuum low-energy effective action corresponding to H0
can be written as [2]

SF =
∫ 1/T

0
dτdx⃗D−1[%̄(12 ⊗ γµ)∂µ%], (3)

where D is the space-time dimension and the spin- 1
2

electrons are described by the eight-component Dirac field
% = (%↑,%↓)T with its conjugate %̄ = %†(12 ⊗ γ0) in
2 < D < 4. Further, we have ∂µ = (∂τ ,∇⃗) and the Clifford
algebra {γµ,γν} = 2δµν with (4 × 4)-γ matrices and we
assume the summation convention over repeated indices,
and µ,ν = 0, . . . ,D − 1. Explicitly, in (2 + 1)D, we use
a representation where γ0 = 12 ⊗ σz, γ1 = σz ⊗ σy , and
γ2 = 12 ⊗ σx . With these definitions, the relation between the
Grassmann fields u,v and % can be given as [8]

%†
s (x⃗,τ ) = T

∑

ωn

∫ +dD−1q⃗

(2π )D−1
eiωnτ+iq⃗·x⃗[u†

s(K⃗ + q⃗,ωn),

v†
s (K⃗ + q⃗,ωn), u†

s(−K⃗ + q⃗,ωn), v†
s (−K⃗ + q⃗,ωn)]. (4)

The reference frame is chosen to be such that qx = q⃗ · K⃗/|K⃗|
and qy = (K⃗ × q⃗) × K⃗/|K⃗|2 and, further, we set ! = kB =
vF = 1. We also define the two additional 4 × 4 matrices
that anticommute with all γµ, namely γ3 = σx ⊗ σy and
γ5 = σy ⊗ σy . Then, γ35 = −iγ3γ5 commutes with all γµ and
anticommutes with γ3 and γ5. In the following, we will also
consider the generalization to arbitrary number of Dirac points
in the spectrum. Formally, this can be done by replacing
us(± K⃗ + q⃗,ωn) ,→ us(K⃗i + q⃗,ωn) and vs(± K⃗ + q⃗,ωn) ,→
vs(± K⃗i + q⃗,ωn), with K⃗i the position of the Dirac points,
i = 1, . . . ,Nf . We will refer to Nf as the number of fermion
flavors, with Nf = 2 being the physical case. For general Nf ,
the generalization of Eq. (4) thus renders the fermion field %
to have 2Nf spinorial components for each spin direction.

Order parameters and interactions. There are several differ-
ent order parameters that induce various symmetry-breaking
patterns, e.g., time-reversal symmetry (TRS) breaking and
chiral symmetry (CS) breaking. In this work, we will consider
CS breaking while TRS is preserved. The CS-breaking order
parameter can be written as

, = (χ ,φ⃗) =
(
⟨%̄%⟩,

〈
%̄

(
σ⃗ ⊗ 12Nf

)
%

〉)
. (5)

The Ising field χ is a spin singlet and corresponds to a staggered
density, or a charge-density wave state, χ ∼u

†
sus − v

†
s vs ,

which can be triggered by a large nearest-neighbor density-
density interaction. The Heisenberg field φ⃗ is a triplet and
corresponds to a staggered magnetization or an antiferromag-
netic spin-density wave state, φ⃗ ∼u

†
s σ⃗ss ′us + v

†
s σ⃗ss ′vs , and it is

triggered by a strong on-site interaction. The order parameters
which appear in the form of fermion bilinears can be promoted
to be dynamical fields corresponding to a bosonic action,

SB =
∫

dτdx⃗D−1
[

1
2
χ

(
−∂2

µ + m2
χ

)
χ + 1

2
φ⃗ ·

(
−∂2

µ + m2
φ

)
φ⃗

+ λχχ4 + λφ(φ⃗ · φ⃗)2 + λχφχ2φ⃗2
]
. (6)

035429-2
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FIG. 3. On the left: L → ∞ limit of
√

⟨S2
i ⟩ from L = 6, 12, 18 (dots). On the right: number of standard deviations with

which
√

⟨S2
i ⟩ is non-zero at L = ∞ (values > 5 are displayed with the same color as 5). On both plots we also show the phase

boundary from intersection method with 2σ confidence band (lines). Crosses mark Uc/κ = 3.78 (prediction of Ref. [24], bottom
cross) and result from simulation with complex Hubbard field (α = 0.95, top cross).

