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https://indico.cern.ch/event/648004/sessions/266239/#all

Why and when | got interested In this topic

T. Blake at al., Flavours of Physics: the machine learning
challenge for the search of v — ppp decays at LHCH
(2015, unpublished). https://kaggle2.blob.core.windows.net/
P competitions/kaggle /4488 fmedia/lhcb_description_official.
pdf (accessed 15 January 2018)
4 Weight=0.5
R ey The 2015 LHCb Kaggle ML Challenge:
N VS - - Develop an event selection in a search for t—>puup
g Weight=1.5
o s | ML binary classifier problem
i/ / / / WW y TP . . .
o A, » - Evaluation: the highest weighted AUC is the winner

Figure 3: Weights assigned to the different segments of the ROC curve for
the purpose of submission evaluation. The x axis is the False Positive Rate
(FPR), while the y axis is True Positive Rate (TPR).

* First time | saw an Area Under the Roc Curve (AUC)

* My reaction:

—What is the AUC? Which other scientific domains use it and why?
—I|s the AUC relevant in HEP? Can we develop HEP-specific metrics?
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Overview —the scope of this talk (1)

» Different domains and/or problems — Need different metrics
—HEP and other domains require different metrics
—Different problems within HEP also require different metrics

ML playground
T RS G

= :'-'

papers

 This talk: one specific HEP example, event selection to minimize
statistical error A€ in an analysis for the point estimation of @
—I will not discuss: tracking, systematic errors, trigger, searches...
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Overview —the scope of this talk (2)

» Different domains and/or problems — Need different metrics
—Always keep your final goal in mind

* This talk: one specific HEP example, event selection to minimize
statistical error 46 in an analysis for the point estimation of 4

» Whenever you take a decision, base it on the minimization of 46
—Metrics for physics precision — final goal: minimize A6
—Metrics for binary classifier evaluation — (is the AUC relevant?)
—Metrics for binary classifier training — (are standard ML metrics relevant?)
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Training, Evaluation, Physics:
one metric to bind them all?
Example: event selection using a Decision Tree for a parameter fit
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Classifier output D
TRAINING < EVALUATION <«
- (either) Gini impurit - ROC Curve (Receiver Operating Characteristic) PHYSI_C_S
Economics: inequa){ity Signal detection: radar detection - Precision o
m;/ersity Psychophysics: sensory detection Parameter estimation:
] (O—QMr) Shanﬁon nformation - AUC (Area Under the ROC Curve) measurement error 46

Radiology, Medicine: diagnostic accuracy

Information theory: entropy

Proposal: use metrics based on Fisher Information in all three steps
(Fisher Information about & ~is 1, =1/(46)?> — maximize | ,to minimize 46)
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Binary classifier evaluation — reminder

Discrete classifiers: the confusion matrix

‘ B'nlarV decll(smn: . true class: Positives true class: Negatives
signal or backgroun (HEP: signal Stot) (HEP: background Btot)
PPV = TPT—fFP classified as: positives True Positives (TP)
P (HEP: selected) (HEP: selected signal Ssel)
TPR= TP PN
g TN oo classified as: negatives True Negatives (TN)
TN EP (HEP: rejected) (HEP: rejected bkg Brej)
Stot
Prevalence w5 = Seos + Boor

Scoring classifiers: ROC and PRC curves

1 1
. = s
Continuous output: S 0.8} . 208 .
g . 2 S
probability to be signal 206/ ROC 1 S0 .
: :
. .. c 0.4} - =04 —
Vary the binary decision 2 5
. — -+ Btot = Stot a -+ Btot = Stot X
by varying the cut & 0.2-—— Btot = Stot * 10 Insensitive to | > 02— Btot = Stot *10 ., g
on the Scoring classifier L RSTIRY Btot = Stot * 100 prevalence! g | e Btot = Stot * 100 T
! [ e ) A N R B KALLTE TP
0O 0.2 0.4 0.6 0.‘8 1 00 0.‘2 O.|4 0!6 0.|8 1
FPR (background efficiency) TPR (efficiency or recall)
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Binary classifier evaluation in other domains

Medical Diagnostics (MD) — e.g. diagnostic accuracy for cancer
—Symmetric: all patients important, both truly ill (TP) and truly healthy (TN)

—Traditional rcc= 15+ was too sensitive to prevalence: moved to ROC
* But now ROC is questioned as too insensitive to prevalence (imbalanced data)
—ROC-based analysis (because ROC insensitive to prevalence)

« AUC interpretation: probability that diagnosis gives greater suspicion to a
randomly chosen sick subject than to a randomly chosen healthy subject

Information Retrieval (IR) — e.g. find pages in Google search
—Asymmetric: distinction between relevant and non-relevant documents

—PRC-based evaluation: precision and recall (= purity and efficiency in HEP)
* Single metric: e.g. Mean Average Precision ~ area under PRC (AUCPR)

1

1 1
Oversimplification: |AUC = / €sdep = 1—/ebdes (MD) vs. (IR) AUCPR:/pdeS
0 0 0
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Binary classifiers: domain-specific challenges

* Questions valid for all domains, but with different answers:
—{Qualitative imbalance? | In this talk | will focus on these three
* Are the two classes equally relevant? q”eSt;?;‘;f;ﬁnsg?igi"iﬁaﬁé?:m““d
— Quantitative imbalance?
* Is the prevalence of one class much higher?
— Prevalence known? Time invariance
* Is relative prevalence known in advance? BPoes it vary over time?

M. Sokolova, G. Lapalme, A Systematic Analysis of
Performance Measures for Classification Tasks, Infor-

* Are all 4 elements of the co ' atrix needed? i o i Sanssement 45 (2009) 47

—|Ranking? Binning?
* s the scoring classifieptsed to rank or partition the selected instances?
—|Instance weights?
* Are all instances in a class equally important? Are instance counts enough?
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Evaluation: (main) specificities of HEP

1. Qualitative asymmetry: signal interesting, background irrelevant

—Like Information Retrieval: use purity and efficiency (precision and recall)
* True Negatives and the AUC are irrelevant in HEP event selection
*«ROC alone is not enough, also need prevalence to interpret it

2. Distribution fits: several disjoint bins, not just a global selection
—Analyze local signal efficiency and purity in each bin, not just global ones
—Frequent special case: fits involving distributions of the scoring classifier

3. Signal events not all equal: they may have different sensitivities
—Example: only events close to a mass peak are sensitive to the mass

lllustrated in the following by three examples (1=FIP1, 1+2=FIP2, 1+2+3=FIP3)
« Counting experiments (FIP1) vs. distribution fits (FIP2, FIP3)
« Total cross-section (FIP1, FIP2) vs. generic parameter fit (FIP3)
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Evaluation: Fisher Information Part (FIP)

- Evaluation of an event selection from its effect on the error A8
—Compare to “ideal” case where there is no background

