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The unfolding problem

Any differential cross section measurement is affected by the finite
resolution of the particle detectors

This causes the observed spectrum of events to be “smeared” or
“blurred” with respect to the true one

The unfolding problem is to estimate the true spectrum using the
smeared observations

Ill-posed inverse problem with major methodological challenges
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Problem formulation

Let f be the true, particle-level spectrum and g the smeared, detector-level
spectrum

Denote the true space by T and the smeared space by S (both taken
to be intervals on the real line)
Mathematically f and g are the intensity functions of the underlying
Poisson point process

The two spectra are related by

g(s) =

∫
T

k(s, t)f (t) dt,

where the smearing kernel k represents the response of the detector and is
given by

k(s, t) = p(Y = s|X = t,X observed)P(X observed|X = t),

where X is a true event and Y the corresponding smeared event

Task: Infer the true spectrum f given smeared observations from g
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Discretization

Problem primarily discretized using histograms
Let {Ti}pi=1 and {Si}ni=1 be binnings of the true space T and the smeared space S
Smeared histogram y = [y1, . . . , yn]T with mean

µ =

[∫
S1

g(s) ds, . . . ,

∫
Sn

g(s) ds

]T
Quantity of interest:

λ =

[∫
T1

f (t) dt, . . . ,

∫
Tp

f (t) dt

]T
The mean histograms are related by µ = Kλ, where the elements of the response
matrix K are given by

Ki,j =

∫
Si

∫
Tj
k(s, t)f (t) dt ds∫
Tj
f (t) dt

= P(smeared event in bin i | true event in bin j)

The discretized statistical model becomes

y ∼ Poisson(Kλ),

where K is an ill-conditioned matrix
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Current unfolding methods

Two main approaches (more information in the backup ):

1 Tikhonov regularization (i.e., SVD by Höcker and Kartvelishvili (1996) and TUnfold by

Schmitt (2012)):
min
λ∈Rp

(y − Kλ)TĈ−1(y − Kλ) + δP(λ)

with

PSVD(λ) =

∥∥∥∥∥∥∥∥∥L

λ1/λ

MC
1

λ2/λ
MC
2

...
λp/λ

MC
p


∥∥∥∥∥∥∥∥∥

2

or PTUnfold(λ) = ‖L(λ− λMC)‖2,

where L is usually the discretized second derivative (also other choices possible)

2 Expectation-maximization iteration with early stopping (D’Agostini, 1995):

λ
(t+1)
j =

λ
(t)
j∑n

i=1 Ki,j

n∑
i=1

Ki,jyi∑p
k=1 Ki,kλ

(t)
k

, with λ(0) = λMC

All these methods typically regularize by biasing towards a MC ansatz λMC

Regularization strength controlled by the choice of δ in Tikhonov or by the number of
iterations in D’Agostini

Uncertainty quantification:
[
λi , λi

]
=
[
λ̂i − z1−α/2

√
v̂ar
(
λ̂i

)
, λ̂i + z1−α/2

√
v̂ar
(
λ̂i

) ]
,

with v̂ar
(
λ̂i

)
estimated using error propagation or resampling
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Choice of the regularization strength

A key issue in unfolding is the choice of the regularization strength (δ in
Tikhonov, # of iterations in D’Agostini)

The solution and especially the uncertainties depend heavily on this choice

This choice should be done using an objective data-driven criterion

In particular, one must not rely on the software defaults for the regularization
strength

Many data-driven methods have been proposed:
1 (Weighted/generalized) cross-validation (e.g., Green and Silverman, 1994)
2 L-curve (Hansen, 1992)
3 Empirical Bayes estimation (Kuusela and Panaretos, 2015)
4 Goodness-of-fit test in the smeared space (Veklerov and Llacer, 1987)
5 Akaike information criterion (Volobouev, 2015)
6 Minimization of a global correlation coefficient (Schmitt, 2012)
7 ...

Limited experience about the relative merits of these in typical unfolding
problems

Important note: All of these are designed for point estimation!

Not necessarily optimal for uncertainty quantification
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Simulation setup
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∫
T
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Will focus on the following question: Do the unfolded confidence intervals
have the advertised coverage probability

P
(
λi ∈

[
λi (y), λi (y)

])
≈ 1− α
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Undercoverage of existing methods
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Optimal point estimation 6= optimal uncertainty quantification

In terms of the uncertainties, standard methods for choosing δ tend to
regularize too heavily

Similar conclusions hold for other common methods (D’Agostini, TUnfold,...)
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Undersmoothed unfolding

A simple way to improve the coverage is to reduce the regularization strength δ
from the value that is optimal for point estimation

In other words, adjust the bias-variance trade-off to the direction of less bias and more
variance

I introduced in Kuusela (2016) a data-driven technique for deciding how much one
should undersmooth

Outline of undersmoothed UQ for unfolding

1 Choose a pilot estimate of δ using one of the standard data-driven methods
(cross-validation, empirical Bayes, L-curve,...)

