Analysis of LHC quarkonium production data from pp to Pb-Pb collisions

- > Quarkonium production: from puzzles to understanding
- > NRQCD vs. LHC data: remarkably simple and universal patterns
- > Production in pp and suppression in Pb-Pb: a binding energy matter

Quark Confinement and the Hadron Spectrum Maynooth, Ireland, 2018

Carlos Lourenço, in collaboration with Pietro Faccioli, Mariana Araujo, and João Seixas

The "quarkonium polarization puzzle"

In the early 90's, CDF measured J/ ψ and ψ (2S) p_T -differential cross sections 50 times larger than expected in the color singlet model

The "quarkonium polarization puzzle"

In the early 90's, CDF measured J/ ψ and ψ (2S) p_T -differential cross sections 50 times larger than expected in the color singlet model

Bodwin, Braaten and Lepage developed the NRQCD approach, which adds a series of color octet terms, with free normalizations (LDMEs); the $d\sigma/dp_T$ could be described

The "quarkonium polarization puzzle"

In the early 90's, CDF measured J/ ψ and ψ (2S) p_T -differential cross sections 50 times larger than expected in the color singlet model

Bodwin, Braaten and Lepage developed the NRQCD approach, which adds a series of color octet terms, with free normalizations (LDMEs); the $d\sigma/dp_T$ could be described

The fitted LDMEs implied transverse polarization at high p_T , not seen in the data

needed!

The "quarkonium polarization puzzle"

In the early 90's, CDF measured J/ ψ and ψ (2S) p_T -differential cross sections 50 times larger than expected in the color singlet model

Bodwin, Braaten and Lepage developed the NRQCD approach, which adds a series of color octet terms, with free normalizations (LDMEs); the $d\sigma/dp_T$ could be described

The fitted LDMEs implied transverse polarization at high p_T , not seen in the data

But the Tevatron results mutually excluded each other...

Polarization measurements at the LHC

Vastly improved measurement techniques* lead to robust polarization experiments

No strong transverse polarizations seen, up to the highest probed p_T values

→ the *polarization puzzle* was not caused by problems in the Tevatron data

^{*} P. Faccioli et al., EPJC 69 (2010) 657; PRL 105 (2010) 061601; PRD 81 (2010) 111502

Quarkonium production in the NRQCD approach

In NRQCD several production mechanisms are foreseen for each quarkonium state

What is produced in the hard scattering (and determines kinematics and polarization) is a *pre-resonance* $Q\bar{Q}$ state with specific quantum properties

$$\sigma(A+B\to Q+X) = \sum_{S, L, C} S\{A+B\to (Q\bar{Q})_{C}[^{2S+1}L_{J}]+X\} \cdot 2\{(Q\bar{Q})_{C}[^{2S+1}L_{J}]\to Q\}$$

- 1) short-distance coefficients (SDCs): p_T -dependent partonic cross sections
- 2) long-distance matrix elements (LDMEs): constant, fitted from data

NRQCD hierarchies

Approximations (*heavy-quark limit*) and calculations induce hierarchies and links between pre-resonance contributions

- 1) Small quark velocities v in the bound state \rightarrow "v-scaling" rules for LDMEs
- 2) **Perturbative calculations** \rightarrow some SDCs are negligible:

3) **Heavy-quark spin symmetry** \rightarrow relations between LDMEs of different states

$$\frac{{}^{3}S_{1} \rightarrow \chi_{c2}}{{}^{3}S_{1} \rightarrow \chi_{c1}} = \frac{{}^{3}S_{1} \rightarrow \chi_{b2}}{{}^{3}S_{1} \rightarrow \chi_{b1}} = \frac{5}{3} , \qquad \frac{{}^{3}S_{1} \rightarrow \eta_{c} = {}^{1}S_{0} \rightarrow J/\psi}{{}^{3}S_{1} \rightarrow \eta_{b} = {}^{1}S_{0} \rightarrow \Upsilon} , \text{ etc.}$$

Dominant short-distance cross section contributions

Mixture of different pre-resonance contributions, with rather **diversified** kinematics and characteristic polarizations

 \rightarrow by fitting the measured $p_{\rm T}$ distributions, one determines the LDMEs of each term and consequently predict the polarizations

... a very delicate procedure!

