Using Machine Learning methods for improving data quality in ALICE

Łukasz Graczykowski
Tomasz Trzciński, Kamil Deja, Michał Glinka
for the ALICE Collaboration

XIII Quark Confinement and the Hadron Spectrum
Maynooth, Ireland
2 August 2018
Goals

- Use ALICE and its data as a unique environment to advance the Machine Learning field of science
- Identify areas where both ALICE (or HEP in general) and ML communities can mutually benefit
- Focus on Machine Learning research rather than using standard ML tools for ALICE use cases
- Disclaimer:
 - I’m a physicist without a ML expertise – just started my (human) learning of machine learning :)
 - My task is to guide and coordinate the work of WUT ML computer scientists within ALICE
Three areas of research

- **Data Quality Assurance** – prediction of detector quality label assignment
 - not covered in this talk

- **Simulation of TPC clusters in Monte Carlo data using generative networks**

- **Development of more precise particle identification (PID)**
Simulation of TPC clusters in Monte Carlo data using generative networks
Time Projection Chamber

- Tracking in ALICE is performed by ITS, TPC, TRD and TOF
- First attempts – focus on the TPC only:
 - main tracking device
 - located from 0.8 m (inner radius) to 2.5 m (outer radius) from the beam and extending ~2.5 m in each direction along the beam axis
 - volume of 95 m³
 - filled with Ne-CO₂ gas mixture (90%-10%)
 - clusters - points in 3D space, together with the energy loss, which were presumably generated by a particle traveling through
 - provides up to 159 clusters per track
Simulation and reconstruction

- Current process relies on 5 independent modules
- The computationally most expensive module is particle propagation through the detector’s matter
Simulation and reconstruction

- Generative solution for cluster simulation:
 - substitute the detector simulation and check for the speed-up
 - full simulation **still needed** to generate training samples
 - immediate **drawback**: quality of such MC data can be either comparable or lower than the full detector simulation – limits potential applications
Generative Adversarial Networks

- Generative Adversarial Network (GAN) is a neural network architecture of two networks competing with each other (playing a min-max game)
 - "Generator" is trained to produce fake data resembling the real data
 - "Discriminator" predicts whether an example data is real or fake
Generative Adversarial Networks

- Typical use cases:
 - mainly generation of photo quality fake images (i.e. of celebrities)

https://arxiv.org/abs/1710.10196

Generative Adversarial Networks

- Extending the GAN architecture – provide a set of initial parameters for the generator and discriminator:
 - generator would not generate a random output, but a customized one
 - in our case: initial momenta of Monte Carlo particles

Initial Parameters

https://giphy.com/gifs/leonardo-dicaprio-catch-me-if-you-can-Sleecharacters-L1h4mnWEWKfn2

https://33milesinnewaygocounty.files.wordpress.com

https://thechive.files.wordpress.com
TPC clusters with GANs

- It is not (yet!) possible to generate the full 3D image of the event at once (especially in the Pb-Pb event)

- Our solution is to:
 - generate clusters for single particles
 - two separate flows for spatial coordinates \((x,y,z)\) and the energy
 - in the beginning focus only on 3D coordinates
 - merge generated samples (individual particles) into full images
 - training of the GAN on original full simulations
Example results

ALICE Simulation
PYTHIA6, Perugia-0, pp @ √s = 7 TeV

TPC Clusters
- GAN Simulation
- Full Simulation

Proton

ALICE Simulation
PYTHIA6, Perugia-0, pp @ √s = 7 TeV

Original event

ALICE Simulation
PYTHIA6, Perugia-0, pp @ √s = 7 TeV

GAN event

Example results

ALICE Simulation
PYTHIA6, Perugia-0, pp @ √s = 7 TeV

TPC Clusters
- GAN Simulation
- Full Simulation

Kaon

2 August 2018, XIII QCHS
Łukasz Graczykowski (WUT)
Results

- Mean Squared Error (MSE) from the original helix as a quality measure

- Evaluation conducted on the separate test-set with ~15000 tracks

MSE visualisation:
Red - error
Grey - ideal helix
Orange - original clusters
Blue - generated clusters

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean MSE (mm)</th>
<th>Median MSE (mm)</th>
<th>Speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEANT3</td>
<td>1.20</td>
<td>1.12</td>
<td>1</td>
</tr>
<tr>
<td>Random (estimated)</td>
<td>2500</td>
<td>2500</td>
<td>N/A</td>
</tr>
<tr>
<td>condLSTM GAN</td>
<td>2093.69</td>
<td>2070.32</td>
<td>100</td>
</tr>
<tr>
<td>condLSTM GAN+</td>
<td>221.78</td>
<td>190.17</td>
<td>25</td>
</tr>
<tr>
<td>condDCGAN</td>
<td>795.08</td>
<td>738.71</td>
<td></td>
</tr>
<tr>
<td>condDCGAN+</td>
<td>136.84</td>
<td>82.72</td>
<td></td>
</tr>
</tbody>
</table>
Computational cost