 FIP: fraction of “ideal” FI that is retained by the real classifier
—Range in [0,1] = 0 if no signal, 1 if select all signal and no background
—Qualitatively relevant: higher is better - maximize FIP to minimize A8

—Numerically meaningful: related to AB

 For a binned fit of 6 from a (1-D or multi-D) histogram:
—Consider only statistical errors — sum information from the different bins

m 2
1 [/0S;
(real classifier) Z €ipi X S. (89)
FIP — 20 == :

I{gideal classifier) i 1 /9S; 2
L S; \ 00 Remember from the previous slide:

1. Qualitative asymmetry: use € and p (as in IR)
2. Distribution fit: need local € and p; in each bin

3. Signal events not all equal: need sensitivity %%
L
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[FIP1] Cross-section In counting experiment

» Counting experiment: measure a single number N,
—Well-known since decades: maximize £.,*p to minimize statistical errors

* FIP special case:

—Counting experiment (1 bin) — global signal efficiency and purity

. . ce 1 0S; 1
—Cross-section fit 6=0g, — all events have equal sensitivity Ea_al =—
i S S

m 2
1 /05,
(real classifier) Z €ipi X § (69)
FIP = 20 = 1

Iéidea,l classifier) m o4 0S; 2
2 Si ( 59)

FIP1=¢.*p
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Examples of issues in AUCs — crossing ROCs

« Cross-section measurement by counting experiment
—Maximize FIP1=¢,*p — Minimize the statistical error Ac?

« Compare two classifiers: red (AUC=0.90) and blue (AUC=0.75)
—The red and blue ROCs cross (otherwise the choice would be obvious!)

» Choice of classifier achieving minimum Ac? depends on S, /By,
—Signal prevalence 50%: choose classifier with higher AUC (red)
—Signal prevalence 5%: choose classifier with lower AUC (blue)
—AUC is irrelevant — and ROC is only useful if you also know prevalence

1 1

1
|§;g;=gi§g*|§;g;¢§;9;; I I 5tot=0.05*!5t0t+Bt0t!|
Z | — MAX=0.684 (RED) 2 | — MAX=0.400 (RED)

_ 0.8 '30-3— --- MAX=0.500 (BLUE) '30-3* --- MAX=0.499 (BLUE) FIP1 | AUC
g g BLUE:
S 06 Pt . 206 2 06 Range
A RED: | ¢ g % LOWEST e 091] YES | YES
E HIGHEST | 5 | .. e s 2 po? in [0,
204 ROC 504 Eff¥Pur &o04- EfffPur -~ Higher
E AUC : RED: 2 2 is better Vs

02 £ 02 LOWEST | £o2- :

— AUC=0.900 (RED) | & Ao? £ . Numerically YES
. | —T- AUCI=D.750 I(BLUE) . | | | . | — meanigful
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
FPR (1 - background rejection) TPR (signal efficiency) TPR (signal efficiency)
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Optimal partitioning in distribution fits

 Does information |, increase Iif | split a bin into two (n — n +ng)?

. . 10 10
—Information gain is Al, = (pL—ﬂ — SR) w LTR

s; 00 PRS, SR 00 nrp+ngr

* Partition events using optimal binning variables (- two examples)

—For cross-sections (_g = i) . separate bins with different p;, (—>FIP2")
—For a generic parameter 0 : separate bins with different p, _a_zi (=“FIP3”)

* Practical ML consequences (focus on cross-section example):
—Use the scoring classifier (i.e. ~p !) to partition events, not to reject them
—Train the scoring classifier to maximize the total Fisher information of the

histogram binning, i.e. train it to maximize its partitioning power
» Use Fisher Information as a node splitting criterion for decision tree training
* Use the decision tree more as a regression tree than as a classification tree
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[FIP2] cross-section fit on the 1-D scoring
classifier distribution — evaluation

* FIP special case

. 1 9s; 1
—Cross-section: constant = —i = —

s, 005 O
—Fit on all events: £=1 in all bins
—Fit scoring classifier: use ROC and grevalence to determine purity p,
* Region of constant ROC slope is/a region of constant signal purity

— B
:> FIPQ = de: proportional to
R #signal events in bin
o
£ de/de,: related
E to purity in bin
1 1 ©
Compare FIP2 to AUC: |AUC = / esdey = l—/ epdes )
o o 5 ROC
77777777777777777777777777777 & 0.2
*Technicality: convert ROC to convex hull Zos foc =
- ensure decreasing slope, i.e. decreasing purity soc | 0.0 | | | |
- avoid staircase effect that artificially inflates FIP2 2 00 02 04 06 08 10
(bins of 100% purity: only signal or only background) —_—— FPR (background efficiency)
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[FIP2] cross-section fit on the 1-D scoring
classifier distribution — training

* Is there a gain if | split a node into two (n — n +ng)?
—Same question as in optimal partitioning: do | gain by splitting a bin?

» Gain depends on “impurity” function H(p): 4 =—niH(pr) —nrH(pr) +nH(p)

—two standard choices: Shannon information (entropy) and Gini impurity
—| suggest a third option: Fisher information I;_about the cross-section o

 Surprise: different functions, but Gini and Fisher gains are equal!

—— Negative Entropy

(stnr — sgnL)?  Adgini 1.0
— —— 2 * Negative Gini

nL nR (TI,L + TLR) 2 05 —— Fisher Information about o;

AFisher =

—So0, Gini is OK for cross-sections (or searches?)
. .- . . . . 0.0 Gini, Entropy: symmetric
—But more intuitive physics interpretation for Fisher Fisher: asymmetic

05 (only the signal is relevant!)

—H(pi)

—No practical gain here, but important principle
 And proof-of-concept for generic parameter 6 0% o2 o4 o6 o8 10
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Limits to knowledge

* FIP2 range is [0,1] — but it does not mean that 1 is achievable
—1 represents the ideal case where there is no background

* In some regions of phase space, signal and background events

may be undistinguishable based on the available observations
—There is a limit ROC which depends on the signal and background pdf's
—There is a limit FIP2 which depends on prevalence and the limit ROC

« Example — toy model, you know the real pdf's and prevalence
—See next slide about overtraining
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107

TM3003

FIM_RandomForest

TMID0

AUC (limit=0.9107)

FIM_Random¥arest

Overtraining

« Using the same metric for training and evaluation also
simplifies the interpretation of overtraining

THzDO3

FIP2 (limit=0.6830)

