

Fisher information metrics for binary classifier evaluation and training

Event selection for HEP precision measurements

Andrea Valassi (CERN IT-DI-LCG)

QCHS XIIII, Maynooth 2018
Session H - Statistical Methods for Physics Analysis in the XXI Century

Why and when I got interested in this topic

Figure 3: Weights assigned to the different segments of the ROC curve for the purpose of submission evaluation. The x axis is the False Positive Rate (FPR), while the y axis is True Positive Rate (TPR).

T. Blake at al., Flavours of Physics: the machine learning challenge for the search of $\tau \to \mu\mu\mu$ decays at LHCb (2015, unpublished). https://kaggle2.blob.core.windows.net/competitions/kaggle/4488/media/lhcb_description_official.pdf (accessed 15 January 2018)

The 2015 LHCb Kaggle ML Challenge:

- Develop an event selection in a search for τ→μμμ

ML binary classifier problem

- Evaluation: the highest weighted AUC is the winner

- First time I saw an Area Under the Roc Curve (AUC)
- My reaction:
 - -What is the AUC? Which other scientific domains use it and why?
 - Is the AUC relevant in HEP? Can we develop HEP-specific metrics?

Overview – the scope of this talk (1)

- Different domains and/or problems → Need different metrics
 - -HEP and other domains require different metrics
 - -Different problems within HEP also require different metrics

- This talk: one specific HEP example, <u>event selection</u> to minimize <u>statistical error</u> $\Delta\theta$ in an <u>analysis</u> for the <u>point estimation of</u> θ
 - –I will not discuss: tracking, systematic errors, trigger, searches…

Overview – the scope of this talk (2)

- Different domains and/or problems → Need different metrics
 - -Always keep your final goal in mind
- This talk: one specific HEP example, event selection to <u>minimize</u> statistical error $\Delta\theta$ in an analysis for the point estimation of θ
- Whenever you take a decision, base it on the minimization of $\Delta\theta$
 - -Metrics for physics precision \rightarrow final goal: minimize $\Delta\theta$
 - -Metrics for binary classifier evaluation \rightarrow (is the AUC relevant?)
 - -Metrics for binary classifier training \rightarrow (are standard ML metrics relevant?)

Training, Evaluation, Physics: one metric to bind them all?

Example: event selection using a Decision Tree for a parameter fit

Proposal: use metrics based on <u>Fisher Information</u> in all three steps (Fisher Information about $\theta \sim is I_{\theta} = 1/(\Delta \theta)^2 - maximize I_{\theta}$ to minimize $\Delta \theta$)

Information theory: entropy

Binary classifier evaluation – reminder

Discrete classifiers: the confusion matrix

Binary decision: signal or background

$$\mathbf{PPV} = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FP}}$$

$$\mathbf{TPR} = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FN}}$$

$$\mathbf{TNR} = \frac{\mathbf{TN}}{\mathbf{TN} + \mathbf{FP}} = \mathbf{1} - \mathbf{FPR}$$

Prevalence
$$\pi_s = \frac{S_{\text{tot}}}{S_{\text{tot}} + B_{\text{tot}}}$$

classified as: positives (HEP: selected)

classified as: negatives

(HEP: rejected)

true class: Positives (HEP: signal Stot)

True Positives (TP)

(HEP: selected signal Ssel)

False Negatives (FN)
(HEP: rejected signal Srej)

<u>true class</u>: Negatives (HEP: background Btot)

False Positives (FP)

(HEP: selected bkg Bsel)

True Negatives (TN) (HEP: rejected bkg Brej)

Scoring classifiers: ROC and PRC curves

Continuous output: probability to be signal

Vary the binary decision by varying the cut on the scoring classifier

Binary classifier evaluation in other domains

Medical Diagnostics (MD) \rightarrow e.g. diagnostic accuracy for cancer

- -Symmetric: all patients important, both truly ill (TP) and truly healthy (TN)
- -Traditional $ACC = \frac{TP + TN}{TP + TN + FP + FN}$ was too sensitive to prevalence: moved to ROC
 - But now ROC is questioned as too insensitive to prevalence (imbalanced data)
- -ROC-based analysis (because ROC insensitive to prevalence)
 - <u>AUC interpretation</u>: probability that diagnosis gives greater suspicion to a randomly chosen sick subject than to a randomly chosen healthy subject

Information Retrieval (IR) \rightarrow e.g. find pages in Google search

- Asymmetric: distinction between relevant and non-relevant documents
- -PRC-based evaluation: precision and recall (= purity and efficiency in HEP)
 - Single metric: e.g. Mean Average Precision ~ area under PRC (AUCPR)

$$AUC = \int_0^1 \epsilon_s d\epsilon_b = 1 - \int_0^1 \epsilon_b d\epsilon_s$$
 (MD) vs. (IR)
$$AUCPR = \int_0^1 \rho d\epsilon_s$$

Binary classifiers: domain-specific challenges

- Questions valid for all domains, but with different answers:
 - **Qualitative imbalance?**
 - Are the two classes equally relevant?

In this talk I will focus on these three questions for signal/background discrimination in HEP

- Quantitative imbalance?
 - Is the prevalence of one class much higher?
- Prevalence known? Time invariance?
 - Is relative prevalence known in advance? Does it vary over time?
- Dimensionality? Scale invariance?
 - Are all 4 elements of the confusion matrix needed?

M. Sokolova, G. Lapalme, A Systematic Analysis of Performance Measures for Classification Tasks, Information Processing and Management 45 (2009) 427. doi:10.1016/j.ipm.2009.03.002

- Is the problem invariant under changes of some of these elements?
- Ranking? Binning?
 - Is the scoring classifier used to rank or partition the selected instances?
- Instance weights?
 - Are all instances in a class equally important? Are instance counts enough?