- Performance test conducted on the standalone machine with Intel Core i7-6850K (3.60 GHz) CPU using single core and no GPU
- Additional order of magnitude speed-up for GAN models with nVidia Titan Xp GPU
PID with Machine Learning
Particle identification

- Particle identification (PID) is one of the most important steps in many physics analyses
- Crucial for Quark-Gluon Plasma measurements
- PID is one of the strongest advantages of ALICE:
 - practically all known techniques used (dE/dx energy loss, time-of-flight, Cherenkov radiation for hadrons and transition radiation for electrons)
 - possibility to identify (anti-)nuclei
 - very good separation of pions, kaons, protons, electrons over a wide momentum range
 - separation of signals of charged hadrons and electrons for very low momenta (down to 0.1 GeV/c)
Particle identification

- ITS
- TOF
- TPC
- TRD
- HMPID

AlICE
Traditional vs ML PID

- **Traditional PID:**
 - a typical analyzer selects particles “manually” by cutting on certain quantities, like the number of standard deviations of a signal from the expected value
 - most limitations come in the regions where signals from different particle species cross
 - “cut” optimization is a time-consuming task

- **Machine learning PID:**
 - perfect task for machine learning
 - can learn non-trivial relations between different track parameters and PID
 - no “trial and error” approach

Results

- **Test data sample:**
 - \(\text{pp @ 7 TeV, Pythia 6 Perugia-0} \)

- **Traditional PID:**
 - \(n_{\sigma,TPC}^2 < 2 \), for \(p \leq 0.5 \text{ GeV/c} \)
 - \(\sqrt{n_{\sigma,TPC}^2 + n_{\sigma,TOF}^2} < 2 \), for \(p > 0.5 \text{ GeV/c} \)

- **Machine Learning PID:**
 - Random Forest classifier
Results

- **Test data sample:**
 - pp @ 7 TeV, Pythia 6 Perugia-0

- **Traditional PID:**
 - $n_{\sigma,TPC}^2 < 2$, for $p \leq 0.5$ GeV/c
 - $\sqrt{n_{\sigma,TPC}^2 + n_{\sigma,TOF}^2} < 2$, for $p > 0.5$ GeV/c

- **Machine Learning PID:**
 - Random Forest classifier

Contamination from non kaons

Classified as non kaons

2 August 2018, XIII QCHS
Łukasz Graczykowski (WUT)
Summary

- **GANs for TPC cluster simulation**
 - Quality not yet equal to the full simulation
 - Massive speed-up of 25x (CPU) or 250x (GPU) wrt standard simulation
 - First step towards semi-real time anomaly detection tool

- **PID**
 - ML-based PID outperforms traditional PID, especially in the low momentum region
 - Training needed only once for each data set – no need for manual cut optimizations
 - Quality of final classification more vulnerable to discrepancies between MC and real data
Thank you!
Backup
Deep Convolutional GAN

- Class of architectures which use the convolutional tools and deconvolutional layers – mostly used with images
condDCGAN: Conditional DCGAN

- Generator – deconvolutional layers
- Discriminator – convolutional layers
- Network conditioned on particle momenta, mass, and charge
- Output classification – sigmoid function
condDCGAN+: combined loss

- Training on the full MC simulations
- Preparing the noise from initial parameters of MC simulations
- Comparing the generated samples with original ones
- Combining original conditional GAN loss with the results of comparison

\[\mathcal{L}_G(m, X) = \mathbb{E}_{z \sim p_z(z|m)}[\alpha \log(1 - D(G(z))) + \beta \frac{1}{n} \sum_{i=1}^{n} (X_i - G(\hat{z})_i)^2] \]

- \(m \) - initial parameters (particle momenta),
- \(X \) - original value corresponding to \(m \),
- \(p(z|m) \) - distribution of a noise vector under initial parameters \(m \)
- \(z \) - input into a generator
- \(G \) and \(D \) - generator and discriminator
- \(n \) - the number of produced clusters

Additional parameters \(\alpha \) and \(\beta \) are used to weight the share of individual losses.
Best performing values are \(\alpha = 0.6 \) and \(\beta = 0.8 \)
PID parameter importance

![Bar chart showing the importance of various PID parameters, with the most important parameter on the left and less important ones towards the right.]