FIM_RandomForest

« Example: toy model where

50~ mmm 0.9711 mean (0.0106 std) 20| =W 0.8198 mean (0.0364 std)
£ [min, max] = [0.942, 0.991] £ [min, max] = [0.731, 0.902]
0.8 a o
[ S a0 . =
c =1 H o
£ 6 = ; S 15
¢ |k - Ou KNOw 1ne real p
s 2 i 2 H S~
c H 10 - H S=—a
o a H o H ~——
w04 @ 20-| i [ H Rl
P TRAINING TRAINING TRAINING _“\(.gu I l OW t _e (]
= H H i~
0.2 100 training sets 10 100 training sets H 5 100 training sets H S e—s Ptd
H H S
training set size: training set size: H training set size: H ,,—"“:~-_
100 sig, 300 bkg 100 sig, 300 bkg 100 sig, 300 bkg Y kn
e — . 0 . — Y OU-KIMOW Ne{
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 10 0.0 0.2 0.4 0.6 Potas -
FPR [background efficiency) AUC FIP2 =
1.0 TM2D03 - FIM_RandomForest TM2003 - FIM_Randemforest FIM_RandomForest o
o AUC (limit=0.9107) 50 FIP2 {limit=0.6830)

=== 0.8743 mean (0.0087 std)

= 0.6324 mean (0.0133 std)
[min, max] = [0.592, 0.660]

OU may trace back every
increase to one node split

—You may study the effects of

£ 60 [min, max] = [0.846, 0.891] £
= o S 40
- 3 50 5
g ] o
2 0. = o -
£ L0 g3 -
s 9 7 -
e € T _Je=
= 930 L--
@ @ 7 20|
[ VALIDATION 20 VALIDATION PPt VALIDATION
= -
0.2 100 training sets 100 training sets __ =" 10 100 training sets
-
validation set size: 10 validatiogsetize: validation set size:
100 x training set 108 stMhining set 100 x training set
-
0.0 T T T T ‘,—ﬂ‘ re T T T o T T
0.0 0.2 04 0.6 08 Pt 0.0 0.2 04 0.6 .0 0.0 0.2 0.4 0.6
FPR (background efﬂc\ensy)—" AUC FIP2
10 - TM2D03 - FM TMZD03 - FIM RandomForest
 OPTTEEE
AT * AAUC AFIP2
et a0 mmm 0.0968 mean (0.0149 std) 20 mmm 0.1875 mean (0.0383 std)
A £ [min, max] = [0.061, 0.131] c [min, max] = [0.088, 0.277]
0.8 - 3 3
= K o o
5 ; 2 30 g 15
u : S 304 © 15
So06-¢ ROC 5 °
£ 5 @ @
o i 2 2
- 4 a 9
g i §2 §10
S04 g 2
@ } @ fir
z I 100 training sets 100 training sets
& I
! — training set size: —| training set size:
0.2 10 100 sn?. 300 bkg 5 100 slg? 300 bkg
| validation set size validation set size
I == AUC=0.9107, FIP2=0.6830 (TRUE PDF LIMIT) 100 x training set 100 x training set
0.0 T T T 0 T T T 0 T T T
0.0 0.2 04 0.6 08 10 -10 -0.5 10 -1.0 -05 0.0

FPR (background efficiency)

AAUC (VALIDATION - TRAINING)

AFIP2 (VALIDATION - TRAINING)
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[FIP3] generic parameter fits including the
scoring classifier distribution — work in progress

* Not a cross-section, e.g. a coupling fit: signal events not all equal
—[FIP2] Fit for o, — should partition events into bins with different p,

—[FIP3] Fit for 8 — should partition events into bins with different p,
* Closely related to the “optimal observables” technique

Los;
s, 00

» Example: 2-D fit for 8 of the p and =2 distributions
1 0s

—Train a regression tree for T (on MC weight derivative) using signal alone
1 0s

—Train a regression tree for p using signal (weighted by gﬁ) and background
—Use Fisher Information about 6 as the gain function in both cases

Boundary between classification and regression even more blurred
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Software technicalities

* | use Python (SciPy, iminuit, bits of rootpy) on SWAN at CERN
—Thanks to all involved in these projects!

« Custom impurity not available in sklearn DecisionTree'’s
—Planned for future sklearn releases (issue #10251 and MR #10325)?

—I implemented a very simple DecisionTree from scratch, starting from
the excellent ICSC notebooks by Thomas Keck (thanks!)

—(May try XGBOOST in the future, where custom impurities are available)

* | plan to make the software available when | find the time...
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https://github.com/scikit-learn/scikit-learn/issues/10251
https://github.com/scikit-learn/scikit-learn/pull/10325
https://github.com/thomaskeck/MultivariateClassificationLecture

—H(p)

A paper will be on arxiv
soon with all details

Conclusions and outlook
* Fisher Information: one metric to bind them all

1.0 1.0 £ —
—— Negative Entropy o 2 106 Fit 0,=0.9987+0.0122 fb
—— 2* Negative Gini = H — expected error from FIP2: 0.0122
—— Fisher Information about o, Y o8- ides =} Il Expected signal (N\=10000)
0.5+ 5 ' © 105 B Expected backgroukd (N=30000)
o Tder o & Observed (N=3976
&£ 0.6 o
] n 10
00 & s & ¢
g 0.4+ T 2 10° FIP2=0.668
@ ROC des
0.5+ _ FIP2 = | ————— 2
x 0.2 14 L= den 10
|_ 0 s d,Es
-1.0 ‘ : | ‘ 0.0 L | T | I 10"
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
pi FPR (background efficiency)
0.0 0.2 0.4 1.0

PHYSICS
- Fisher Information
= measurement error

» Use scoring classifiers to partition events, not to reject them
—The boundary between classification and regression is blurred

- Fisher Information
= measurement error

- Fisher Information
= measurement error

» We must and can define our own HEP specific metrics
—| described one case, there are others (searches, systematics, tracking...)
—Focus on signal. Describe distribution fits. Signal events are not all equal.
—Can we please stop using the AUC now? ©

o)
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Backup slides

Including selected slides from my previous IML talks
in April (https://indico.cern.ch/event/668017/contributions/2947015)
and January (https://indico.cern.ch/event/679765/contributions/2814562)
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Backup — statistical error in binned fits

« Data: observed event counts n; in m bins of a (multi-D) distribution f(x)
—expected event counts y, = f(x;,0)dx depend on a parameter 8 that we want to fit
—[NB here f is a differential cross section, it is not normalized to 1 like a pdf]

« Fitting 0 is like combining the independent measurements in the m bins

—expected error on n; in bin x;is An; = \/y; =/f(xi,8) dx
—expected error on f(x;,0) in bin x; is Af = f * An/n, = Vf / dx

. ~ . . 1 af\? 1 8f2\/cﬂz of\? dz
—expected error on estimated 6; in bin x;Is 57:— = (%) N (—9) (Tf) = (@) =
2

(bin dx)

— expected error on estimated 8 by combining the m bins is (ﬁ) /% (ﬁ)Qdm

* A bit more formally, joint probability for observing the n;is P(:¢) = ][ —-
— Fisher information on 6 from the data available is then =

m

olog Pns0)]” & N~ L (am T l(af)
Ig_E[ % } l.e. I@—Eyé((?g) _ff o

— The minimum variance achievable (Cramer-Rao lower bound) is (a6 = var(d) >

6
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Optimal partitioning — information inflow

- Information about 6 in a binned fit » =-3"2 (%)