The fit freely adjusts the normalizations (LDMEs) of the ${}^{1}S_{0}$, ${}^{3}S_{1}$ and ${}^{3}P_{J}$ colour-octet terms

The polarization dimension

Quarkonium polarization is characterized by λ_{θ} :

- measured as the polar anisotropy of the decay dilepton angular distribution
- \succ calculated from the transverse and longitudinal cross sections: $(\sigma_T \sigma_L) / (\sigma_T + \sigma_L)$

Each color singlet and octet term has a specific polarization associated:

```
^{1}S_{0} \rightarrow \lambda_{\vartheta} = 0 at LO, NLO, etc; isotropic wave function at LO, NLO, etc, at high p_{T}, where the fragmenting gluon is "real" ^{3}P_{J} \rightarrow \lambda_{\vartheta} >> +1 at NLO and high p_{T} ("hyper-transverse"); it is 0 at LO... at NLO and high p_{T}; it is \approx +1 at LO (has a small impact)
```

Dominance of the ³S₁ and ³P_J octets

$$\rightarrow \lambda_{\vartheta} \approx +1$$
 for high- p_{T} S-wave quarkonia

 \rightarrow NRQCD "predicts" transverse polarization at high p_T

Note: the ${}^{3}P_{J}$ octet has *negative* cross sections... and $\lambda_{9} >> +1$

Let's consider how the individual contributions compare to the data

Let's consider how the individual contributions compare to the data

All together now...

A closer look at past fits

Let's look at the high- p_T behaviours, by normalizing the curves to the data for $p_T/M > 3$

Data-driven global fit of LHC quarkonium measurements

Cross sections and polarizations are simultaneously used in the fit

In each step, the probed LDMEs are used to compute the theoretical $\lambda_{\vartheta}(p_{T})$ and $d\sigma/dp_{T}$, and the measured $d\sigma/dp_{T}$ spectra, recalculating the acceptance for the polarization under test

All other analyses fit the *unpolarized* $d\sigma/dp_T$ spectra ignoring that the detection acceptance depends on the assumed polarization

Point-to-point and global (luminosity) experimental uncertainties are properly considered

The analysis is restricted to the $\psi(2S)$ and $\Upsilon(3S)$ data, to minimise the feed-down

To get more stable results, the initial fits are made without the ³P_j^[8] octet When we include it, the fit quality does not improve and the results are not affected

Takes into account the low- p_T limitations of the calculated SDCs

Illustration of a $\psi(2S)$ fit, starting from $p_T = 3$ GeV

Illustration of a $\psi(2S)$ fit, starting from $p_T = 7$ GeV

Illustration of a $\psi(2S)$ fit, starting from $p_T = 12$ GeV

All data are equal but some are more equal than others

The fit quality improves dramatically if we do not include low p_T/M cross sections

For $p_T/M > 3$ the fit results are stable

The polarization data and the $p_T/M > 3$ cross section data imply ${}^1\mathbf{S}_0^{[8]}$ octet dominance

The solution of the quarkonium polarization puzzle

P. Faccioli et al. The $\psi(2S)$ and $\Upsilon(3S)$ cross sections and polarizations PLB 736 (2014) 98 Y(3S)can be simultaneously and consistently described as a superposition of singlet and octet SDCs for $p_T/M > 3$ 0.5 do / dp_dy [nb/GeV] ATLAS 1.2 < |y| < 2.2 CMS IyI < 0.6 ATLAS IVI < 1.2 Y(3S) $P(\chi^2, ndf) = 0.64$ y^2 / ndf = 36.2 / 40 -0.568.3% CL 95.5% CL 99.7% CL 10-4 20 30 40 50 10-5 $\psi(2S)$ CMS -|v| < 0.6p_T [GeV] 20 40 60 20 40 60 20 0.6 < |y| < 1.2dσ / dp_Tdy [nb/GeV] 1.2 < |y| < 1.5 LHCb 2.0 < y < 4.5 CMS |y| < 1.2 CMS 1.2 < |y| < 1.6 CMS 1.6 < |y| < 2.4 0.5 $\psi(2S)$ $\lambda^{\mathsf{HX}}_\vartheta$ -0.5-1 10-2 20 40 $p_{_{\!\scriptscriptstyle T}} [{\sf GeV}]$ 12 14 16 10 10 15 20 10 15 20 10 15 20 8 $p_{_{\rm T}}$ [GeV]

Unexpectedly simple data patterns

All quarkonia have identical p_T/M -differential cross section shapes, for $p_T/M > 2$, at mid-rapidity, independently of mass and quantum numbers

P. Faccioli et al. PLB 773 (2017) 476

Same production dynamics for S- and P-wave states

Identical p_T/M cross section shapes for S- and P-wave states ⇒ no sign of dependence of the production dynamics on the quantum numbers!