Buividovich, Smith, Ulybyshev, LvS, arXiv:1807.7025

SDWSDW

N⌧ = 128, T = 0.046 ⇡ 0.124eV
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Buividovich, Smith, Ulybyshev, LvS, arXiv:1807.7025

Assaad, Herbut, PRX 3 (2013) 031010

Parisen Toldin, Hohenadler, Assaad,  
Herbut, PRD 91 (2015) 165108

V = 0 : Uc ⇡ 3.8

SDWSDW

N⌧ = 128, T = 0.046 ⇡ 0.124eV
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FIG. 3. On the left: L → ∞ limit of
√

⟨S2
i ⟩ from L = 6, 12, 18 (dots). On the right: number of standard deviations with

which
√

⟨S2
i ⟩ is non-zero at L = ∞ (values > 5 are displayed with the same color as 5). On both plots we also show the phase

boundary from intersection method with 2σ confidence band (lines). Crosses mark Uc/κ = 3.78 (prediction of Ref. [24], bottom
cross) and result from simulation with complex Hubbard field (α = 0.95, top cross).

Buividovich, Smith, Ulybyshev, LvS, arXiv:1807.7025

Assaad, Herbut, PRX 3 (2013) 031010

Parisen Toldin, Hohenadler, Assaad,  
Herbut, PRD 91 (2015) 165108

V = 0 : Uc ⇡ 3.8

SDWSDW

no trace of multicritical 
(or triple) point there

N⌧ = 128, T = 0.046 ⇡ 0.124eV
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•Fierz identity 
q2 = (c†"c" + c†#c# � 1)2 = �1

3
(c†~�c) · (c†~�c)

repulsive model:

U > 0 linearize with:    imaginary Hubbard field real Hubbard field

•need both to avoid ergodicity problems Beyl, Goth, Assaad, PRB 97 (2017) 085144
Ulybyshev, Valgushev, 1712.02188 

•on-site interaction 
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•continuous (Euclidean) time

tight-binding and 
Hubbard-field couplings 
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�
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†
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†
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• identical to attractive Hubbard model with
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✓
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U ! �U
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msdw $ mcdw

µQ $ µS

without particle-whole transformation i.e. SDW $ CDW

Hubbard-fields (on-site repulsion)
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•partition function

Z =

Z
D� | detM(�)|2 e�S�
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exact sublattice-particle-hole  
& spin symmetry
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U = 4.07

U = 3.33

Sx = Sz
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Sz

• linear action •exponential (chiral) action
time discretisation 
breaks particle-hole 
hence spin symmetry 

⌃ : (�1)s

swap sign on  
one sublattice

⌃h⌃ = �h

but

⌃(1 � �h)⌃

6= (1 � �h)�1

⌃e��h⌃ = e�h

= e��h

from PoS (LATTICE 2016) 244, arXiv:1610.09855 
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no-longer sparse 
Schur complement solver

Ulybyshev, Kintscher,  
Kahl, Buividovich,  
arXiv:1803.05478

from PoS (LATTICE 2016) 244, arXiv:1610.09855 

improvedO(�)
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Spin and Charge per Sublattice

!13

O =
1

L2

s⌦�X

i2A

Oi

�2↵
+

⌦�X

i2B

Oi

�2↵

•charge-density wave:

•spin-density wave:

use

for

• for competing order (zero-mass) simulations

with

with

Oi ! ~Si =
1
2
(c†i,", c

†
i,#)~�

✓
ci,"
ci,#

◆

Oi ! qi = c†i,"ci," + c†i,#ci,# � 1 = a†iai � b†i bi
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Finite-Size Scaling
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larger and in particular as we enter the SDW phase (e.g.
at Uc ≈ 4.2κ for V = 1.111κ). Our general conclusion
here is that charge is much more strongly affected spin,
by the ergodicity violations of the massless HMC simu-
lations with a single Hubbard field. While we observed
only small quantitative effects on the spin observables
above, the ergodic two-field simulations here clearly al-
low to identify the apparent CDW order as an artifact
due to these ergodicity violations.
In Fig. 11 we plot ⟨q2⟩L2β/ν as a function of U for