Evaluation: (main) specificities of HEP

- 1. Qualitative asymmetry: signal interesting, background irrelevant
 - -Like Information Retrieval: use purity and efficiency (precision and recall)
 - True Negatives and the AUC are irrelevant in HEP event selection
 - ROC alone is not enough, also need prevalence to interpret it
- 2. Distribution fits: several disjoint bins, not just a global selection
 - -Analyze local signal efficiency and purity in each bin, not just global ones
 - -Frequent special case: fits involving distributions of the scoring classifier
- 3. Signal events not all equal: they may have different sensitivities
 - -Example: only events close to a mass peak are sensitive to the mass

Illustrated in the following by three examples (1=FIP1, 1+2=FIP2, 1+2+3=FIP3)

- Counting experiments (FIP1) vs. distribution fits (FIP2, FIP3)
- Total cross-section (FIP1, FIP2) vs. generic parameter fit (FIP3)

Evaluation: Fisher Information Part (FIP)

- Evaluation of an event selection from its effect on the error $\Delta \hat{\theta}$
 - -Compare to "ideal" case where there is no background
- FIP: fraction of "ideal" FI that is retained by the real classifier
 - -Range in $[0,1] \rightarrow 0$ if no signal, 1 if select all signal and no background
 - -Qualitatively relevant: higher is better \rightarrow maximize FIP to minimize $\Delta \hat{\theta}$
 - -Numerically meaningful: related to $\Delta \hat{\theta}$
- For a binned fit of θ from a (1-D or multi-D) histogram:
 - -Consider only statistical errors \rightarrow sum information from the different bins

$$\text{FIP} = \frac{\mathcal{I}_{\theta}^{(\text{real classifier})}}{\mathcal{I}_{\theta}^{(\text{ideal classifier})}} = \frac{\sum_{i=1}^{m} \epsilon_{i} \rho_{i} \times \frac{1}{S_{i}} \left(\frac{\partial S_{i}}{\partial \theta}\right)^{2}}{\sum_{i=1}^{m} \frac{1}{S_{i}} \left(\frac{\partial S_{i}}{\partial \theta}\right)^{2}}$$

Remember from the previous slide:

- 1. Qualitative asymmetry: use $\underline{\epsilon}$ and $\underline{\rho}$ (as in IR)
- 2. Distribution fit: need <u>local</u> ε_i and ρ_i in each bin
- 3. Signal events not all equal: need sensitivity $\frac{1}{S_i} \frac{\partial S}{\partial \theta}$

[FIP1] Cross-section in counting experiment

- Counting experiment: measure a single number N_{meas}
 - –Well-known since decades: maximize $\varepsilon_s^* \rho$ to minimize statistical errors

- FIP special case:
 - -Counting experiment (1 bin) \rightarrow *global* signal efficiency and purity
 - -Cross-section fit $\theta = \sigma_s \rightarrow all$ events have equal sensitivity $\frac{1}{S_i} \frac{\partial S_i}{\partial \sigma_s} = \frac{1}{\sigma_s}$

$$\text{FIP} = \frac{\mathcal{I}_{\theta}^{(\text{real classifier})}}{\mathcal{I}_{\theta}^{(\text{ideal classifier})}} = \frac{\sum_{i=1}^{m} \epsilon_{i} \rho_{i} \times \frac{1}{S_{i}} \left(\frac{\partial S_{i}}{\partial \theta}\right)^{2}}{\sum_{i=1}^{m} \frac{1}{S_{i}} \left(\frac{\partial S_{i}}{\partial \theta}\right)^{2}} \longrightarrow \boxed{\text{FIP1} = \epsilon_{s}^{*} \rho}$$

Examples of issues in AUCs – crossing ROCs

- Cross-section measurement by counting experiment
 - -Maximize FIP1= $\epsilon_s^* \rho \rightarrow$ Minimize the statistical error $\Delta \sigma^2$
- Compare two classifiers: red (AUC=0.90) and blue (AUC=0.75)
 - -The red and blue ROCs cross (otherwise the choice would be obvious!)
- Choice of classifier achieving minimum $\Delta \sigma^2$ depends on S_{tot}/B_{tot}
 - -Signal prevalence 50%: choose classifier with higher AUC (red)
 - -Signal prevalence 5%: choose classifier with lower AUC (blue)
 - -AUC is irrelevant and ROC is only useful if you also know prevalence

	FIP1	AUC
Range in [0,1]	YES	YES
Higher is better	YES	NO
Numerically meanigful	YES	NO

Optimal partitioning in distribution fits

Does information I_θ increase if I split a bin into two (n → n_L+n_R)?

-Information gain is
$$\Delta I_{\theta} = \left(\rho_L \frac{1}{s_L} \frac{\partial s_L}{\partial \theta} - \rho_R \frac{1}{s_R} \frac{\partial s_R}{\partial \theta}\right)^2 * \frac{n_L n_R}{n_L + n_R}$$

- Partition events using optimal binning variables (→ two examples)
 - -For cross-sections $(\frac{1}{s_i} \frac{\partial s_i}{\partial \sigma_s} = \frac{1}{\sigma_s})$: separate bins with different ρ_i (\rightarrow "FIP2")
 - -For a generic parameter θ : separate bins with different $\rho_i \frac{1}{s_i} \frac{\partial s_i}{\partial \theta}$ (→"FIP3")
- Practical ML consequences (focus on cross-section example):
 - -<u>Use the scoring classifier (i.e. ~ρ!) to partition events, not to reject them</u>
 - <u>Train the scoring classifier to maximize the total Fisher information</u> of the histogram binning, i.e. train it to maximize its partitioning power
 - Use Fisher Information as a node splitting criterion for decision tree training
 - Use the decision tree more as a regression tree than as a classification tree

[FIP2] cross-section fit on the 1-D scoring classifier distribution – evaluation

- FIP special case
 - -Cross-section: constant $\frac{1}{s_i} \frac{\partial s_i}{\partial \sigma_s} = \frac{1}{\sigma_s}$
 - -Fit on all events: ε_i =1 in all bins
 - -Fit scoring classifier: use ROC and prevalence to determine purity ρ_i
 - Region of constant ROC slope is a region of constant signal purity