Small polar decay anisotropies, with no p_T dependences, for all S-wave states, despite very different P-wave feed-down contributions

A "surprising" agreement with NRQCD

The variety of kinematic behaviours predicted in NRQCD seems **redundant** with respect to the measured universal $p_{\rm T}/M$ scaling and lack of polarization

⇒ Fine-tuned cancellations are needed to reproduce the data and they actually happen!

Striking coincidence or trigger to improve NRQCD?

The seeming success of NRQCD uncovers a strong prediction:

the unmeasured χ_{c1} and χ_{c2} polarizations must be **very different** from one another

Long-distance scaling: another universal pattern?

P. Faccioli et al.

The quarkonium cross section scales from J/ ψ to $\Upsilon(1S)$ as

$$\frac{d\sigma/dp_{\mathrm{T}}(\Upsilon(1\mathrm{S}))}{d\sigma/dp_{\mathrm{T}}(\mathrm{J}/\psi)} = \left(\frac{m_b}{m_c}\right)^{-\alpha} \qquad \alpha = \begin{cases} 6.6 \pm 0.1 & 7 \text{ TeV} \\ 6.5 \pm 0.1 & 13 \text{ TeV} \end{cases}$$

The Drell-Yan cross section scales with mass as

$$\frac{d\sigma/dM (M_2)}{d\sigma/dM (M_1)} = \left(\frac{M_2}{M_1}\right)^{-(3+\beta)} \qquad \beta = 0.63 \pm 0.03$$

 $(\sqrt{s/M})^{\beta}$ is a parton-luminosity factor common to all processes

The quarkonium cross section scales as $m_0^{-(6.0 \pm 0.1)}$

Implications of the observed scaling patterns

Inclusive quarkonium production cross section from pure dimensional analysis:

$$\frac{d\sigma}{dp_{T}} = \sum_{i} m_{Q}^{-3} \times \frac{\mathcal{L}_{i}}{m_{Q}^{3}} \times \mathcal{F}_{i} \times \left(\frac{\sqrt{s}}{M}\right)^{\beta}$$

 \mathcal{L}_i and \mathcal{F}_i are generic functions of the variables m_Q , M, p_T/M , y, \sqrt{s}/M No a priori assumption about factorization into $Q\bar{Q}$ creation \times bound-state formation

ATLAS and CMS data at $|y| \gtrsim 2$ and $p_T/M \gtrsim 2$ tell us that:

the p_T/M dependence is the same, irrespectively of m_Q and M

 p_{T}/M and $\{m_{Q}, M\}$ do not mix: we can write $\mathcal{L} \times \mathcal{F}$ as $\mathcal{L}(m_{Q}, M, \sqrt{s}/M) \times \mathcal{F}(p_{\mathrm{T}}/M, y, \sqrt{s}/M)$

experimental evidence that short- and long-distance effects "factorize"

from charmonium to bottomonium the partonic-level (PDF-undressed) cross section scales like m_Q^{-6} , with no observed dependence on \sqrt{s}

further specification of the "LDME": $\mathcal{L} = \mathcal{L} \left(\frac{M}{m_Q} \right)$ independent of m_Q and \sqrt{s}

Mass scaling of S-wave cross sections

Refined determination of the mass scaling, using all S states and adopting the short \times long-distance "factorized" point of view :

"within each quarkonium family"

 (M/m_O) -dependent "LDME":

$$\frac{\mathrm{d}\sigma/\mathrm{d}p_{\mathrm{T}}(M=M_{\psi|\Upsilon})}{\mathrm{d}\sigma/\mathrm{d}p_{\mathrm{T}}(M\to 2m_{c|b})} = \left(\frac{M_{\psi|\Upsilon}}{2m_{c|b}}\right)^{-(9.7\pm0.3)}$$

one common slope parameter fits well both ψ and Υ states

"from charmonium to bottomonium"

(dependence on m_Q):

$$\frac{\mathrm{d}\sigma/\mathrm{d}p_{\mathrm{T}}(M\to 2m_b)}{\mathrm{d}\sigma/\mathrm{d}p_{\mathrm{T}}(M\to 2m_c)} = \left(\frac{m_b}{m_c}\right)^{-(6.63 \pm 0.08)}$$

Using: $2m_Q = M_{\eta_c(1S)} | M_{\eta_b(1S)}$

initial assumption (iteratively improved): $f_{DIR} = (50|60|70 \pm 10)\%$ for Y(1|2|3S) inspired by data including LHCb's forward-rapidity χ_b [EPJ C 74, 3092]

Long-distance scaling: a universal pattern?