» Can | reduce AB by splitting bin y; into two bins? v = w: + 2

@ . . " ‘g 1 /0w \? 1 [8z:\° 1 AN w;+z;) 2 _ (u"é” z)—“'h)‘d
—Is the “information inflow” positive? (%) = (%) o ("% ) = s 20

. . . ~ . 1 Jw; 1 0z
—information increases (error AB decreases) if .7 72

1 8@,-‘ 1 651'

* In the presence of background: |7 -»5 %

i - : - 1 0s 1 0s
—information increases if pw—a—gv * Py ——=
s, 00

a
—therefore: try to partition the data into bins of different p, Sl ase'
- for cross-section measurements, Si@f - gi split into bins of dlfferent P

« Two important practical conseguences:
—1. use scoring classifiers to partition the data, not to reject events
—2. Information can be used also for training classifiers like decision trees

\W A. Valassi — Fisher information metrics QCHS XIII — Maynooth, 39 August 2018 23/20

~7 -




Limited scope of this talk

* Different problems also within HEP require different metrics

* In this talk, | will focus on one specific problem:
—Optimize event selection to minimize statistical errors in point estimation

 Three specific examples (I will focus on the second one)
—[FIP1] Total cross-section measurement in a counting experiment
—[FIP2] Total cross-section measurement by distribution fit

—[FIP3] Generic model parameter fit (e.g. mass/coupling) by distribution fit
* Even more specific: FIP2 and FIP3 use fits of the scoring classifier distribution
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FIP2 for training decision trees

* Decision Tree — partition training set into nodes of different p,
—The best split (n,s)=(n_,s,)+(Ng,Sg) MAXIMIZES A— _y; H(p;) — nrH(pr) + nH(p)

« Current metrics are Gini and entropy: add Fisher information!
—negative Gini impurity — — _, 5,y = n,x[~2p:(1 — p1)]
—Shannon information —> _niH(p:) = ns x ps logs pi + (1 — pi) loga(1 — pi)]
—Fisher information on o5 — ., H(p) = nix[p?] L0
* Functions look different, but (moduio a constant factor)... g 40
—... information gain is the same for Fisher and Gini!

2 2 2 2
s s sp + sg SLNR — SRNL
Apicher L R ( ) ( )

nL nNR nr + ng nrngr(nr + ng)

Acini SL SR SL+ SR e 00 02 04 06 08 10
——=-sp(1——)=sr(1———)+(se+sr) |l — ———— | = AFisher : : : : : :
2 nr, ng nr +ng pi

 But interpretation is clearer for Fisher: reduce the error on the fit
1 651

—And this is a proof-of-concept for FIP3: split into nodes of different p; — 520

Technicality: user-defined criteria for DecisionTree’s will only be available in future sklearn releases
— | implemented a DecisionTree from scratch, reusing the excellent iCSC notebooks by Thomas Keck (thanks!)
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https://github.com/thomaskeck/MultivariateClassificationLecture

FIP2 from the ROC (+prevalence) or from the PRC

* From the previous slide:

* FIP2 from the ROC (+prevalence -.-

Ssel = Shot €5
Bsel = Biot €

s; = dSse1 = Stot des

[—
b; = dBsc1 = Biot dep

 FIP2 from the PRC:

Ssel = Shot €5

8; = dSsel = Stot des

e
FIP2 = Lfnl Pisi
2oi—15i

Stot

_ 1

- Biot @
L+ g a.

Bsel = Ssel ( B 1) bi = dBgse) = Spot [dfs (_ - 1) - fs_g] 1
P P p

" Sior + B ) -

—

FIP2: integrals on ROC and PRC,
more relevant to HEP than AUC or AUCPR!
(well-defined meaning for distribution fits)

des

1—m. dey

s des

1
FIPsz
0o l+

Compare FIP2(ROC) to AUC

1 1
AUC:/esdeb = lf/ebdes
0 0

1
—— = FIPQ:AI

pdes

_ e dp

p deg

T
AUCPR:fpdes
0

 Easier calculation and interpretation from ROC (+prevalence) than from PRC

— region of constant ROC slope* = region of constant signal purity

— decreasing ROC slope = decreasing purity
» technicality (my Python code): convert ROC to convex hull** first

1.0 1.0
—_ c
> o T
0 | de = | |
5 0.8 * de,: proportional 3 0.8 dp
iv] dsb to #signal events o des
£ 0.6 in bin 2.0.6
o S
© de/de,: related =
c 0.4 s b e 204
o to purity in bin =
2 ROC ] PRC
o 0.2 4 02— prevalence N=0.5
[ 2 (Btot=Stot)
= o
o
0.0 T | | T 0.0 | | T |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

FPR (background efficiency)

TPR (efficiency or recall)

1.0

0.0 T T T
*Convert ROC to convex hull 00 02 04 06
- ensure decreasing slope

Compare FIP2(PRC) to AUCPR

1.0
5
£ 0.8 [
3 . ROC
£ 06—
7]
g
S 0.4
o |
& 0.2+ *e original ROC
= ‘ —— ROC convex hull

I
0.8 1.0

FPR (background efficiency)

- avoid staircase effect that would artificially inflate FIP2
(bins of 100% purity: only signal or only background)

*ROC slopes are also discussed in medical literature
in relation to diagnostic likelihood ratios [Choi 1998],
but their use does not seem to be widespread(?)
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Events per 0.01 bin

It 5.=0.9987+0.0122 fb
ected error from FIP2: 0.012
Il FExpecte
H Expected background (N=30000)
4 Observed (N=39769)

FIP2=0.6683
10°

Sanity check

101

* Three random forests
(on the same 2-D pdf)

0.0 x: — reasonable
Classifier output D .
o7 — undertrained
£ 3 _ T5.=1.002640.0137 fb — i
ﬂ 105_; FIP2=0.5223 ected error from FIP2: 0.013 D overtrained
S 1054 EEE Expecte
= 3 BN Expected background (N=30000) . . . .
8 10' + Observed (N=39769) * Kit o, from the distribution
-~ 3_i LY.Ll
g1 of the classifier output
w 102_% . .
3 Errors consistent with FIP2
10! -
3 N . 1 Aps .
Ag(real classifier)y2 _ _~ Ag(ldeal classifier)\2
0.0 0.2 0.4 o.‘a o.'a 1.0 ( ) FIP( )
Classifier output D
£ 1000 FP2=0.5870 5.=0.0088+0.0130fb
= N ' ected error from FIP2: 0.013
g 10°5 EEm Expecte
—  10% BN Expected background (N=30000)
g 10° 4  Observed (N=39769)
i
S 102
>
w10l
10°
10! My development environment: SciPy ecosystem,
0.0 0.2 0.4 0.6 08 1.0 iminuit and bits of rootpy, on SWAN at CERN.
Classifier output D Thanks to all involved in these projects!