FIP2 =
$$\int_0^1 \frac{d\epsilon_s}{1 + \underbrace{\frac{1 - \pi_s}{\pi_s} \frac{d\epsilon_b}{d\epsilon_s}}}$$

Compare FIP2 to AUC: $\boxed{ \text{AUC} = \int_0^1 \epsilon_s d\epsilon_b = 1 - \int_0^1 \epsilon_b d\epsilon_s }$

- *Technicality: convert ROC to convex hull
- ensure decreasing slope, i.e. decreasing purity
- avoid staircase effect that artificially inflates FIP2 (bins of 100% purity: only signal or only background)

[FIP2] cross-section fit on the 1-D scoring classifier distribution – training

- Is there a gain if I split a node into two (n → n_L+n_R)?
 - -Same question as in optimal partitioning: do I gain by splitting a bin?
- Gain depends on "impurity" function $H(\rho)$: $\Delta = -n_L H(\rho_L) n_R H(\rho_R) + n H(\rho)$
 - -two standard choices: Shannon information (entropy) and Gini impurity
 - -I suggest a third option: Fisher information I_{σ_s} about the cross-section σ_s
- Surprise: different functions, but Gini and Fisher gains are equal!

$$\Delta_{\text{Fisher}} = \frac{(s_L n_R - s_R n_L)^2}{n_L n_R (n_L + n_R)} = \frac{\Delta_{\text{Gini}}}{2}$$

- -So, Gini is OK for cross-sections (or searches?)
- -But more intuitive physics interpretation for Fisher
- -No practical gain here, but important principle
 - ullet And proof-of-concept for generic parameter ullet

Limits to knowledge

- FIP2 range is [0,1] → but it does not mean that 1 is achievable
 - -1 represents the *ideal* case where there is no background
- In some regions of phase space, signal and background events may be undistinguishable based on the available observations
 - -There is a limit ROC which depends on the signal and background pdf's
 - -There is a limit FIP2 which depends on prevalence and the limit ROC
- Example toy model, you know the real pdf's and prevalence
 - See next slide about overtraining

Overtraining

 Using the same metric for training and evaluation also simplifies the interpretation of overtraining

- Example: toy model where you know the real pdf
 - -You know the limit ROC
 - -You know the limit FIP2
 - You want your validation
 - FIP2 as close as possible to the limit, but it will be lower
 - To get there you maximize your training FIP2, but it will be higher than the real limit
 - You may trace back every increase to one node split
 - –You may study the effects of things like min_sample_leaf

[FIP3] generic parameter fits including the scoring classifier distribution – work in progress

- Not a cross-section, e.g. a coupling fit: signal events not all equal
 - –[FIP2] Fit for $\sigma_s \rightarrow$ should partition events into bins with different ρ_i
 - -[FIP3] Fit for $\theta \to \text{should partition events into bins with different } \rho_i \frac{1}{s_i} \frac{\partial s_i}{\partial \theta}$
 - Closely related to the "optimal observables" technique
- Example: 2-D fit for θ of the ρ and $\frac{1}{s} \frac{\partial s}{\partial \theta}$ distributions
 - -Train a regression tree for $\frac{1}{s} \frac{\partial s}{\partial \theta}$ (on MC weight derivative) using signal alone
 - -Train a regression tree for ρ using signal (weighted by $\frac{1}{s}\frac{\partial s}{\partial \theta}$) and background
 - –Use Fisher Information about θ as the gain function in both cases

Boundary between classification and regression even more blurred

Software technicalities

- I use Python (SciPy, iminuit, bits of rootpy) on SWAN at CERN
 - -Thanks to all involved in these projects!
- Custom impurity not available in sklearn DecisionTree's
 - -Planned for future sklearn releases (issue #10251 and MR #10325)?
 - I implemented a very simple DecisionTree from scratch, starting from the excellent iCSC <u>notebooks</u> by Thomas Keck (thanks!)
 - -(May try XGBOOST in the future, where custom impurities are available)
- I plan to make the software available when I find the time...

Conclusions and outlook

Fisher Information: one metric to bind them all

- Use scoring classifiers to partition events, not to reject them
 - -The boundary between classification and regression is blurred
- We must and can define our own HEP specific metrics
 - -I described one case, there are others (searches, systematics, tracking...)
 - -Focus on signal. Describe distribution fits. Signal events are not all equal.
 - −Can we please stop using the AUC now? ⊕

Backup slides

Including selected slides from my previous IML talks in April (https://indico.cern.ch/event/668017/contributions/2947015) and January (https://indico.cern.ch/event/679765/contributions/2814562)

Backup – statistical error in binned fits

- Data: observed event counts n; in m bins of a (multi-D) distribution f(x)
 - expected event counts $y_i = f(x_i, \theta) dx$ depend on a parameter θ that we want to fit
 - [NB here f is a differential cross section, it is not normalized to 1 like a pdf]
- Fitting θ is like combining the independent measurements in the m bins
 - expected error on n_i in bin x_i is $\Delta n_i = \sqrt{y_i} = \sqrt{f(xi,\theta)} dx$
 - expected error on $f(x_i, \theta)$ in bin x_i is $\Delta f = f * \Delta n_i / n_i = \sqrt{f / dx}$
 - $\, \text{expected error on estimated} \, \, \widehat{\boldsymbol{\theta}_{\text{i}}} \, \, \text{in bin } \, \boldsymbol{x_{\text{i}}} \, \, \text{is} \, \, \, \frac{1}{(\Delta \hat{\boldsymbol{\theta}})_{(\text{bin } dx)}^2} = \left(\frac{\partial f}{\partial \boldsymbol{\theta}}\right)^2 \frac{1}{(\Delta f)^2} = \left(\frac{\partial f}{\partial \boldsymbol{\theta}}\right)^2 \left(\frac{\sqrt{dx}}{\sqrt{f}}\right)^2 = \left(\frac{\partial f}{\partial \boldsymbol{\theta}}\right)^2 \frac{dx}{f}$
 - expected error on estimated $\hat{\theta}$ by combining the m bins is $\left(\frac{1}{\Delta \hat{\theta}}\right)^2 = \sqrt{\frac{1}{f} \left(\frac{\partial f}{\partial \theta}\right)^2} dx$
- A bit more formally, joint probability for observing the n_i is $P(\mathbf{n}; \theta) = \prod_{i=1}^{m} \frac{e^{-y_i} y_i^{n_i}}{n_i!}$
 - Fisher information on θ from the data available is then