P. Faccioli et al. EPJC 78 (2018) 118

The $Q\overline{Q} \to bound$ -state "transition probabilities" ("LDMEs") show a clear correlation with binding energy

- 1) common to charmonium and bottomonium
- 2) identical at 7 and 13 TeV

Further experimental evidence that the dependence on bound-state mass is a "factorizable" long-distance effect (independent of lab momentum dependence)

→ an experimental validation of the "factorization" ansatz of NRQCD

The "missing pieces" of quarkonium feed-down

P. Faccioli et al. EPJC 78 (2018) 118

Assuming that the "universal" E_b dependence hypothesis can be extended to the P-wave states

$$\frac{\sigma_{\chi}}{\sigma_{Q\bar{Q}}} \propto E_{\rm b}^{0.63 \pm 0.02}$$

 χ_c data come to constrain the χ_b (1-2-3P) cross sections and, using BFs from PDG, the feed-down structure of quarkonium production can be fully predicted

			• Y1S	tot	59.0 +- 4.9	•
			•	from chib0_1P	1.22 +- 0.29	•
				from chib1_1P	21.7 +- 3.6	•
eard days	C	(0/) -	•	from chib2_1P	11.5 +- 2.1	· chib0_2
reea-aown	fractions in pp	(%):	•	from Y2S	11.3 +- 1.6	- 8
		21.0 . 1.6		from chib0_2P	0.167 +- 0.082	•
Jpsi	tot	31.9 +- 1.6	•	from chib1_2P	5.1 +- 1.1	chib1_2
	from chic0	0.762 +- 0.059	•	from chib2_2P	3.40 + - 0.74	•
	from chic1	15.61 +- 0.99		from Y3S	1.51 +- 0.28	•
	from chic2	7.83 +- 0.53		from chib0_3P	0.018 +- 0.016	chib2_2
	from psi2S	7.67 +- 0.88		from chib1_3P	1.59 +- 0.52	*
	from Y1S	(5.57 +- 0.69) E-5	•	from chib2_3P	1.35 +- 0.52	•
	from Y2S	(2.2 +- 2.2) E-5				* Y3S
			· chib0 1P	tot	2.67 +- 0.62	
chic0	tot	2.09 +- 0.26	• 1	from Y2S	2.58 +- 0.61	- 9
	from psi2S	2.09 +- 0.26	- 3	from Y3S	0.099 +- 0.028	
	from Y1S	(3.4 +- 3.4) E-5				
	from Y2S	(1.5 +- 1.5) E-5	· chib1_1P	tot	4.8 +- 1.0	
				from Y2S	4.7 +- 1.0	
chic1	tot	2.61 +- 0.33		from Y3S	0.033 +- 0.020	
	from psi2S	2.61 +- 0.33		110111 133	0.033 1 0.020	
	from Y1S	(4.26 +- 0.89) E-5	· chib2 1P	tot	5.3 +- 1.1	
	from Y2S	(2.10 +- 0.55) E-5		from Y2S	5.0 +- 1.1	
				from Y3S	0.372 +- 0.099	74.1
chic2	tot	2.81 +- 0.35	123	110111 133	0.372 +- 0.033	- 9
	from psi2S	2.81 +- 0.35				- 8
	from Y1S	(7.1 +- 2.) E-5				- 1
	from Y2S	(2.48 + - 0.92) E-5				
						•
psi2S	tot	(1.36 + - 0.43) E-4				•
	from Y1S	(1.01 + - 0.22) E-4	- B.			
	from Y2S	(0.35 + - 0.35) E-4	-			

Y2S	tot	45.0 +- 5.7	
	from chib0_2P	1.42 +- 0.43	
	from chib1_2P	19.0 +- 3.8	
	from chib2_2P	9.2 +- 2.1	
		5.7 +- 1.2	
	from chib0_3P	0.15 +- 0.12	
	from chib1_3P	5.9 +- 1.7	
	from chib2_3P	3.7 +- 1.3	
chib0_2P		3.09 +- 0.79	
	from Y3S	3.09 +- 0.79	9.
			- 6
chib1_2P		6.5 +- 1.6	3.
	from Y3S	6.5 +- 1.6	
			-
chib2_2P		6.8 +- 1.7	3.
	from Y3S	6.8 +- 1.7	- 8
8			
Y3S	tot	25.9 +- 5.5	- 8*
	from chib0_3P		- 30
	from chib1_3P		- 3
	from chib2_3P	7.8 +- 2.4	-
			-8.
			•
			- 8*
			-
			-8
			- 12

Summary: 1) NRQCD vs. LHC

Long-lasting experimental and theoretical polarization puzzles have been solved: NRQCD describes very well the cross section *and* polarization measurements. However, the presently existing SDCs are not good in the $p_T/M < 3$ domain.