2 Reduce δ until intervals in all bins have estimated coverage greater than 1− α− ε, for
some small tolerance ε

Coverage estimated using a hybrid plug-in approach; see Kuusela (2016)
I have recently been working with Lyle Kim (a statistics student at UChicago) to
implement undersmoothing as an extension of TUnfold V17.6
The code is available at:

https://github.com/lylejkim/UndersmoothedUnfolding
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Unfolded histograms, λMC = 0
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Binwise coverage, λMC = 0

Bin
0 5 10 15 20 25 30 35 40

C
ov

er
ag

e 
(1

00
0 

re
pe

tit
io

ns
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Binwise coverage, ScanLcurveBinwise coverage, ScanLcurve

Figure: L-curve

Bin
0 5 10 15 20 25 30 35 40

C
ov

er
ag

e 
(1

00
0 

re
pe

tit
io

ns
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Binwise coverage, UndersmoothingBinwise coverage, Undersmoothing

Figure: Undersmoothing

Mikael Kuusela (SAMSI/UNC/CMU) August 2, 2018 11 / 18



Future directions

Undersmoothing can provide unfolded confidence intervals with reasonable length
and coverage

Further improvement provided by iterative bias-corrections (Kuusela, 2016)
These debiasing approaches work in a wide variety of cases, but they do eventually
break down in challenging enough scenarios (very low sample size, lots of smearing,
f has difficult shape,...)

An alternative approach is to regularize using shape constraints (Kuusela and
Stark, 2017)

This approach yields guaranteed coverage if something is known about the shape of
the true spectrum (monotonicity, convexity, unimodality,...)

At the end of the day, any regularization technique makes unverifiable assumptions
about the true spectrum

If these assumptions are not satisfied, the uncertainties will be wrong

It seems to me that the fundamental problem is that we are asking too hard
questions about the true spectrum

One simply cannot recover extremely detailed information about f without further
outside knowledge

So the question becomes: What features of f can be recovered based on the
smeared data y and how to do this with honest unregularized uncertainties?
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Wide bin unfolding?

One functional we should be able to recover without explicit
regularization is the integral of f over a wide unfolded bin:

H[f ] =

∫
Tj

f (t) dt, width of Tj large

But one cannot simply arbitrarily increase the particle-level bin size in the
conventional approaches, since this increases the MC dependence of K
To circumvent this, it is possible to first unfold with fine bins and then
aggregate into wide bins

Let’s see how this works!

Simulation setup: λ̂ = K †y , convolution kernel N (0, 0.352), slightly
different f MC, otherwise as before
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Wide bins, standard approach, perturbed MC
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The response matrix Ki ,j =

∫
Si

∫
Tj
k(s,t)f MC(t) dt ds∫
Tj
f MC(t) dt

depends on f MC

⇒ Undercoverage if f MC 6= f
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Wide bins, standard approach, correct MC
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If f MC = f , coverage is correct
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Fine bins, standard approach, perturbed MC
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With narrow bins, less dependence on f MC so coverage is correct, but the
intervals are very wide
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Wide bins via fine bins, perturbed MC
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Wide bins via fine bins gives both correct coverage and intervals with
reasonable length
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Conclusions

Coverage is a useful criterion for validating, optimizing and comparing
unfolding methods

Standard methods can have drastically lower coverage than expected,
unless care is taken in the choice of the regularization strength

Optimal point estimation 6= optimal uncertainty quantification

Undersmoothing (which is now available for ROOT) provides one way of
obtaining intervals with both reasonable coverage and reasonable length

Further progress is likely to involve a major rethinking of the role of
regularization

Any regularization really means some amount of “cheating” on the
uncertainties
We should probably think of ways to provide unregularized uncertainties
on relevant, well-chosen functionals of f , such as integral over wide bins
A simple step in this direction is to first unfold with narrow bins and then
compute the functionals
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Backup
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Current methodology

Two main approaches to unfolding:

1 Tikhonov regularization (Höcker and Kartvelishvili, 1996; Schmitt, 2012)

2 Expectation-maximization iteration with early stopping (D’Agostini, 1995;
Richardson, 1972; Lucy, 1974; Shepp and Vardi, 1982; Lange and Carson,
1984; Vardi et al., 1985)
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Tikhonov regularization

Tikhonov regularization estimates λ by solving:

min
λ∈Rp

(y −Kλ)TĈ−1(y −Kλ) + δP(λ)

The first term as a Gaussian approximation to the Poisson log-likelihood
The second term penalizes physically implausible solutions
Common penalty terms:

Norm: P(λ) = ‖λ‖2
Curvature: P(λ) = ‖Lλ‖2, where L is a discretized 2nd derivative operator
SVD unfolding (Höcker and Kartvelishvili, 1996):

P(λ) =

∥∥∥∥∥∥∥∥∥L

λ1/λ

MC
1

λ2/λ
MC
2

...
λp/λ

MC
p


∥∥∥∥∥∥∥∥∥
2

,

where λMC is a MC prediction for λ
TUnfold1 (Schmitt, 2012): P(λ) = ‖L(λ− λMC)‖2

1TUnfold implements also more general penalty terms
Mikael Kuusela (SAMSI/UNC/CMU) August 2, 2018 25 / 18