A. Valassi — Fisher information metrics QCHS XIII — Maynooth, 39 August 2018 27/20




M by 1D fit to m — visual interpretation

* Information after cuts: };; Sl

o0si 2

oM

£ . P, — show the 3 terms in each bin i

—fit = combine N different measurements in N bins — local g; p, relevant!
— important thing is: maximise purity, efficiency in bins with highest sensitivity!

Prediction

Fit results

g 900
316 . .
. 2.0 £ Signal efficiency=1.00 mmm Expected signal (N=10000.0)
. Qo M . N 800 P gl
Ideal case - yellow histogram |2 1.4 Uh(dh/dM)? , fh dh  Efficiency*Purity = 1.00 2 purity=1.00 M Expected background (N=0.0)
(after cuts) coincides with and | & 1.2 SUM=1/10.200GeV) Min d|[[]  Infermation fraction = 1.00 |, - & & 700 eff.pur=1.00 4 Random sample (N=9964)
i i 310 eff*purtL/h(dh/dM)? M 73 < 600 P —— Fit (¥1=999.962.4.0. 200 GeV)
covers red histogram (ideal) gl SUM=1/(0.200GeV)? L 1 a 5 500
v 08 o 0% o
- ) 0 ann
= 0.6 Signal efficiency
2 gaf|— Ave=100 IDEAL CASE,
= Signal purity
502 avs-100 NO BACKGROUND
£og u |
= 00 850 900 95 1000 50 1100 1150 12000
m/GeV [bin width: 4 GeV] 8o 850 900 1100 1150
Invariant mass m/GeV
>16 7000 T
) E L. " 2.0 £ Signal efficiency=1.00 Emm Expected signal (N=10000.0)
Red h ISto g ram: s 14 LnidhidM) Efficiency*Purity = 0.09 < 6000 purity=0.09 W Expected background (N=100000.0)
- Y12 SUM=1/(0.200GeV)’ Information fraction = 0.47 |, ¢ 2 3 eff.pur=0,09 -+ Random sample (N=110094)
. . - T eff*purt1/h(dh/dM)? 25 g 5000 ' —— Fit (N =1000, 046 +0.293 GeV)
formation per bin 510 P 2l ; ! 04620293 Ge
I n p ] £ SUM=1/(0.292GeV)? N 34[}00
N2 o8 g £ 3000
. 1 /0dsi = 06 Signal efficiency n £ @
ideal case — o Zo4l|— AT - R | o
S. 2 ignal purity
i S 021~ AVG=0.09
=
= "800 850 500 950 1000 1050 1100 1150 1200° 850 900 Ti0o 155
m/GeV [bin width: 4 GeV] Invariant mass m/GeV
B l ue Ilne' |Oca| 7 1 20 £ Signal efficiency=0.78 mm Expected signal (N=7800.0)
C] 2 5 100 P
ritv in the bin S 14 LUnidhidMy , Efficiency*Purity = 0.32 > purity=0.41 mm Expected background (N=11076.2)
pu I y I ’ pi 812 SUM=1/(0.200GeVY Information fraction = 0.62 |, o & & 600 eff.pur=0,32 + Random sample (N=18965)
A effrpurt1/h(dh/dM)? g < 500 —— Fit (M=999.920+:0.254 GeV)
gl SUM=1/(0.255GeV)* = 8 nn
D08
Green line: local = 06| Signal effciens MAXIMUM INFORMATION,
. 2 — ooz Y
P . . 5 04 =
kS Signal purit MINIMUM ERROR
erficiency in e DINn,& £ 02f|— aeada
y 1 & 502 AVG=0.41 | B
= %800 850 300 950 1000 1050 1100 1150 726" 00
850 900 1100 1150 12
m/ GeV [bin width: 4 GeV] Invariant mass m/GeV
> 1.6 = Signal efficiency=0.58 B Expected signal (N=5800.0)
v 2.0 = P g
g 1.4 1/h(dh/dM)? , Efficiency*Purity = 0.46 > purity=0.80 BN Expected backgmuzd (N=1495.0)
3 1.2 SUM=1/(0.200GeVY Information fraction = 0.54 1 5,? v} eff-pur=0.46 T R.and.cm sample (N=7140)
% 10 eff*pur*1/h(dh/dM)? =y ‘: —— Fit (M=1000.215+0.277 GeV)
e SUM=1/(0.273GeV)? = S
B08l 102 o
2 |2 o 2
1 /9si % 06/[  signal efficiency -5 g
8_*p_* —_ — }é 0.4 .;VG=IO.SB D.SE i)
1 1 ignal purity
s. \oM E 0.21|— AvG=0.80

850

1100 1150 12(?00
m/ GeV [bin width: 4 GeV]

1000 1050
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Event selection in HEP searches

« Statistical error in searches by counting experiment — “significance”
— several metrics — but optimization always involves €., p alone — TN irrelevant

C. Adam-Bourdarios et al., The Higgs Machine
Learning Challenge, Proc. NIPS 2014 Workshop

on High-Energy Physics and Machine Learning
g Ssel (Z0)? = Store Z, — Not recommended? (confuses search (HEPML2014), Montreal, Canada, PMLR 42 (2015)
0 m 0 = Otot€sp with measuring O-S once Signal established) 19. http://proceedings.mlr.press/v42/cowal4.html

Z, — Most appropriate? (also used
as “AMS2” in Higgs ML challenge)

1 1 2
(Z2)? = 2S01es (,0 10%(@) - 1) = Shot€sp (1 + 37 + @(Pz))

sel

S,
ZQ = -\/2 ((Ssel + Bsel) log(l + BSEI) - Ssel) —

B Z5 (FAMS3” in Higgs ML) — Most widely used, but strictly valid
Za = %]1 — (23)2 - Stotesl f ; = Stotesp (1 +p+ 0(p2)) only as an approximation of Z, as an expansion in Sy /Bgg < 1?

R. D. Cousins, J. T. Linnemann, J. Tucker, Evalua-

_ _ 2
B, -1 p(1+p+0(p%)

Expansionin p <« 1 ?—use
the expression for Z, if anything

G. Punzi, Sensitivity of searches for new signals and its
optimization, Proc. PhyStat2003, Stanford, USA (2003).
arXiv:physics/0308063v2 [physics.data-an]

G. Cowan, E. Gross, Discovery significance with statistical
uncertainty in the background estimate, ATLAS Statistics Fo-
rum (2008, unpublished). http://www.pp.rhul.ac.uk/~cowan/
stat /notes/SigCaleNote.pdf (accessed 15 January 2018)

tion of three methods for calculating statistical signifi-
cance when incorporating a systematic uncertainty into
a test of the background-only hypothesis for a Poisson
process, Nucl. Instr. Meth. Phys. Res. A 595 (2008) 480.
d0i:10.1016/j.nima.2008.07.086

G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic
formulae for likelihood-based tests of new physics, Eur. Phys.
J.C 71 (2011) 15. doi:10.1140/epjc/s10052-011-1554-0

« Several other interesting open questions — beyond the scope of this talk
— optimization of systematics? — e.g. see AMS1 in Higgs ML challenge
— predict significance in a binned fit? — integral over Z2? (=sum of log likelihoods)?