V = 1.111κ, V = 1.296κ, V = 1.481κ and V = 1.666κ
at α = 0.95. For V = 1.111κ we show data from lattice
sizes L = 6, 12, 18, while for the remaining data sets re-
sults from L = 6, 12 are shown. By choosing β/ν = 0.948
we can collapse all data points of each line in the U − V
plane onto a single line with a very good precision. This
indicates that for all our points the expectation value ⟨q2⟩
approaches zero as ⟨q2⟩ ∼ L−2β/ν in the thermodynamic
limit L → ∞. Furthermore, ⟨q2⟩ decreases when U is
increased, in stark contrast to the non-ergodic α = 1.0
results. Thus when the complexification of the Hubbard-
Stratonovich fields enables the HMC algorithm to sample
the whole phase space, signatures of the CDW order ap-
pear to be just finite-volume artifacts.

IV. CONCLUSION AND OUTLOOK

We have carried out a detailed study of the SDW and
CDW orders in the extended Hubbard model on the
hexagonal graphene lattice with nearest-neighbour hop-
ping and on-site and nearest-neighbour interactions U
and V . We were able to explore the region of the U − V
plane with V < U/3 and U ! 6κ. The Hybrid-Monte-
Carlo algorithm which we have used becomes inapplica-
ble for V ≥ U/3 simulations because of a sign problem,
and alternative simulation methods are required.
We have been able to clearly identify the line of the

phase transition between the semimetal phase and the
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gapped antiferromagnetic SDW phase, which starts at
U/κ = 3.9± 0.04 at V = 0, in agreement with the results
of [24], and bends towards larger values of U as V is in-
creased. The phase transition line goes at least all the
way up to the line V = U/3. An interesting open problem
is whether it continues even to V > U/3. We obtained
strong numerical evidence that the entire phase bound-
ary is characterized by the same critical behavior, with a
critical exponent β/ν = 0.936± 0.022. This is consistent
within errors with the chiral Heisenberg Gross-Neveu uni-
versality class in three spacetime dimensions [17, 59, 60].
Along the V = U/3 line we have verified finite-size scal-
ing with a universal scaling function for the squared spin
per sublattice and estimated the correlation length expo-
nent ν ≈ 1.162, which further strengthens the case that
this Gross-Neveu scaling persists all the way up to the
V = U/3 line. In particular we find no evidence of mul-
ticritical or triple points in this region below V = U/3.
On the other hand, our simulations suggest that

charge-ordered CDW phase is absent in the region with
V < U/3. As we have found out, the supposed signa-
tures of the CDW phase reported in our previous work
[28] were the artifacts of a non-ergodic HMC algorithm
which was not able to penetrate through the manifolds
where the fermion determinant is zero. Similar to topol-
ogy freezing in lattice QCD simulations, these manifolds
are potential barriers for the molecular dynamics. The
freedom of performing the Hubbard-Stratonovich trans-
formation has allowed us to efficiently circumvent this
problem. We should point out that earlier attempts
to solve these issues by introducing a “geometric mass”
(where lattice sizes are not multiples of three, so that
the Dirac points do not fall on the discrete set of lattice
momenta) proved to be unfruitful.

We cannot rule out phase coexistence at exactly V =
U/3. In this case we would expect some residual finite-
size effects for points close to the line. We see no evi-
dence for this however in Fig. 11, where the effect should
be strongest for the smallest U values of each line at con-
stant V . Phase coexistence at V = U/3 is expected in
the strong coupling limit, based on energy balance argu-
ments, so simulations at much larger values of U and V
might be necessary to reveal a multicritical point along
or close to this line. To move closer to V = U/3 requires
simulations with values of α closer and closer to α = 1
which eventually reintroduces the ergodicity problems.

Lastly we should point out that, while simulations at
V ≥ U/3 would in principle be possible with other meth-
ods such as BSS DQMC, theses typically then suffer from
a genuine fermion sign problem. At least along the U = 0
line at finite V this fermion sign problem can be avoided
by exploiting a special type of time-reversal symmetry in
a representation using Majorana fermions [62, 63]. This
Majorana time-reversal symmetry also appears to be the
reason why algorithms utilizing fermion bags [64, 65] or
meron clusters [66] can be applied in such cases.

