

Bayesian unfolding of charged-particle *p*_T spectra with ALICE at the LHC

Mario Krüger

Goethe-University Frankfurt am Main

XIIth Quark Confinement and the Hadron Spectrum Conference

August 1st, 2018

- Motivation
- ALICE experiment
- Unfolding of multiplicity distributions
- Unfolding of *p*^T spectra
- Summary

ALICE at CERN-LHC

https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2015/554babea955c1.jpg

ALICE at CERN-LHC

https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2015/554babea955c1.jpg http://www.scinexx.de/wissen-aktuell-bild-21730-2017-08-04-34019.html

Motivation

- charged particle production
- pp collisions:
 - Reference for Pb-Pb
 - Effects of multiple parton interactions
 - Hadronization beyond independent string fragmentation (color reconnection, CR)

Motivation

- charged particle production
- pp collisions:
 - Reference for Pb-Pb
 - Effects of multiple parton interactions
 - Hadronization beyond independent string fragmentation (color reconnection, CR)
- Shape of transverse-momentum (p_T) spectra dependents on multiplicity (N_{ch}) of event
 - → Differential measurement

Motivation

- <pT> characteristic for spectral shape
- Hot topic: spectra with high multiplicity in pp vs. Pb-Pb
- Goal: full spectral shape as function of multiplicity N_{ch}

→ Bayesian unfolding

1/N_{ev} d²N/dp₇dη (GeV⁻¹c)

 10^{12}

10

🗏 nn 🔲 Ph-Ph 0-5%

1

Syst. Unc. (%)

Ph-Ph 70-80%

p-Pb

 p_{τ} (GeV/c)

10

ALICE

- ALICE detectors for tracking:
 - Inner Tracking System (ITS)
 - Time Projection Chamber (TPC)
- Primary charged particles
 - 0.15 GeV/ $c < p_T < 10$ GeV/c
 - $|\eta| < 0.8$

Measured multiplicity ≠ True multiplicity

True vs. Measured Multiplicity

Unfolding Procedure

Method following Nucl. Instr. Meth. Phys. Res. A 362 (1995) 487-498

Unfolding Procedure

$$P(N_{\rm ch}|N_{\rm acc}) = \frac{P(N_{\rm acc}|N_{\rm ch}) \cdot P(N_{\rm ch})}{P(N_{\rm acc})}$$
 Bayes' Theorem

$$P(N_{\rm ch}|N_{\rm acc}) = \frac{P(N_{\rm acc}|N_{\rm ch}) \cdot P(N_{\rm ch})}{\sum_{N'_{\rm ch}} P(N_{\rm acc}|N'_{\rm ch}) \cdot P(N'_{\rm ch})}$$

$$\begin{split} P(N_{\rm ch}|N_{\rm acc}) &= \frac{P(N_{\rm acc}|N_{\rm ch}) \cdot P(N_{\rm ch})}{P(N_{\rm acc})} \quad \text{Bayes' Theorem} \\ P(N_{\rm ch}|N_{\rm acc}) &= \frac{P(N_{\rm acc}|N_{\rm ch}) \cdot P(N_{\rm ch})}{\sum_{N'_{\rm ch}} P(N_{\rm acc}|N'_{\rm ch}) \cdot P(N'_{\rm ch})} \quad P(N_{\rm ch}) \quad P(N_{\rm ch}) \quad P(N_{\rm ch}) \quad P(N'_{\rm ch}$$

 $D(\Lambda T)$

 $D (\lambda T$

QCHS18 | 2018-08-01 | Bayesian unfolding of charged-particle *p*^T spectra with ALICE at the LHC | Mario Krüger

Unfolding of p_T Spectra

- 2D problem
- p_{T} resolution of tracking detectors

•
$$p_{\rm T}^{true} \rightarrow p_{\rm T}^{meas}$$

• only small effect on p_T spectra

Unfolding of *p*_T Spectra — Events vs. Particles ALICE **Measurement** Probability for an event Truth with multiplicity N_{ch} to be measured with multiplicity Nacc $P(N_{\rm acc}|N_{\rm ch})$ Ñ_{ch} N_{acc} 3 3 2 2 1 4 4 1 рт (GeV/c) (GeV/c)⁻² (GeV/c)⁻² GeV/c $P_{\rm part}(N_{\rm acc}|N_{\rm ch})$ 10^{-1} 10 10⁻² $\int_{0}^{1} e^{-\beta} e^{-\beta} e^{-\frac{1}{2}} e^{-\beta} \int_{0}^{1} N/(d\rho_{T}d\eta dN_{acc})$ _dŋdN_{ch} 10 10⁻³ 10 βT 10⁻⁴ ______/(N)/(N 10-4 **Probability for a primary** 10⁻⁵ 10⁻⁴ charged particle 10⁻⁶ originating from an event 10⁻⁷ with multiplicity N_{ch} to contribute to an event 10⁻⁸ ALICE simulation 1/N_{evt} $\sqrt{s} = 5.02 \text{ TeV}, |\eta| < 0.8$ 10⁻⁹ with multiplicity N_{acc} 10^{-9} 90 50 60 70 80 80 90 20 30 40 50 60 70 10 10 20 30 Nacc N_{ch}

QCHS18 | 2018-08-01 | Bayesian unfolding of charged-particle *p*^T spectra with ALICE at the LHC | Mario Krüger

AT.T-STMUL-14510

Unfolding of p_T Spectra — p_T Differential

ALI-SIMUL-145107

- Bayesian unfolding for p_T slice
 - \rightarrow Composition with respect to N_{ch}

Unfolding of p_T Spectra — p_T Differential

10

20

30

- p_T dependent measured N_{acc} distribution input for unfolding procedure
 - \rightarrow Each N_{acc} distribution: Different N_{ch} composition

Nacc

40

Measured and Unfolded *p*_T Spectra

- Multiplicity dependent charged-particle p_T spectra up to $N_{ch} \approx 80$
- Best possible resolution ($\Delta N_{ch} = 1$)

MC Studies

Closure test:

- Unfolding of p_T spectra from MC
- Comparison with MC truth p_{T} -spectra
- Difference: Important indicator for systematic uncertainty of procedure

MC Studies

Closure test:

- Unfolding of p_T spectra from MC
- Comparison with MC truth p_{T} -spectra
- Difference: Important indicator for systematic uncertainty of procedure
- Alternative method (*re-weighting*) to obtain <*p*_T> vs. *N*_{ch} (as in [1])
 - → Bias covered by assigned syst. unc. in previous publication
- Bayesian unfolding more accurate
 - \rightarrow < p_T > results have lower syst. unc.

[1] Phys. Lett. B 727 (2013) 371-380

MC Studies

 Bayesian unfolding: Higher moments in good agreement with MC truth as well

 $\langle p_{\mathrm{T}}^{m} \rangle = \frac{\int_{p_{\mathrm{T}}} f(p_{\mathrm{T}}) p_{\mathrm{T}}^{m} \mathrm{d}p_{\mathrm{T}}}{\int_{p'_{\mathrm{T}}} f(p_{\mathrm{T}}) \mathrm{d}p'_{\mathrm{T}}}$

Summary and Outlook

 Bayesian unfolding method for multiplicity dependent

charged-particle p_T spectra

- Method validation via MC closure test
 - → reduced systematic uncertainties

compared to re-weighting method

Outlook:

- Application to data
- Study of energy and system size dependence
- High multiplicity in pp vs. Pb-Pb