$$\mathcal{I}_{\theta} = E\left[\frac{\partial \log P(\mathbf{n}; \theta)}{\partial \theta}\right]^2$$
 i.e. $\mathcal{I}_{\theta} = \sum_{i=1}^m \frac{1}{y_i} \left(\frac{\partial y_i}{\partial \theta}\right)^2 = \int \frac{1}{f} \left(\frac{\partial f}{\partial \theta}\right)^2 dx$

- The minimum variance achievable (Cramer-Rao lower bound) is $(\Delta \hat{\theta})^2 = \text{var}(\hat{\theta}) \geq \frac{1}{T_0}$

Optimal partitioning – information inflow

- Information about θ in a binned fit $\rightarrow \mathcal{I}_{\theta} = \sum_{i=1}^{m} \frac{1}{y_i} \left(\frac{\partial y_i}{\partial \theta} \right)^2$
- Can I reduce $\Delta \hat{\theta}$ by splitting bin y_i into two bins? $y_i = w_i + z_i$
 - -Is the "information inflow" positive? $\frac{1}{w_i}\left(\frac{\partial w_i}{\partial \theta}\right)^2 + \frac{1}{z_i}\left(\frac{\partial z_i}{\partial \theta}\right)^2 \frac{1}{w_i + z_i}\left(\frac{\partial (w_i + z_i)}{\partial \theta}\right)^2 = \frac{\left(w_i\frac{\partial z_i}{\partial \theta} z_i\frac{\partial w_i}{\partial \theta}\right)^2}{w_iz_i(w_i + z_i)} \geq 0$
 - -information increases (error $\Delta \hat{\theta}$ decreases) if $\frac{1}{w_i} \frac{\partial w_i}{\partial \theta} \neq \frac{1}{z_i} \frac{\partial z_i}{\partial \theta}$
- In the presence of background: $\frac{1}{y_i} \frac{\partial y_i}{\partial \theta} = \rho_i \frac{1}{S_i} \frac{\partial S_i}{\partial \theta}$
 - -information increases if $\rho_w \frac{1}{s_w} \frac{\partial s_w}{\partial \theta} \neq \rho_z \frac{1}{s_z} \frac{\partial s_z}{\partial \theta}$
 - -therefore: try to partition the data into bins of different $\rho_i \frac{1}{s_i} \frac{\partial si}{\partial \theta}$
 - for cross-section measurements, $\frac{1}{S_i}\frac{\partial S_i}{\partial \sigma_s}=\frac{1}{\sigma_s}$: split into bins of different ρ_i
- Two important practical consequences:
 - -1. use scoring classifiers to partition the data, not to reject events
 - -2. information can be used also for training classifiers like decision trees

Limited scope of this talk

- Different problems also within HEP require different metrics
- In this talk, I will focus on one specific problem:
 - -Optimize event selection to minimize statistical errors in point estimation
- Three specific examples (I will focus on the second one)
 - -[FIP1] Total cross-section measurement in a counting experiment
 - -[FIP2] Total cross-section measurement by distribution fit
 - -[FIP3] Generic model parameter fit (e.g. mass/coupling) by distribution fit
 - Even more specific: FIP2 and FIP3 use fits of the scoring classifier distribution

FIP2 for training decision trees

- Decision Tree → partition training set into nodes of different ρ_i
 - -The best split (n,s)=(n_L , s_L)+(n_R , s_R) maximizes $\Delta = -n_L H(\rho_L) n_R H(\rho_R) + n H(\rho)$
- Current metrics are Gini and entropy: add Fisher information!
 - -negative Gini impurity $\rightarrow -n_i H(\rho_i) = n_i \times [-2\rho_i(1-\rho_i)]$
 - -Shannon information $\rightarrow -n_i H(\rho_i) = n_i \times [\rho_i \log_2 \rho_i + (1 \rho_i) \log_2 (1 \rho_i)]$
 - -Fisher information on $\sigma_s \rightarrow -n_i H(\rho_i) = n_i \times [\rho_i^2]$
- Functions look different, but (modulo a constant factor)...
 - -... information gain is the same for Fisher and Gini!

$$\Delta_{\text{Fisher}} = \frac{s_L^2}{n_L} + \frac{s_R^2}{n_R} - \frac{(s_L + s_R)^2}{n_L + n_R} = \frac{(s_L n_R - s_R n_L)^2}{n_L n_R (n_L + n_R)} \frac{\Delta_{\text{Gini}}}{2} = -s_L \left(1 - \frac{s_L}{n_L}\right) - s_R \left(1 - \frac{s_R}{n_R}\right) + (s_L + s_R) \left(1 - \frac{s_L + s_R}{n_L + n_R}\right) = \Delta_{\text{Fisher}}$$

- But interpretation is clearer for Fisher: reduce the error on the fit
 - -And this is a proof-of-concept for FIP3: split *into nodes of different* $\rho_i \frac{1}{s_i} \frac{\partial si}{\partial \theta}$

Technicality: user-defined criteria for DecisionTree's will only be available in future sklearn releases → I implemented a DecisionTree from scratch, reusing the excellent iCSC <u>notebooks</u> by Thomas Keck (thanks!)