In Ref. [51] it was explicitly demonstrated that the
number of relevant Lefshetz thimbles, which character-

• two Hubbard fields (real and imaginary)
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larger and in particular as we enter the SDW phase (e.g.
at Uc ≈ 4.2κ for V = 1.111κ). Our general conclusion
here is that charge is much more strongly affected spin,
by the ergodicity violations of the massless HMC simu-
lations with a single Hubbard field. While we observed
only small quantitative effects on the spin observables
above, the ergodic two-field simulations here clearly al-
low to identify the apparent CDW order as an artifact
due to these ergodicity violations.
In Fig. 11 we plot ⟨q2⟩L2β/ν as a function of U for

V = 1.111κ, V = 1.296κ, V = 1.481κ and V = 1.666κ
at α = 0.95. For V = 1.111κ we show data from lattice
sizes L = 6, 12, 18, while for the remaining data sets re-
sults from L = 6, 12 are shown. By choosing β/ν = 0.948
we can collapse all data points of each line in the U − V
plane onto a single line with a very good precision. This
indicates that for all our points the expectation value ⟨q2⟩
approaches zero as ⟨q2⟩ ∼ L−2β/ν in the thermodynamic
limit L → ∞. Furthermore, ⟨q2⟩ decreases when U is
increased, in stark contrast to the non-ergodic α = 1.0
results. Thus when the complexification of the Hubbard-
Stratonovich fields enables the HMC algorithm to sample
the whole phase space, signatures of the CDW order ap-
pear to be just finite-volume artifacts.

IV. CONCLUSION AND OUTLOOK

We have carried out a detailed study of the SDW and
CDW orders in the extended Hubbard model on the
hexagonal graphene lattice with nearest-neighbour hop-
ping and on-site and nearest-neighbour interactions U
and V . We were able to explore the region of the U − V
plane with V < U/3 and U ! 6κ. The Hybrid-Monte-
Carlo algorithm which we have used becomes inapplica-
ble for V ≥ U/3 simulations because of a sign problem,
and alternative simulation methods are required.
We have been able to clearly identify the line of the
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6

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

(<
S i

2 >)
1/

2

1/L

U=3.56κ,  V=1.17κ 
U=3.74κ,  V=1.23κ 
U=3.93κ,  V=1.30κ 
U=4.11κ,  V=1.36κ 
U=4.30κ,  V=1.42κ 
U=4.48κ,  V=1.48κ 
U=4.67κ,  V=1.54κ 

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

(<
S i

2 >)
1/

2

1/L

U=4.85κ,  V=1.60κ 
U=5.04κ,  V=1.67κ 
U=5.22κ,  V=1.73κ 
U=5.41κ,  V=1.79κ 
U=5.59κ,  V=1.85κ 
U=5.78κ,  V=1.91κ 
U=5.96κ,  V=1.97κ 

FIG. 1. Linear L → ∞ extrapolation of
√

⟨S2
i ⟩ for (U, V ) values along the V = U/3 line. On the left: in the weak-coupling

regime, on the right: in the strong-coupling regime with SDW order.

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

V=0.37κ
(<

S i
2 >)

1/
2

1/L

U=3.52κ
U=3.70κ
U=3.89κ
U=4.07κ
U=4.26κ
U=4.44κ
U=4.63κ

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

V=0.74κ

(<
S i

2 >)
1/

2

1/L

U=3.52κ
U=3.70κ
U=3.89κ
U=4.07κ
U=4.26κ
U=4.44κ
U=4.63κ

FIG. 2. Linear L → ∞ extrapolation of
√

⟨S2
i ⟩ for V = 0.37κ (left) and V = 0.74κ (right).