The mid-rapidity charmonium and bottomonium pp data are well described by a simple parametrization reflecting a **universal** (**state-independent**) scaling with two variables:

- 1. shapes of the p_T distributions $\rightarrow p_T/M$ short distance
- 2. cross-section scaling with mass $\rightarrow E_b$ long distance

This parametrization mirrors well the general idea of factorization

Quarkonium suppression in Pb-Pb collisions

Can we describe the Pb-Pb data assuming a minimal modification of the universal E_{binding} -scaling found for pp data?

Can we find evidence of the conjectured quarkonium sequential suppression?

The $\psi(2S)$ is strongly suppressed already in the most peripheral events probed by experiments

The ψ (2S) has a very small binding energy

threshold effect
in binding energy ?

Quarkonium suppression as a penalty in binding energy

Basic hypothesis: the "universal bound-state transition function" is modified by the hot nuclear medium effects through a penalty in the binding energy

$$f_{\rm pp}^{\psi/\Upsilon}(E_{\rm b}) \equiv \left(\frac{\sigma^{\rm dir}(\psi/\Upsilon)}{\sigma(2m_Q)}\right)_{\rm pp} = \left(\frac{E_{\rm b}}{E_0}\right)^{\delta} \qquad \longrightarrow \qquad f_{\rm PbPb}^{\psi/\Upsilon}(E_{\rm b}, \epsilon) \equiv \left(\frac{\sigma^{\rm dir}(\psi/\Upsilon)}{\sigma(2m_Q)}\right)_{\rm PbPb} = \left(\frac{E_{\rm b} - \epsilon}{E_0}\right)^{\delta}$$

where ε is assumed to follow a Gaussian distribution, of average $<\varepsilon>$ and width σ_{ε} .

With increasing ε it becomes less and less probable to *form* the bound state and for $E_b - \varepsilon < 0$ the quarkonium state is no longer produced.

The nuclear suppression ratio for *direct* production of the quarkonium state ψ_k is

$$R_{AA}^{\text{dir}}(E_{\text{b}}, \langle \epsilon \rangle, \sigma_{\epsilon}) = F_{\text{PbPb}}^{\psi/\Upsilon}(E_{\text{b}}, \langle \epsilon \rangle, \sigma_{\epsilon}) / f_{\text{pp}}^{\psi/\Upsilon}(E_{\text{b}})$$

where $\langle \varepsilon \rangle$ and σ_{ε} are the same for all states.

The suppression ratio for inclusive quarkonium production depends on the feed-down:

$$R_{AA}^{\rm inc}(\psi_k, \langle \epsilon \rangle, \sigma_{\epsilon}) = \frac{\sum_j R_{AA}^{\rm dir}[E_{\rm b}(\psi_j), \langle \epsilon \rangle, \sigma_{\epsilon}] \, \sigma_{\rm pp}^{\rm dir}(\psi_j) \, \mathcal{B}(\psi_j \to \psi_k)}{\sum_j \sigma_{\rm pp}^{\rm dir}(\psi_j) \, \mathcal{B}(\psi_j \to \psi_k)}$$

Graphical illustrations

Curves: suppression of direct production

Points: suppression of inclusive production, with feed-down effects specific to each state

Qualitative comparison with data integrated over centrality

Curves: suppression of direct production

Points: suppression of inclusive production, with feed-down effects specific to each state

Global fit of R_{AA} data vs. centrality (Npart)

- 37 data points
- 3 free parameters
- 70 nuisance parameters (BFs, pp cross sections, global uncertainties)

Npart

Global fit of R_{AA} data vs. binding energy

Experimental evidence of sequential nuclear suppression, increasingly penalizing the more weakly bound states

as foreseen in the case of quark gluon plasma screening

gray: direct production coloured: inclusive

ψ(2S) Y(3S) Y(2S)

Y(1S)

Summary: 1) NRQCD vs. LHC; 2) Pb-Pb vs. pp

Long-lasting experimental and theoretical polarization puzzles have been solved: NRQCD describes very well the cross section *and* polarization measurements. However, the presently existing SDCs are not good in the $p_T/M < 3$ domain.