\W A. Valassi — Fisher information metrics
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Maximise & at 4 kHz

LHCb 2015 Trigger Diagram

n

Iy ROCS for events \ I r I g g e r 40 MHz bunch crossing rate EQ =

- v . r v r SE=

— mmadel ' ' 283

== rate: 4 kHz H H o g EE

ach| -- rabe: 2.5 kHz ] LO Hardware Trigger : 1 MHz £EES

o 4;4—',7 readout, high Er/Pr signatures Eg°

C [ 2w g

a ! 450 kHz 400 kHz 150 kHz 5 g=

E o 4 ' T. Likhomanenko et al., LHCh Top‘olog'im[ Trigger Reop- h* A w/pp A e/y . ;% g
al ' ' timization, Proc. CHEP 2015, J. Phys. Conf. Series 664 Sl
“ : ! (2015) 082025. doi:10.1088 /1742-6506,/664/8 /082025 e Y YN . ELEB=
E a : [ . Software High Level Trigger : --S g E g
E E E ngre 2_ T'l'igg(l]' events R{:}C' [ .Partial event recons_truction, s:-elect ] . : g L.Us E
- H H _ displaced tracks/vertices and dimuons 2L %=
E ! ! ciurve,  An output rate of 2.5 ) : . 3E8S
i ! ! kHz _‘mrros[mmiﬁ to an FPR of | |UC, 4kHz is " Butfer events to disk, perform online | gf é 5
E [].Eu'{t 4 ka‘ i .-l(_r'"u_. Thus 1\ £ (FP R) — 0 4% detector calibration and alignment E :j M_E
F o to find the signal efficlency for b . EE
- - Full offline-like event selection, mixture 2,22
a L5 kHz output rate, we take of 1 MHz LO hw rate of inclusive and exclusive triggers EESZ
. 0.25% background efficiency  and Efj % Z
N TR R T R L e L LT GECID GO0K oM find the ]_]Ui]lt on the ROOC curve 12.5 kHz (0.6 GB/s) to storage mEaT

FPR, background events efficiency that corresponds to this FPR.

 Different meaning of absolute numbers in the confusion matrix
—Trigger — events per unit time i.e. trigger rates
— (Physics analyses — total event sample sizes i.e. total integrated luminosities)

 Binary classifier optimisation goal: maximise €. for a given B, per unit time
—i.e. maximise TP/(TP+FN) for a given FP — TN irrelevant

* Relevant plot — g, vs. B, per unittime (i.e. TPR vs FP)
—ROC curve (TPRvs. FPR) confusing — AUC irrelevant
—e.g. maximise g for 4 kHz trigger rate, whether LO rate is 1 MHz or 2MHz
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information fraction

M by 2D fit — use classifier to partition, not to cut

« Showed a fit for M on m, after a cut on D — can also fit in 2-D with no cuts
—again, use the scoring classifier D to partition data, not to reject events

* Why is binning so important, especially using a discriminating variable?

1.2

1.0

0.8

0.6

0.4

0.2

— next slide...

Prediction L Prediction
T T T T T . T T T T T
1D fit for M in m distribution 2D fit for M in m,D distribution
1.0
0.8
0.6

1gnal events

1 bins: €.000 ( inf)
3 bins: ©.000 ( inf)
5 bins: ©.019 (1.435)
1 bins: ©.329 (8.349)
5 bins: ©.397 (@.318)

31 bins: ©.449 (0.298)
101 bins: 0.467 (9.293)
1001 bins: ©.469 (9.292)

Target: 1.000 (©.200)

information fraction

0.4

0.2

(&M for 10k signal events)

ins: 0.000 ( inf)
ins: 6.001 (6.018)
ins: ©.112 (©.598)
#.554 (0.269)
1 8.627 (0.253)
: 8.703 (0.239)

31 x 31 bin

s —
101 x 101 bins: 0.727 (0.235)

1001 x 1001 bins: 0.729 (0.234)

Target: 1.000 (0.200)

| |
20 40 60 80
#bins in m distribution
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|
100

| \
20 40 60 80 100
#bins in m and D distributions

Fit results

7000

6000

Events per 4GeV bin
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I I I |
Hl Expected signal (N=10000) ]

HEEl Expected background (N=100000)
¢ Random sample (N=110208) —
=== Measured by 1D(m) fitto M

(M=999.714 +-0.293 fb)

—— Measured by 2D(m,D) fit to M
(M=999.688 +0.233 fh)

Ideal case:

1D fit(m), no cut(D):
1D fit(m), optimal cut(D): + 0.254/
2D fit(m,D), no cuts:

+0.200
+0.292

+0.233

| | |
1200 1300 1400
Invariant mass m/GeV

1000 1100
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Optimal partitioning — optimal variables

* The previous slide implies that q = p—— Is an optimal variable to fit for ©

— proof of concept — 1-D fit of q has the same precision on M as 2-D f|t of (m D)
—closely related to the “optimal observables” technique e e

:!)!)tll(ll \l

‘(
()p[ wal  obse

T T I 1 E I and
7000 m Expected signal (N=10000) g - Expected signal (N= 10000) . Phys. 3. C40 (2005) 407,
Frpected backsround (N=100000) 1.2 1%L BN Expected background (N=100000)
i< 6000 %+ Random sample (N=110208) 4 - 5% — Fit (M 999,854 +0.236 fb) e
> M d by 1D(m) fit to M 3 10F =
] - - Measured by m) fit to BN F .
Q 5000 (M=999.714 +0.293 fb) Y 'L Ideal case: + 0.200
2_4000 —— Measured by 2D(m,D) fit to M o E 1D flt(m), no CUt(D): + 0.292
(M=999.688 +0.233 fb) o 30 . .
L ’ & 10 1D fit(m), optimal cut(D): + 0.254
9] |8 F .
& 3000 £ 107k 2D fit(m,D), no cuts: +0.233
> = c
2000 | @ o'l 1D fit(9): + 0.236
1000 — 100; |
: ‘ ‘ T
0 900 1000 1100 1200 1300 1400 . . 0.0 0.1 0.2
Invariant mass m/GeV (Plvio. xso) () Cilw,) / GeV™!

10s
* In practice: train one ML variable to reproduce —ﬁ?