 0

 0.5

 1

 1.5

 2

 3.5  4  4.5  5  5.5  6

V
 / 
κ

U / κ

(<Si
2>)1/2, extrapolation L→ ∞

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0

 0.5

 1

 1.5

 2

 3.5  4  4.5  5  5.5  6

V
 / 
κ

U / κ

(<Si
2>)1/2 non-zero confidence levels

 0

 1

 2

 3

 4

 5

FIG. 3. On the left: L → ∞ limit of
√

⟨S2
i ⟩ from L = 6, 12, 18 (dots). On the right: number of standard deviations with

which
√

⟨S2
i ⟩ is non-zero at L = ∞ (values > 5 are displayed with the same color as 5). On both plots we also show the phase

boundary from intersection method with 2σ confidence band (lines). Crosses mark Uc/κ = 3.78 (prediction of Ref. [24], bottom
cross) and result from simulation with complex Hubbard field (α = 0.95, top cross).

Uc ⇡ 4.2



3 August 2018  |  Lorenz von Smekal  |  p.

Summary and Outlook

!18

• Extended Hubbard Model on Hexagonal Lattice

V

U

V = U/3

6

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

(<
S

i2
>

)1
/2

1/L

U=3.56κ,  V=1.17κ 
U=3.74κ,  V=1.23κ 
U=3.93κ,  V=1.30κ 
U=4.11κ,  V=1.36κ 
U=4.30κ,  V=1.42κ 
U=4.48κ,  V=1.48κ 
U=4.67κ,  V=1.54κ 

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

(<
S

i2
>

)1
/2

1/L

U=4.85κ,  V=1.60κ 
U=5.04κ,  V=1.67κ 
U=5.22κ,  V=1.73κ 
U=5.41κ,  V=1.79κ 
U=5.59κ,  V=1.85κ 
U=5.78κ,  V=1.91κ 
U=5.96κ,  V=1.97κ 

FIG. 1. Linear L → ∞ extrapolation of
√

⟨S2
i ⟩ for (U, V ) values along the V = U/3 line. On the left: in the weak-coupling

regime, on the right: in the strong-coupling regime with SDW order.

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

V=0.37κ

(<
S

i2
>

)1
/2

1/L

U=3.52κ
U=3.70κ
U=3.89κ
U=4.07κ
U=4.26κ
U=4.44κ
U=4.63κ

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

V=0.74κ

(<
S

i2
>

)1
/2

1/L

U=3.52κ
U=3.70κ
U=3.89κ
U=4.07κ
U=4.26κ
U=4.44κ
U=4.63κ

FIG. 2. Linear L → ∞ extrapolation of
√

⟨S2
i ⟩ for V = 0.37κ (left) and V = 0.74κ (right).

 0

 0.5

 1

 1.5

 2

 3.5  4  4.5  5  5.5  6

V
 /

 κ
U / κ

(<Si
2>)1/2, extrapolation L→ ∞

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0

 0.5

 1

 1.5

 2

 3.5  4  4.5  5  5.5  6

V
 /

 κ

U / κ

(<Si
2>)1/2 non-zero confidence levels

 0

 1

 2

 3

 4

 5

FIG. 3. On the left: L → ∞ limit of
√

⟨S2
i ⟩ from L = 6, 12, 18 (dots). On the right: number of standard deviations with

which
√

⟨S2
i ⟩ is non-zero at L = ∞ (values > 5 are displayed with the same color as 5). On both plots we also show the phase

boundary from intersection method with 2σ confidence band (lines). Crosses mark Uc/κ = 3.78 (prediction of Ref. [24], bottom
cross) and result from simulation with complex Hubbard field (α = 0.95, top cross).

SDW, chiral Heisenberg 
Gross-Neveu universality 

no trace of multicritical 
(or triple) point



3 August 2018  |  Lorenz von Smekal  |  p.

Summary and Outlook

!18

• Extended Hubbard Model on Hexagonal Lattice

V

U

V = U/3

6

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

(<
S

i2
>

)1
/2

1/L

U=3.56κ,  V=1.17κ 
U=3.74κ,  V=1.23κ 
U=3.93κ,  V=1.30κ 
U=4.11κ,  V=1.36κ 
U=4.30κ,  V=1.42κ 
U=4.48κ,  V=1.48κ 
U=4.67κ,  V=1.54κ 

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

(<
S

i2
>

)1
/2

1/L

U=4.85κ,  V=1.60κ 
U=5.04κ,  V=1.67κ 
U=5.22κ,  V=1.73κ 
U=5.41κ,  V=1.79κ 
U=5.59κ,  V=1.85κ 
U=5.78κ,  V=1.91κ 
U=5.96κ,  V=1.97κ 

FIG. 1. Linear L → ∞ extrapolation of
√

⟨S2
i ⟩ for (U, V ) values along the V = U/3 line. On the left: in the weak-coupling

regime, on the right: in the strong-coupling regime with SDW order.