D’Agostini iteration

Starting from some initial guess λ(0) > 0, iterate

λ
(k+1)
j =

λ
(k)
j∑n

i=1 Ki ,j

n∑
i=1

Ki ,jyi∑p
l=1 Ki ,lλ

(k)
l

Regularization by stopping the iteration before convergence:

λ̂ = λ(K) for some small number of iterations K
I.e., bias the solution towards λ(0)

Regularization strength controlled by the choice of K

In RooUnfold (Adye, 2011), λ(0) = λMC
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D’Agostini iteration

λ
(k+1)
j =

λ
(k)
j∑n

i=1 Ki ,j

n∑
i=1

Ki ,jyi∑p
l=1 Ki ,lλ

(k)
l

This iteration has been discovered in various fields, including optics
(Richardson, 1972), astronomy (Lucy, 1974) and tomography (Shepp
and Vardi, 1982; Lange and Carson, 1984; Vardi et al., 1985)

In particle physics, it was popularized by D’Agostini (1995) who
called it “Bayesian” unfolding

But: This is in fact an expectation-maximization (EM) iteration
(Dempster et al., 1977) for finding the maximum likelihood estimator
of λ in the Poisson regression problem y ∼ Poisson(Kλ)

As k →∞, λ(k) → λ̂MLE (Vardi et al., 1985)

This is a fully frequentist technique for finding the (regularized) MLE

The name “Bayesian” is an unfortunate misnomer
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D’Agostini demo, k = 0
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D’Agostini demo, k = 100
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D’Agostini demo, k = 10000
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D’Agostini demo, k = 100000
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Other methods

Bin-by-bin correction factors

Attempts to unfold resolution effects by performing multiplicative efficiency
corrections
This method is simply wrong and must not be used (it is no longer allowed in CMS)

Fully Bayesian unfolding (Choudalakis, 2012)

Unfolding using Bayesian statistics where the prior regularizes the ill-posed problem
Certain priors lead to solutions similar to Tikhonov, but with Bayesian credible
intervals as the uncertainties
Note: D’Agostini has nothing to do with proper Bayesian inference

RUN/TRUEE (Blobel, 1985, 1996; Milke et al., 2013)

Penalized maximum likelihood with B-spline discretization

Shape-constrained unfolding (Kuusela and Stark, 2017)

Correct-coverage uncertainties by imposing constraints on positivity, monotonicity
and convexity

Expectation-maximization with smoothing (Volobouev, 2015)

Adds a smoothing step to each iteration of D’Agostini

Iterative dynamically stabilized unfolding (Malaescu, 2011)

Seems quite ad-hoc, with many free tuning parameters and unknown (at least to
me) statistical properties
I have not seen this used in CMS, but it seems to be quite common in ATLAS

...
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Coverage as a function of regularization strength (Kuusela, 2016)

10 -1 10 0 10 1 10 2 10 3 10 4 10 5

0

0.2

0.4

0.6

0.8

1

  
  
  
 C

o
v
e
ra

g
e

 a
t 
ri
g
h
t 
p
e
a
k

                      (a) SVD variant of Tikhonov regularization
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Undercoverage of existing methods (Kuusela, 2016)

−5 0 5
0

0.2

0.4

0.6

0.8

1
(a) SVD, weighted CV

B
in

w
is

e
 c

o
v
e

ra
g

e

−5 0 5
0

0.2

0.4

0.6

0.8

1
(b) D’Agostini iteration, weighted CV

B
in

w
is

e
 c

o
v
e

ra
g

e

[The uncertainties tend to be especially badly estimated when λMC is close
to the physical truth; some preliminary studies indicate that λMC = const · 1
performs better, but it is definitely not perfect either.]
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Bias-variance trade-off and uncertainty quantification

Unbiased,

coverage = 1− α
Optimal point estimation,

coverage � 1− α
Optimal UQ?,

coverage = 1− α− ε

Obtaining good coverage performance requires adjusting the bias-variance
trade-off to the direction of less bias and more variance!
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Coverage as a function of τ =
√
δ
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Figure: Coverage at the right peak of a bimodal density
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Interval lengths, λMC = 0
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Histograms, coverage and interval lengths when λMC 6= 0
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Coverage study from Kuusela (2016)

Method Coverage at t = 0 Mean length

BC (data) 0.932 (0.915, 0.947) 0.079 (0.077, 0.081)
BC (oracle) 0.937 (0.920, 0.951) 0.064 (0.064, 0.064)
US (data) 0.933 (0.916, 0.948) 0.091 (0.087, 0.095)
US (oracle) 0.949 (0.933, 0.962) 0.070 (0.070, 0.070)
MMLE 0.478 (0.447, 0.509) 0.030 (0.030, 0.030)
MISE 0.359 (0.329, 0.390) 0.028
Unregularized 0.952 (0.937, 0.964) 40316

BC = iterative bias-correction
US = undersmoothing
MMLE = choose δ to maximize the marginal likelihood

MISE = choose δ to minimize the mean integrated squared error
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UQ in inverse problems is challenging
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[Kuusela and Panaretos (2015)]
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