FIP2 from the ROC (+prevalence) or from the PRC

• From the previous slide: FIP2 = $\frac{\sum_{i=1}^{m} \rho_i s_i}{\sum_{i=1}^{m} s_i}$

FIP2: integrals on ROC and PRC, more relevant to HEP than AUC or AUCPR! (well-defined meaning for distribution fits)

• FIP2 from the ROC (+prevalence $\pi_s = \frac{S_{\text{tot}}}{S_{\text{tot}} + B_{\text{tot}}}$):

$$S_{\text{sel}} = S_{\text{tot}} \epsilon_s \\ B_{\text{sel}} = B_{\text{tot}} \epsilon_b \Longrightarrow \begin{cases} s_i = dS_{\text{sel}} = S_{\text{tot}} d\epsilon_s \\ b_i = dB_{\text{sel}} = B_{\text{tot}} d\epsilon_b \end{cases} \Longrightarrow \begin{bmatrix} \rho_i = \frac{1}{1 + \frac{B_{\text{tot}}}{S_{\text{tot}}} \frac{d\epsilon_b}{d\epsilon_s}} \end{bmatrix} \Longrightarrow \begin{bmatrix} \text{FIP2} = \int_0^1 \frac{d\epsilon_s}{1 + \frac{1 - \pi_s}{\pi_s} \frac{d\epsilon_b}{d\epsilon_s}} \end{cases}$$

Compare FIP2(ROC) to AUC

$$AUC = \int_0^1 \epsilon_s d\epsilon_b = 1 - \int_0^1 \epsilon_b d\epsilon_s$$

FIP2 from the PRC:

$$S_{\text{sel}} = S_{\text{tot}} \, \epsilon_s \\ B_{\text{sel}} = S_{\text{tot}} \, \left(\frac{1}{\rho} - 1\right) \Longrightarrow \begin{array}{l} s_i = dS_{\text{sel}} = S_{\text{tot}} \, d\epsilon_s \\ b_i = dB_{\text{sel}} = S_{\text{tot}} \left[d\epsilon_s \left(\frac{1}{\rho} - 1\right) - \epsilon_s \frac{d\rho}{\rho^2}\right] \Longrightarrow \\ \rho_i = \frac{\rho}{1 - \frac{\epsilon_s}{\rho} \, \frac{d\rho}{d\epsilon_s}} \Longrightarrow \end{array}$$
 FIP2 =
$$\int_0^1 \frac{\rho \, d\epsilon_s}{1 - \frac{\epsilon_s}{\rho} \, \frac{d\rho}{d\epsilon_s}}$$

Compare FIP2(PRC) to AUCPR

$$AUCPR = \int_0^1 \rho \, d\epsilon_s$$

- Easier calculation and interpretation from ROC (+prevalence) than from PRC
 - region of constant ROC slope* = region of constant signal purity
 - decreasing ROC slope = decreasing purity
 - technicality (my Python code): convert ROC to convex hull** first

- **Convert ROC to convex hull
- ensure decreasing slope
- avoid staircase effect that would artificially inflate FIP2 (bins of 100% purity: only signal or only background)

*ROC slopes are also discussed in medical literature in relation to diagnostic likelihood ratios [Choi 1998], but their use does not seem to be widespread(?)

Sanity check

- Three random forests (on the same 2-D pdf)
 - reasonable
 - undertrained
 - overtrained

$$(\Delta \hat{ heta}^{(\mathrm{real\ classifier})})^2 = \frac{1}{\mathrm{FIP}} (\Delta \hat{ heta}^{(\mathrm{ideal\ classifier})})^2$$

My development environment: SciPy ecosystem, iminuit and bits of rootpy, on SWAN at CERN.

Thanks to all involved in these projects!

M by 1D fit to m – visual interpretation

- Information after cuts: $\sum_{i} \frac{1}{s_{i}} \left(\frac{\partial si}{\partial M}\right)^{2} * \epsilon_{i} * \rho_{i} \rightarrow \text{show the 3 terms in each bin i}$
 - fit = combine N different measurements in N bins \rightarrow local $\epsilon_{i.}$ ρ_{i} relevant!
 - important thing is: maximise purity, efficiency in bins with highest sensitivity!

Red histogram: information per bin, ideal case $\frac{1}{s_i} \left(\frac{\partial si}{\partial M}\right)^2$

Blue line: local purity in the bin, ρ_i

Green line: local efficiency in the bin, ϵ_i

Yellow histogram: information per bin, after cuts $\mathbf{\epsilon}_i * \mathbf{\rho}_i * \frac{1}{s_i} \left(\frac{\partial si}{\partial M} \right)^2$

Event selection in HEP searches

- Statistical error in searches by counting experiment → "significance"
 - several metrics \rightarrow but optimization always involves ε_s , ρ alone \rightarrow TN irrelevant

$$Z_0 = \frac{S_{\rm sel}}{\sqrt{S_{\rm sel} + B_{\rm sel}}} \Longrightarrow [(Z_0)^2 = S_{\rm tot} \epsilon_s \rho]$$

 Z_0 – Not recommended? (confuses search with measuring σ_s once signal established)

C. Adam-Bourdarios et al., The Higgs Machine Learning Challenge, Proc. NIPS 2014 Workshop on High-Energy Physics and Machine Learning (HEPML2014), Montreal, Canada, PMLR 42 (2015) 19. http://proceedings.mlr.press/v42/cowa14.html

 Z_2 – Most appropriate? (also used as "AMS2" in Higgs ML challenge)

$$Z_2 = \sqrt{2\left(\left(S_{\rm sel} + B_{\rm sel}\right)\log(1 + \frac{S_{\rm sel}}{B_{\rm sel}}) - S_{\rm sel}\right)}$$

$$(Z_2)^2 = 2S_{\text{tot}}\epsilon_s \left(\frac{1}{\rho}\log(\frac{1}{1-\rho}) - 1\right) = S_{\text{tot}}\epsilon_s \rho \left(1 + \frac{2}{3}\rho + \mathcal{O}(\rho^2)\right)$$

$$Z_3 = \frac{S_{\text{sel}}}{\sqrt{B_{\text{sel}}}} \iff \left[(Z_3)^2 = S_{\text{tot}} \epsilon_s \frac{\rho}{1 - \rho} = S_{\text{tot}} \epsilon_s \rho \left(1 + \rho + \mathcal{O}(\rho^2) \right) \right]$$