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

V=0.37κ

(<
S

i2
>

)1
/2

1/L

U=3.52κ
U=3.70κ
U=3.89κ
U=4.07κ
U=4.26κ
U=4.44κ
U=4.63κ

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

V=0.74κ

(<
S

i2
>

)1
/2

1/L

U=3.52κ
U=3.70κ
U=3.89κ
U=4.07κ
U=4.26κ
U=4.44κ
U=4.63κ

FIG. 2. Linear L → ∞ extrapolation of
√

⟨S2
i ⟩ for V = 0.37κ (left) and V = 0.74κ (right).

 0

 0.5

 1

 1.5

 2

 3.5  4  4.5  5  5.5  6

V
 /

 κ
U / κ

(<Si
2>)1/2, extrapolation L→ ∞

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0

 0.5

 1

 1.5

 2

 3.5  4  4.5  5  5.5  6

V
 /

 κ

U / κ

(<Si
2>)1/2 non-zero confidence levels

 0

 1

 2

 3

 4

 5

FIG. 3. On the left: L → ∞ limit of
√

⟨S2
i ⟩ from L = 6, 12, 18 (dots). On the right: number of standard deviations with

which
√

⟨S2
i ⟩ is non-zero at L = ∞ (values > 5 are displayed with the same color as 5). On both plots we also show the phase

boundary from intersection method with 2σ confidence band (lines). Crosses mark Uc/κ = 3.78 (prediction of Ref. [24], bottom
cross) and result from simulation with complex Hubbard field (α = 0.95, top cross).

SDW, chiral Heisenberg 
Gross-Neveu universality 

no trace of multicritical 
(or triple) point

Graphene 
(SDW)



3 August 2018  |  Lorenz von Smekal  |  p.

Summary and Outlook

!18

• Extended Hubbard Model on Hexagonal Lattice

V

U

V = U/3

6

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

(<
S

i2
>

)1
/2

1/L

U=3.56κ,  V=1.17κ 
U=3.74κ,  V=1.23κ 
U=3.93κ,  V=1.30κ 
U=4.11κ,  V=1.36κ 
U=4.30κ,  V=1.42κ 
U=4.48κ,  V=1.48κ 
U=4.67κ,  V=1.54κ 

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

(<
S

i2
>

)1
/2

1/L

U=4.85κ,  V=1.60κ 
U=5.04κ,  V=1.67κ 
U=5.22κ,  V=1.73κ 
U=5.41κ,  V=1.79κ 
U=5.59κ,  V=1.85κ 
U=5.78κ,  V=1.91κ 
U=5.96κ,  V=1.97κ 

FIG. 1. Linear L → ∞ extrapolation of
√

⟨S2
i ⟩ for (U, V ) values along the V = U/3 line. On the left: in the weak-coupling

regime, on the right: in the strong-coupling regime with SDW order.

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

V=0.37κ

(<
S

i2
>

)1
/2

1/L

U=3.52κ
U=3.70κ
U=3.89κ
U=4.07κ
U=4.26κ
U=4.44κ
U=4.63κ

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

V=0.74κ

(<
S

i2
>

)1
/2

1/L

U=3.52κ
U=3.70κ
U=3.89κ
U=4.07κ
U=4.26κ
U=4.44κ
U=4.63κ

FIG. 2. Linear L → ∞ extrapolation of
√

⟨S2
i ⟩ for V = 0.37κ (left) and V = 0.74κ (right).