The mid-rapidity charmonium and bottomonium pp data are well described by a simple parametrization reflecting a **universal** (**state-independent**) scaling with two variables:

- 1. shapes of the p_T distributions $\rightarrow p_T/M$ short distance
- 2. cross-section scaling with mass $\rightarrow E_b$ long distance

This parametrization mirrors well the general idea of factorization

Also the Pb-Pb data (for S-wave states) show a surprisingly simple pattern:

 R_{AA} can be parametrized assuming a shift of the binding-energy, equal in magnitude for all charmonia and bottomonia (at least in first approximation)

3. centrality dependence $\rightarrow E_b - \varepsilon$

Further reading

- P. Faccioli, C. Lourenço and J. Seixas, Rotation-invariant relations in vector meson decays into fermion pairs, Phys. Rev. Lett. 105, 061601 (2010)
- P. Faccioli, C. Lourenço and J. Seixas,
 New approach to quarkonium polarization studies,
 Phys. Rev. D 81, 111502(R) (2010)
- P. Faccioli, C. Lourenço, J. Seixas and H.K. Wöhri, Towards the experimental clarification of quarkonium polarization, <u>Eur. Phys. J. C 69, 657 (2010)</u>
- P. Faccioli,
 Questions and prospects in quarkonium polarization measurements from proton-proton to nucleus-nucleus collisions,
 Mod. Phys. Lett. A 27, 1230022 (2012)
- P. Faccioli, V. Knünz, C. Lourenço, J. Seixas and H.K. Wöhri, Quarkonium production in the LHC era: a polarized perspective, Phys.Lett. B736 (2014) 98
- P. Faccioli, C. Lourenço, M. Araújo, J. Seixas, I. Krätschmer and V. Knünz,
 Quarkonium production at the LHC: a data-driven analysis of NRQCD's predictions,
 Phys. Lett. B773 (2017) 476
- P. Faccioli, C. Lourenço, M. Araújo, J. Seixas, I. Krätschmer and V. Knünz, From identical S- and P-wave p_T spectra to maximally distinct polarizations: probing NRQCD with χ states, Eur. Phys. J. C78 (2018) 268
- P. Faccioli, C. Lourenço, M. Araújo and J. Seixas, Universal kinematic scaling as a probe of factorized long-distance effects in high-energy quarkonium production, Eur. Phys. J. C78 (2018) 118
- P. Faccioli and C. Lourenço,
 The fate of quarkonia in heavy-ion collisions at LHC energies: a unified description of the sequential suppression patterns,
 Submitted to EPJC

Backup

Higher energy, broader distribution

Distribution of pulls (7 TeV fit)

CMS 8 TeV

CMS 7 TeV x 0.8

ATLAS 7 TeV (2011) x 0.6

40

M [GeV]

50

ATLAS 7 TeV (2010) x 0.4

quarkonium, 7 TeV:

$$\frac{d\sigma/dp_{T}(\Upsilon(1S))}{d\sigma/dp_{T}(J/\psi)} = \left(\frac{m_b}{m_c}\right)^{-(6.6 \pm 0.1)}$$

Drell-Yan at $7 \mid 8 \text{ TeV for M} < M_7$:

$$\frac{d\sigma/dM (M_2)}{d\sigma/dM (M_1)} = \left(\frac{M_2}{M_1}\right)^{-(3.63 \pm 0.03)}$$

$$\frac{d\sigma^{\rm DY}}{dM} \propto M^{-3}$$
 at partonic level

$$\frac{d\sigma^{\rm DY}}{dM} \propto M^{-(3+\beta)}$$
 including parton-luminosity factor $\approx (\sqrt{s/M})^{\beta}$, common to all processes

10²

10

JHEP 06 (2014) 112 JHEP 12 (2013) 030

EPJ C 75 (2015) 147

20

[Veb/GeV]

$$\Rightarrow \beta = 0.63 \pm 0.03$$

 \Rightarrow the "PDF-undressed" quarkonium cross section goes like $m_{Q}^{-(6.0\,\pm\,0.1)}$

quarkonium: m_Q^{-6} DY: M^{-3}

the difference seems to be just the $[m_Q^3]$ -dimensional bound-state wave function!