 Z_3 ("AMS3" in Higgs ML) – Most widely used, but strictly valid only as an approximation of Z_2 as an expansion in $S_{sel}/B_{sel} \ll 1$?

$$\frac{S_{\rm sel}}{B_{\rm sel}} = \frac{\rho}{1 - \rho} = \rho \left(1 + \rho + \mathcal{O}(\rho^2) \right)$$

Expansion in $\rho \ll 1$? – use the expression for Z_2 if anything

G. Punzi, Sensitivity of searches for new signals and its optimization, Proc. PhyStat2003, Stanford, USA (2003). arXiv:physics/0308063v2 [physics.data-an]

G. Cowan, E. Gross, Discovery significance with statistical uncertainty in the background estimate, ATLAS Statistics Forum (2008, unpublished). http://www.pp.rhul.ac.uk/~cowan/stat/notes/SigCalcNote.pdf (accessed 15 January 2018)

R. D. Cousins, J. T. Linnemann, J. Tucker, Evaluation of three methods for calculating statistical significance when incorporating a systematic uncertainty into a test of the background-only hypothesis for a Poisson process, Nucl. Instr. Meth. Phys. Res. A 595 (2008) 480. doi:10.1016/j.nima.2008.07.086

G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 15. doi:10.1140/epjc/s10052-011-1554-0

- Several other interesting open questions → beyond the scope of this talk
 - optimization of systematics? → e.g. see AMS1 in Higgs ML challenge
 - predict significance in a binned fit? \rightarrow integral over Z^2 (=sum of log likelihoods)?

Trigger

T. Likhomanenko et al., LHCb Topological Trigger Reoptimization, Proc. CHEP 2015, J. Phys. Conf. Series 664 (2015) 082025. doi:10.1088/1742-6596/664/8/082025

Figure 2. Trigger events ROC curve. An output rate of 2.5 kHz corresponds to an FPR of 0.25%, 4 kHz — 0.4%. Thus to find the signal efficiency for a 2.5 kHz output rate, we take 0.25% background efficiency and find the point on the ROC curve that corresponds to this FPR.

- Different meaning of absolute numbers in the confusion matrix
 - Trigger → events per unit time i.e. trigger rates
 - (Physics analyses → total event sample sizes i.e. total integrated luminosities)
- Binary classifier optimisation goal: maximise ε_s for a given B_{sel} per unit time

 i.e. maximise TP/(TP+FN) for a given FP → TN irrelevant
- Relevant plot $\rightarrow \varepsilon_s$ vs. B_{sel} per unit time (i.e. *TPR vs FP*)
 - ROC curve (TPR vs. FPR) confusing AUC irrelevant
 - e.g. maximise ε_s for 4 kHz trigger rate, whether L0 rate is 1 MHz or 2MHz

M by 2D fit – use classifier to partition, not to cut

- Showed a fit for M on m, after a cut on D → can also fit in 2-D with no cuts

 again, use the scoring classifier D to partition data, not to reject events
- Why is binning so important, especially using a discriminating variable?
 next slide...

Optimal partitioning – optimal variables

- The previous slide implies that $q = \rho \frac{1}{s} \frac{\partial s}{\partial \theta}$ is an optimal variable to fit for θ
 - proof of concept → 1-D fit of q has the same precision on M as 2-D fit of (m,D)
 - closely related to the "optimal observables" technique

- In practice: train one ML variable to reproduce $\frac{1}{s} \frac{\partial s}{\partial \theta}$?
 - not needed for cross-sections or searches (this is constant)

M. Davier, L. Duflot, F. LeDiberder, A. Rougé, The optimal method for the measurement of tau polarization, Phys. Lett. B 306 (1993) 411. doi:10.1016/0370-2693(93)90101-M

- Prepared a model just to show that AUC is misleading
 - pdf with two useful features and a third random one
 - two classifiers, each trained only one useful feature
 - two prevalence scenarios: S/B=5 and S/B=1/5
- Same AUC (0.80) in all four cases
 - it is well known that AUC is insensitive to prevalence
 - ROC curves of the two classifiers cross
- Low prevalence: FIP2 favors classifier #1 (0.63 > 0.33)
- High prevalence: FIP2 favors classifier #2 (0.87 < 0.93)
- Do not choose the best classifier based on AUC
 - not for a cross-section fit on the classifier output, nor in general!

FIP2 vs AUC

Understanding domain-specific challenges

- Many domain-specific details → but also general cross-domain questions:
 - 1. Qualitative imbalance?
 - Are the two classes equally relevant?
 - -2. Quantitative imbalance?
 - Is the prevalence of one class much higher?
 - 3. Prevalence known? Time invariance?
 - Is relative prevalence known in advance? Does it vary over time?
 - 4. Dimensionality? Scale invariance?
 - Are all 4 elements of the confusion matrix needed?

M. Sokolova, G. Lapalme, A Systematic Analysis of Performance Measures for Classification Tasks, Information Processing and Management 45 (2009) 427. doi:10.1016/j.jpm.2009.03.002

- Is the problem invariant under changes of some of these elements?
- -5. Ranking? Binning?
 - Are all selected instances equally useful? Are they partitioned into subgroups?
- Point out properties of MED and IR, attempt a systematic analysis of HEP

Medical diagnostics (1)

and ML research

H. Sox, S. Stern, D. Owens, H. L. Abrams, Assessment of Diagnostic Technology in Health Care: Rationale, Methods, Problems, and Directions, The National Academies Press (1989). doi:10.17226/1432

X. H. Zhou, D. K. McClish, N. A. Obuchowski, Statistical Methods in Diagnostic Medicine (Wiley, 2002).

- Medical Diagnostics (MED) does Mr. A. have cancer?