—not needed for cross-sections or searches (this is constant)

A. Valassi — Fisher information metrics QCHS XIII — Maynooth, 39 August 2018 32/20




...... 55 (TRAINING Lui=1000) TMID_K - LinearDiscrimmantanalysis

* Prepared a model just to show that AUC is misleading
— pdf with two useful features and a third random one o
— two classifiers, each trained only one useful feature
— two prevalence scenarios: S/B=5 and S/B=1/5

ROC

X2 (out of 3)
o
TPR (signal efficiency)

= AUC=0.7998, F1P2~0.8656 (classifer validation)
* AUC=0.8000, FIP2=0.8667 (TRUE PDF UM m
T

« Same AUC (0.80) in all four cases ,
— it is well known that AUC is insensitive to prevalence e h .
— ROC curves of the two classifiers cross : ‘ '

* Low prevalence: FIP2 favors classifier #1 (0.63 > 0.33)

X1 (out of 3)

» High prevalence: FIP2 favors classifier #2 (0.87 < 0.93)

- Signal (5000 events)

* Do not choose the best classifier based on AUC
— not for a cross-section fit on the classifier output, nor in general!

= AUIC=0.0000, FIP2=0.0245 (classifer ion)
* AUC=0.8000, FIP2=0.9259 (TRUE POF uMm
T

N
IS

0.2 o]
X2 (out of 3) FPR (ba(kgvo ind effc iency)

PSSR IR St A
High prevalence é’;ﬁ R

e ,;h *g
««a" h'
0 J&r.-r LA V

=
s —
s .| ™
£ 5
2 5
Al Oow prevalence 2
L L ) i -27
| 3 sl
-4-1" + Signal (1000 events) — AUC=0.8021, FIP2=0.6271 (classifer %
i Background (5000 events) * AUC=0.8000, FIP2=0.6296 (TRUE pur un Vy &
| e - T 1 —
-4 0 02 08 10 - -4
Xo (out of 3) FPR (background emcuency)
«  Signal (5000 events)
: i o0 s Background (1000 events)
S00ae " Mo PNt ke O
PR a5 s ey el . £ it % o, S —6 : : : T
‘5 -4 -2 0 2 4 6
5 Xo (out of 3)
2
a X =27
S
s
S
X = .
-4
- Signal (1000 events) FI P 2 VS Al “
s = Background (5000 events)
- signal events)
Background (5000 events) :32 2;333 ?3 gi;;;:vlnue POF mm - -6 T I I I
LS S s -4 -2 0 2 4 6

fas
-4 -2 [ 2 4

0.2 s
X2 (out of 3) FPR (backgvound e"lc iency) Xo (out of 3)
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Understanding domain-specific challenges

« Many domain-specific details — but also general cross-domain questions:

—1. Qualitative imbalance?
* Are the two classes equally relevant?
— 2. Quantitative imbalance?
* Is the prevalence of one class much higher?

— 3. Prevalence known? Time invariance?
* Is relative prevalence known in advance? Does it vary over time?

- 4. DI m en S i O n al ity? Scal e i nva” an Ce? M. Sokolova, G. Lapalme, A Systematic Analysis of

Performance Measures for Classification Tasks, Infor-
mation Processing and Management 45 (2009) 427.

* Are all 4 elements of the confusion matrix needed? & oo 500003002
* Is the problem invariant under changes of some of these elements?

—5. Ranking? Binning?
« Are all selected instances equally useful? Are they partitioned into subgroups?

 Point out properties of MED and IR, attempt a systematic analysis of HEP
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- Medical Diagnostics (MED)
does Mr. A. have cancer?

Medical diagnostics (1) =

X. H. Zhou, D. K. McClish, N. A. ()I chowski, Sta-

and ML researCh tistical Methods in Diagnostic Medicine (Wiley, 2002).

doi:10.1002/9780470317082

 Binary classifier optimisation goal: maximise “diagnostic accuracy”
— patient / physician / society have different goals — many possible definitions

« Most popular metric: “accuracy”, or “probability of correct test result”:

TP + TN TP (correctly
ACC = — 7x TPR+(1—m,)xTNR diagnosed as jll
TP + TN + FP  EN (1=ms)x e

diagnosed as healthy)

— Symmetric — all patients important, both truly ill (TP) and truly healthy (TN)
—Also “by far the most commonly used metric” in ML research in the 1990s

! ” i, J. A. Swets, Measuring the yofﬂfimg c system

Science 210 (1988) 1285. doi 10 1126/ 328 7615

e Since the 903 — shift from ACC to ROC In t'he MJED and ML fields

F. J. Provost, T. Fawcett, R. Kohavi, The Case against

stimatios j r Comparin, g[ d ctio «Hg thms,

—TPR (sensitivity) and TNR (specificity) studied separately 9;%;;:*‘“ N eyt “C“a
» solves ACC limitations (imbalanced or unknown prevalence — rare dlseases, epidemics)

— Evaluation often AUC-based — two perceived advantages for MED and ML fields

» AUC interpretation: “probability that test result of randomly chosen sick subject
indicates greater suspicion than that of randomly chosen healthy subject”

* ROC comparison without prior D, choice (prevalence-dependent D, choice)

APBadl-Thu of the area d the ROC J. A. Hanley BJM\IlThmsangd fhea

n the evaluation of machine learn algorithms, under a recei. T operati ng cl characteristic (ROC) e, Ra-
Pa tt 0 Rec gnltl 3'3 (1997) 1145. doi 10 1016/’50031 diology 143 (1982) 29. doi:10. 1143/ adiology.143.1. rOBS 4T
3203(96)00142 2
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Medical diagnostics (2)

and ML research

« ROC and AUC metrics — currently widely used in the MED and ML fields
— Remember: moved because ROC better than ACC with imbalanced data sets

 Limitation: evidence that ROC not so good for highly imbalanced data sets
— may provide an overly optimistic view of performance

— PRC may provide a more informative assessment of performance in this case
* PRC-based reanalysis of some data sets in life sciences has been performed

» Very active area of research — other options proposed (CROC, cost models)
— Take-away message: ROC and AUC not always the appropriate solutions

S. I Swamidass, C.-A. Azencott, K. Daily, P. Baldi, A

J. Davis, M. Goadrich, The relationship between Precision- CROC stronger than ROC: measuring, visualizing and

Recall and ROC curves, Proc. 23rd Int. Conf. on Ma-

chine Learning (ICML °06), Pittsburgh, USA (2006).

doi:10.1145/1143844.1143874
C. Drummond, R. C. Holte, Ezplicitly representing expected

cost: an alternative to ROC representation, Proc. 6th Int.