 0

 0.5

 1

 1.5

 2

 3.5  4  4.5  5  5.5  6

V
 /

 κ
U / κ

(<Si
2>)1/2, extrapolation L→ ∞

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0

 0.5

 1

 1.5

 2

 3.5  4  4.5  5  5.5  6

V
 /

 κ

U / κ

(<Si
2>)1/2 non-zero confidence levels

 0

 1

 2

 3

 4

 5

FIG. 3. On the left: L → ∞ limit of
√

⟨S2
i ⟩ from L = 6, 12, 18 (dots). On the right: number of standard deviations with

which
√

⟨S2
i ⟩ is non-zero at L = ∞ (values > 5 are displayed with the same color as 5). On both plots we also show the phase

boundary from intersection method with 2σ confidence band (lines). Crosses mark Uc/κ = 3.78 (prediction of Ref. [24], bottom
cross) and result from simulation with complex Hubbard field (α = 0.95, top cross).

SDW, chiral Heisenberg 
Gross-Neveu universality 

no trace of multicritical 
(or triple) point

Ising Gross-Neveu 
(CDW)

Graphene 
(SDW)



3 August 2018  |  Lorenz von Smekal  |  p.

Summary and Outlook

!18

• Extended Hubbard Model on Hexagonal Lattice

V

U

V = U/3

6

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

(<
S

i2
>

)1
/2

1/L

U=3.56κ,  V=1.17κ 
U=3.74κ,  V=1.23κ 
U=3.93κ,  V=1.30κ 
U=4.11κ,  V=1.36κ 
U=4.30κ,  V=1.42κ 
U=4.48κ,  V=1.48κ 
U=4.67κ,  V=1.54κ 

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

(<
S

i2
>

)1
/2

1/L

U=4.85κ,  V=1.60κ 
U=5.04κ,  V=1.67κ 
U=5.22κ,  V=1.73κ 
U=5.41κ,  V=1.79κ 
U=5.59κ,  V=1.85κ 
U=5.78κ,  V=1.91κ 
U=5.96κ,  V=1.97κ 

FIG. 1. Linear L → ∞ extrapolation of
√

⟨S2
i ⟩ for (U, V ) values along the V = U/3 line. On the left: in the weak-coupling

regime, on the right: in the strong-coupling regime with SDW order.

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

V=0.37κ

(<
S

i2
>

)1
/2

1/L

U=3.52κ
U=3.70κ
U=3.89κ
U=4.07κ
U=4.26κ
U=4.44κ
U=4.63κ

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

V=0.74κ

(<
S

i2
>

)1
/2

1/L

U=3.52κ
U=3.70κ
U=3.89κ
U=4.07κ
U=4.26κ
U=4.44κ
U=4.63κ

FIG. 2. Linear L → ∞ extrapolation of
√

⟨S2
i ⟩ for V = 0.37κ (left) and V = 0.74κ (right).

 0

 0.5

 1

 1.5

 2

 3.5  4  4.5  5  5.5  6

V
 /

 κ
U / κ

(<Si
2>)1/2, extrapolation L→ ∞

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0

 0.5

 1

 1.5

 2

 3.5  4  4.5  5  5.5  6

V
 /

 κ

U / κ

(<Si
2>)1/2 non-zero confidence levels

 0

 1

 2

 3

 4

 5

FIG. 3. On the left: L → ∞ limit of
√

⟨S2
i ⟩ from L = 6, 12, 18 (dots). On the right: number of standard deviations with

which
√

⟨S2
i ⟩ is non-zero at L = ∞ (values > 5 are displayed with the same color as 5). On both plots we also show the phase

boundary from intersection method with 2σ confidence band (lines). Crosses mark Uc/κ = 3.78 (prediction of Ref. [24], bottom
cross) and result from simulation with complex Hubbard field (α = 0.95, top cross).

SDW, chiral Heisenberg 
Gross-Neveu universality 

no trace of multicritical 
(or triple) point

Ising Gross-Neveu 
(CDW)

chiral Gross-Neveu 
(CDW)

Graphene 
(SDW)



3 August 2018  |  Lorenz von Smekal  |  p.

Graphene Update

!19

• partially screened, long-range Coulomb
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• Extended Hubbard Model on Hexagonal Lattice

• Gross-Neveu NJL model

• Update on Graphene with realistically screened long-range Coulomb interactions

chiral fermion action, complex Hubbard fields, non-iterative Schur complement solver 

staggered lattice regularisation without doubling, study inhomogeneous phases 

no sign problem, in progress    

• Generalised Density of States, LLR, reweighting

finite charge carrier density away form half filling, with Kurt Langfeld, in progress    
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