- Binary classifier optimisation goal: maximise "diagnostic accuracy"
 - patient / physician / society have different goals → many possible definitions

doi:10.1002/9780470317082

Most popular metric: "accuracy", or "probability of correct test result":

$$ACC = \frac{TP + TN}{TP + TN + FP + FN} = \pi_s \times TPR + (1 - \pi_s) \times TNR$$

TP (correctly diagnosed as ill)	FP (truly healthy, but diagnosed as ill)
FN (truly ill, but	TN (correctly
diagnosed as healthy)	diagnosed as healthy)

- Symmetric → all patients important, both truly ill (TP) and truly healthy (TN)
- Also "by far the most commonly used metric" in ML research in the 1990s

F. J. Provost, T. Fawcett, Analysis and Visualization of Classifier Performance: Comparison Under Imprecise Class and Cost Distributions, Proc. 3rd Int. Conf. on Knowledge Discovery and Data Mining (KDD-97), Newport Beach, USA (1997). https://aaai.org/Library/

L. B. Lusted, Signal Detectability and Med cal Decision-Making, Science 171 (1971) 121

J. A. Swets, Measuring the accuracy of diagnostic systems, Science 240 (1988) 1285, doi:10.1126/science.3287615

- Since the '90s → shift from ACC to ROC in the MED and ML fields
 - -TPR (sensitivity) and TNR (specificity) studied separately

Accuracy Estimation for Comparing Induction Algorithms, Proc. 15th Int. Conf. on Machine Learning (ICML '98), Madison, USA (1998). https://www.researchgate.net/publication/2373067

- solves ACC limitations (imbalanced or unknown prevalence rare diseases, epidemics)
- Evaluation often AUC-based → two perceived advantages for MED and ML fields
 - AUC interpretation: "probability that test result of randomly chosen sick subject indicates greater suspicion than that of randomly chosen healthy subject"
 - ROC comparison without prior D_{thr} choice (prevalence-dependent D_{thr} choice)

A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition 30 (1997) 1145. doi:10.1016/S0031-3203(96)00142-2 J. A. Hanley, B. J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology 143 (1982) 29. doi:10.1148/radiology.143.1.7063747

Medical diagnostics (2)

and ML research

- ROC and AUC metrics → currently widely used in the MED and ML fields
 - Remember: moved because ROC better than ACC with imbalanced data sets
- Limitation: evidence that ROC not so good for <u>highly</u> imbalanced data sets
 - may provide an overly optimistic view of performance
 - PRC may provide a more informative assessment of performance in this case
 - PRC-based reanalysis of some data sets in life sciences has been performed
- Very active area of research → other options proposed (CROC, cost models)
 - Take-away message: ROC and AUC not always the appropriate solutions

J. Davis, M. Goadrich, *The relationship between Precision-Recall and ROC curves*, Proc. 23rd Int. Conf. on Machine Learning (ICML '06), Pittsburgh, USA (2006). doi:10.1145/1143844.1143874

C. Drummond, R. C. Holte, Explicitly representing expected cost: an alternative to ROC representation, Proc. 6th Int. Conf. on Knowledge Discovery and Data Mining (KDD-00), Boston, USA (2000). doi:10.1145/347090.347126

D. J. Hand, Measuring classifier performance: a coherent alternative to the area under the ROC curve, Mach Learn (2009) 77: 103. doi:10.1007/s10994-009-5119-5

S. J. Swamidass, C.-A. Azencott, K. Daily, P. Baldi, A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval, Bioinformatics 26 (2010) 1348. doi:10.1093/bioinformatics/btq140

D. Berrar, P. Flach, Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them), Briefings in Bioinformatics 13 (2012) 83. doi:10.1093/bib/bbr008 H. He, E. A. Garcia, Learning from Imbalanced Data, IEEE Trans. Knowl. Data Eng. 21 (2009) 1263. doi:10.1109/TKDE.2008.239

T. Saito, M. Rehmsmeier, The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets, PLoS One 10 (2015) e0118432. doi:10.1371/journal.pone.0118432

Information Retrieval

- Qualitative distinction between "relevant" and "non-relevant" documents
 - also a very large quantitative imbalance
- Binary classifier optimisation goal: make users happy in web searches
 - minimise # relevant documents not retrieved → maximise "recall" i.e. efficiency
 - minimise # of irrelevant documents retrieved → maximise "precision" i.e. purity
 - retrieve the more relevant documents first → ranking very important
 - maximise speed of retrieval
- IR-specific metrics to evaluate classifiers based on the PRC (i.e. on ε_s , ρ)
 - unranked evaluation \rightarrow e.g. F-measures $F_{\alpha} = \frac{1}{\alpha/\epsilon_s + (1-\alpha)/\rho}$
 - $\alpha \in [0,1]$ tradeoff between recall and precision \rightarrow equal weight gives $F1 = \frac{2\epsilon_s \rho}{\epsilon_s + \rho}$
 - ranked evaluation → precision at k documents, mean average precision (MAP), ...
 - MAP approximated by the Area Under the PRC curve (AUCPR)

C. D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval (Cambridge University Press, 2008). https://nlp.stanford.edu/IR-book

NB: Many different of meanings of "Information"!

IR (web documents), HEP (Fisher), Information Theory (Shannon)...