Conf. on Knowledge Discovery and Data Mining (KDD-00),
Boston, USA (2000). doi:10.1145/347090.347126

D. J. Hand, Measuring classifier performance: a coherent
alternative to the area under the ROC curve, Mach Learn

(2009) 77: 103. doi:10.1007/510994-009-5119-5

A. Valassi — Fisher information metrics

optimizing early retrieval, Bioinformatics 26 (2010) 1348.
doi:10.1093 /bioinformatics/btq140

D. Berrar, P. Flach, Caveats and pitfalls of ROC analysis in
clinical microarray research (and how to avoid them), Brief-
ings in Bioinformatics 13 (2012) 83. doi:10.1093/bib/bbr008
H. He, E. A. Garcia, Learning from Imbalanced Data,
IEEE Trans. Knowl. Data Eng. 21 (2009) 1263.
doi:10.1109/TKDE.2008.239

T. Saito, M. Rehmsmeier, The Precision-Recall Plot Is More
Informative than the ROC Plot When FEvaluating Binary
Classifiers on Imbalanced Datasets, PLoS One 10 (2015)
e0118432. doi:10.1371/journal.pone.0118432
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- Information Retrieval (IR)

I N fo 'Mm at | on R et I | ev al Google documents about “ROC”

* Qualitative distinction between “relevant” and “non-relevant” documents
—also a very large guantitative imbalance

 Binary classifier optimisation goal: make users happy in web searches
— minimise # relevant documents not retrieved — maximise “recall” i.e. efficiency
— minimise # of irrelevant documents retrieved — maximise “precision” i.e. purity
—retrieve the more relevant documents first — ranking very important
—maximise speed of retrieval

* IR-specific metrics to evaluate classifiers based on the PRC (i.e. on g, p)

—unranked evaluation — e.g. F-measures F_= ole +(11 /0
+(1-

* a €[0,1] tradeoff between recall and precision — equal weight gives F1=

280

gHp

—ranked evaluation — precision at k documents, mean average precision (MAP), ...
* MAP approximated by the Area Under the PRC curve (AUCPR)

C. D. Manning, P. Raghavan, H. Schiitze, Introduction to
Information Retrieval (Cambridge University Press, 2008).
https:/ /nlp.stanford.edu/IR-book NB: Many different of meanings of “Information”
IR (web documents), HEP (Fisher), Information Theory (Shannon)...
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Domain

Property

Qualitative class
imbalance

Quantitative class
Imbalance

Varying
or unknown
prevalence 1

Medical diagnostics

NO. Healthy and ill
people have “equal rights”.
TN are relevant.

Information retrieval

YES. “Non-relevant”
documents are a nuisance.
TN are irrelevant.

HEP event selection

YES. Background
events are a nuisance.
TN are irrelevant.

From small to extreme.
From common flu
to very rare disease.

Generally very high.
Only very few documents
In a repository are relevant.

Generally extreme.
Signal events are swamped
in background events.

Varying and unknown.
Epidemics may spread.

Varying and unknown
in general (e.g. WWW).

Constant in time
(Quantum cross-sections).
Unknown for searches.
Known for precision
measurements.

Dimensionality
and invariances

apalme, A Systematic Analysis of|
ification Tasks, Infor-

3 ratios €., €., I + scale.

New metrics under study
because ROC ignores T.
Costs scale with N,

2 ratios g, p + scale.
€, P enough in many cases.
Costs and speed scale with N,

TN are irrelevant.

Show only N docs in one page.

2ratios €., p + scale.

€, P enough in many cases.

Lumi is needed for: trigger,

syst. vs stat., searches.
TN are irrelevant.

Different use of
selected instances

Binning = NO.
Ranking — YES?
Treat with higher priority
patients who are

Binning — NO.
Ranking — YES.
Precision at k, R-precision, MAP
all involve global precision-recall

more likely to be ill?

(“top N documents retrieved)

Binning — YES.
Fits to distributions:
local €., p in each bin
rather than global €, p.
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Different HEP problems — Different metrics

Binary classifiers for HEP event selection (signal-background discrimination)

Cross-section (1-bin counting)

2 variables: global €, p (given S,)

Maximise S,.;*¢.*p (at any S,y)

Statistical Searches (1-bin counting )

error
minimization

Simple and CCGV - 2 variables:
global S, B, (or equivalently €, p)

. S, .
Maximise W (|.e. 1,Stot*£s*p)

Maximise Jz((sgel +Bsel) g 1+ 52 — Ssel)
B,

HiggsML — 2 variables: global Sy, By,

Maximise [2((s.,, + Bsel + K) log (1 + %) — ssel)

S
B_ +K

Punzi — 2 variables: global ¢, B,

.. €
s
Maximise Y

(or statistical

Cross-section (binned fits)
significance

maximization) Parameter estimation

(binned fits)

2 variables:
local €5; and p; in each bin
(given s,y ; in each bin)

Maximise ¥; s i€ *P;
Partition in bins of equal p,

imi 1 0Siut
MaximiSey; i *es +0; * (g——52k)>
tot,i

Partition in bins of equal p,« (2t
tot,i

Searches (binned fits)

3 variables: local s, S, Se IN €aCh
bin (2 counts or ratios enough?)

Maximise a sum? *

Statistical + Systematic error
minimization

3 variables: g, p, lumi
(lumi: tradeoff stat. vs. syst.)

No universal recipe *
(may use local Sy, B, in side band bins)

Trigger optimization

Only 2 or 3 global/local variables — TN, AUC irrelevant

2 variables: global B, /time, global €

Maximise g at given trigger rate

Binary classifiers for HEP problems other than event selection

Tracking and Particle-ID optimizations

All 4 variables? * (NB: TN is relevant)

ROC relevant — is AUC relevant? *

Other? *

2 %

2 *
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Numerical tests with a toy model

* | used a simple toy model to make some numerical tests
— Verify that my formulas are correct — and also illustrate them graphically
— Two-dimensional distribution (m,D) — signal Gaussian, background exponential

 TwWOo measurements:

—total cross-section measurement by counting and 1-D or 2-D fit
—mass measurement by 1-D or 2-D fits

 Detalls in the backup slides

100k signal and 1M background events
T L I

80 C il Mg
8'0 ' _0'4 . ,0'6 , , 1.0 Using scipy / matplotlib / numpy
Discriminating variable D and iminuit in Python from SWAN
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M by 1D fit to m — optimizing the classifier

» Choose operating point D, optimizing information fraction for 8=M in m-fit
— NB: different to operating point maximising €*p (IF for 8=0 in a 1-bin fit)

: 10s . :
« To compute IF as sum over bins — need average ;% In each bin

— proof-of-concept — integrate by toy MC with event-by-event weight derivatives
1 a|.7v[|2

*in a real MC, could save —
M2 90

for the matrix element squared |M|?

:.Jnits of :‘(m': evelnts per “‘Gev b'"l 1.2 Selection cut on D: accept D > 1—¢,
. I I I I
1000 -2 information fraction about M
[ 1.0 (fit for M from m distribution)
1 global efficiency_ * global purity 7
500 —1 E JE. (total cross section measurement) )
g s o3 £
- 0 7 s % —0 E '-6 0.6 Max=0.62 at ,=0.78 |
= = S Y Max=0.46 at &,=0.58 ...
-500|- ° < 5
H-13 2 0.4 —
— h(m) =
~1000| dh/dM (m) 0.2| .
—_— l/h(dh/dM) (m) —-2 :
800 850 900 950 1000 1050 1100 1150 1200 0_8 | | | |
m / GeV .0 0.2 0.4 0.6 0.8 1.0
signal efficiency &,
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