Domain Property	Medical diagnostics	Information retrieval	HEP event selection
Qualitative class imbalance	NO. Healthy and ill people have "equal rights". TN are relevant.	YES. "Non-relevant" documents are a nuisance. TN are irrelevant.	YES. Background events are a nuisance. TN are irrelevant.
Quantitative class imbalance	From small to extreme. From common flu to very rare disease.	Generally very high. Only very few documents in a repository are relevant.	Generally extreme. Signal events are swamped in background events.
Varying or unknown prevalence π	Varying and unknown. Epidemics may spread.	Varying and unknown in general (e.g. WWW).	Constant in time (quantum cross-sections). Unknown for searches. Known for precision measurements.
Dimensionality and invariances M. Sokolova, G. Lapalme, A Systematic Analysis of Performance Measures for Classification Tasks, Information Processing and Management 45 (2009) 427. doi:10.1016/j.ipm.2009.03.002	3 ratios $ε_s$, $ε_b$, $π$ + scale. New metrics under study because ROC ignores $π$. Costs scale with $N_{tot.}$	$\frac{\text{2 ratios } \epsilon_{\text{s}}, \rho + \text{scale.}}{\epsilon_{\text{s}}, \rho \text{ enough in many cases.}}$ $\text{Costs and speed scale with N}_{\text{tot.}}$ $\text{Show only N}_{\text{sel}} \text{ docs in one page.}$ $\text{TN are irrelevant.}$	2 ratios ε _s , ρ + scale. ε _s , ρ enough in many cases. Lumi is needed for: trigger, syst. vs stat., searches. <i>TN are irrelevant</i> .
Different use of selected instances	Binning – NO. Ranking – YES? Treat with higher priority patients who are more likely to be ill?	Binning – NO. Ranking – YES. Precision at k, R-precision, MAP all involve global precision-recall ("top N _{sel} documents retrieved)	Binning – YES. Fits to distributions: local ε _s , ρ in each bin rather than global ε _s , ρ.

Different HEP problems → **Different metrics**

Binary classifiers for HEP event selection (signal-background discrimination)

	Cross-section (1-bin counting)	ant	2 variables: global $ε_s$, ρ (given S_{tot})	Maximise $S_{tot}^* \epsilon_s^* \rho$ (at any S_{tot})
Statistical error	ror	irreleva	Simple and CCGV – 2 variables: global S_{sel} , B_{sel} (or equivalently ϵ_s , ρ)	Maximise $\frac{S_{sel}}{\sqrt{S_{sel} + Bsel}}$ (i.e. $\sqrt{S_{tot} * \epsilon_s * \rho}$) Maximise $\sqrt{2((S_{sel} + Bsel) \log(1 + \frac{S_{sel}}{B}) - Ssel)}$
		nc	HiggsML – 2 variables: global S _{sel} , B _{sel}	Maximise $\sqrt{2((S_{sel} + Bsel + K) \log(1 + \frac{S_{sel}}{B_{sel} + K}) - Ssel)}$
minimization		V, A	Punzi – 2 variables: global ε _s , B _{sel}	Maximise $\frac{\mathcal{E}_{s}}{A/2 + \sqrt{B_{sel}}}$
(or statistical significance	Cross-section (binned fits)	es – 7 1	$\begin{array}{c c} \textbf{I} & \textbf{2 variables:} \\ & \textbf{local } \boldsymbol{\epsilon_{s,i}} \text{ and } \boldsymbol{\rho_i} \text{ in each bin} \\ & \textbf{(given } \boldsymbol{s_{tot,i}} \text{ in each bin)} \end{array}$	Maximise $\sum_i s_{\text{tot},i} * \epsilon_{\text{s},i} * \rho_i$ Partition in bins of equal ρ_i
	Parameter estimation (binned fits)	global/local variabl		$\begin{array}{c} \text{Maximise} \sum_{i} \mathbf{s}_{\text{tot,i}} * \mathbf{\epsilon}_{\mathbf{s},i} * \mathbf{\rho}_{i} * (\frac{1}{\mathbf{S}_{\text{tot,i}}} \frac{\partial \mathbf{S}_{\text{tot,i}}}{\partial \theta})^{2} \\ \text{Partition in bins of equal } \mathbf{\rho}_{i} * (\frac{1}{\mathbf{S}_{\text{tot,i}}} \frac{\partial \mathbf{S}_{\text{tot,i}}}{\partial \theta}) \end{array}$
	Searches (binned fits)		3 variables: local s _{sel} , s _{tot} , s _{sel} in each bin (2 counts or ratios enough?)	Maximise a sum? *
minimization <u>~</u>		or 3 glok	3 variables: ε _s , ρ, lumi (lumi: tradeoff stat. vs. syst.)	No universal recipe * (may use local S _{sel} , B _{sel} in side band bins)
		Only 2	2 variables: global B_{sel} /time, global ϵ_s	Maximise ε _s at given trigger rate

Binary classifiers for HEP problems other than event selection

Tracking and Particle-ID optimizations	All 4 variables? * (NB: TN is relevant)	ROC relevant – is AUC relevant? *
Other? *	?*	? *

Numerical tests with a toy model

- I used a simple toy model to make some numerical tests
 - Verify that my formulas are correct and also illustrate them graphically
 - Two-dimensional distribution (m,D) → signal Gaussian, background exponential
- Two measurements:
 - total cross-section measurement by counting and 1-D or 2-D fit
 - mass measurement by 1-D or 2-D fits
- Details in the backup slides

Using scipy / matplotlib / numpy and iminuit in Python from SWAN

M by 1D fit to m – optimizing the classifier

- Choose operating point D_{thr} optimizing information fraction for $\theta = M$ in m-fit NB: different to operating point maximising $\epsilon^*\rho$ (IF for $\theta = \sigma_s$ in a 1-bin fit)
- To compute IF as sum over bins \rightarrow need average $\frac{1}{s}\frac{\partial s}{\partial \theta}$ in each bin proof-of-concept \rightarrow integrate by toy MC with *event-by-event weight derivatives* in a real MC, could save $\frac{1}{|\mathcal{M}|^2}\frac{\partial |\mathcal{M}|^2}{\partial \theta}$ for the matrix element squared $|\mathcal{M}|^2$

