Influence of quark masses and strangeness degrees of freedom on inhomogeneous chiral phases

Michael Buballa

Theoriezentrum, Institut für Kernphysik, TU Darmstadt

XIIIth Quark Confinement and the Hadron Spectrum, Maynooth University, Ireland, August 1-6, 2018

Introduction

- QCD phase diagram (standard picture):

Introduction

- QCD phase diagram (standard picture):

- assumption: $\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space

Introduction

- QCD phase diagram (standard picture):

- assumption: $\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space
- How about non-uniform phases ?

Introduction

[D. Nickel, PRD (2009)]

Introduction

NJL model, including inhomogeneous phase

[D. Nickel, PRD (2009)]

Introduction

NJL model, including inhomogeneous phase

[D. Nickel, PRD (2009)]

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point \rightarrow Lifshitz point [D. Nickel, PRL (2009)]

Introduction

NJL model, including inhomogeneous phase

[D. Nickel, PRD (2009)]

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point \rightarrow Lifshitz point [D. Nickel, PRL (2009)]
- Inhomogeneous phase rather robust under model extensions and variations
[MB, S. Carignano, PPNP (2015)]

Introduction

NJL model, including inhomogeneous phase

[D. Nickel, PRD (2009)]

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point \rightarrow Lifshitz point [D. Nickel, PRL (2009)]
- Inhomogeneous phase rather robust under model extensions and variations
[MB, S. Carignano, PPNP (2015)]
- This talk:

Influence of strange quarks and bare quark masses

Introduction

NJL model, including inhomogeneous phase

[D. Nickel, PRD (2009)]

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point \rightarrow Lifshitz point [D. Nickel, PRL (2009)]
- Inhomogeneous phase rather robust under model extensions and variations
[MB, S. Carignano, PPNP (2015)]
- This talk:

Influence of strange quarks (and bare quark masses)

Digression: Localized quark matter

- Particular 1D modulation (most favored solution known so far):

$$
\langle\bar{q} q\rangle(z) \propto \sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}
\sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0 \\
\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1
\end{array}\right.
$$

- If it was 3D (but it isn't yet):

Smooth transition from uniform quark matter to localized "baryons"!

- Revisit chiral solitons! [Alkofer, Reinhardt, Weigel; Goeke et al.; Ripka; ...]

Including strange quarks

Motivation

- 2-flavor NJL: CP \rightarrow LP

[D. Nickel, PRD (2009)]

Motivation

- 2-flavor NJL: CP \rightarrow LP
- Is this also true in QCD?

[D. Nickel, PRD (2009)]

Motivation

- 2-flavor NJL: CP \rightarrow LP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies

[D. Müller et al. PLB (2013)]

Motivation

- 2-flavor NJL: CP \rightarrow LP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?

[D. Müller et al. PLB (2013)]

Motivation

- 2-flavor NJL: CP \rightarrow LP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?
- 3-flavor QCD with very small quark masses:
- CP reaches T-axis
$\stackrel{?}{\Rightarrow}$ LP reaches T-axis
- chance to be studied on the lattice!

[from de Forcrand et al., POSLAT 2007]

Motivation

- 2-flavor NJL: CP \rightarrow LP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?
- 3-flavor QCD with very small quark masses:
- CP reaches T-axis
$\stackrel{?}{\Rightarrow}$ LP reaches T-axis
- chance to be studied on the lattice!

[from de Forcrand et al., POSLAT 2007]
- Here: Ginzburg-Landau study of CP and LP for 3-flavor NJL

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\Omega[\Delta]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{a_{2}|\Delta(\vec{x})|^{2}+a_{4, a}(\vec{x})|\Delta|^{4}+a_{4, b}|\vec{\nabla} \Delta(\vec{x})|^{2}+\ldots\right\}
$$

- $\Delta(\vec{x})$: order parameter function, $\quad a_{n}=a_{n}(T, \mu):$ GL parameters

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\Omega[\Delta]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{a_{2}|\Delta(\vec{x})|^{2}+a_{4, a}(\vec{x})|\Delta|^{4}+a_{4, b}|\vec{\nabla} \Delta(\vec{x})|^{2}+\ldots\right\}
$$

- $\Delta(\vec{x})$: order parameter function, $\quad a_{n}=a_{n}(T, \mu):$ GL parameters
- case 1: $a_{4, a}, a_{4, b}>0$
- $a_{2}>0 \Rightarrow$ restored phase

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\Omega[\Delta]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{a_{2}|\Delta(\vec{x})|^{2}+a_{4, a}(\vec{x})|\Delta|^{4}+a_{4, b}|\vec{\nabla} \Delta(\vec{x})|^{2}+\ldots\right\}
$$

- $\Delta(\vec{x})$: order parameter function, $\quad a_{n}=a_{n}(T, \mu):$ GL parameters
- case 1: $a_{4, a}, a_{4, b}>0$
- $a_{2}<0 \Rightarrow$ hom. broken phase

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\Omega[\Delta]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{a_{2}|\Delta(\vec{x})|^{2}+a_{4, a}(\vec{x})|\Delta|^{4}+a_{4, b}|\vec{\nabla} \Delta(\vec{x})|^{2}+\ldots\right\}
$$

- $\Delta(\vec{x})$: order parameter function, $\quad a_{n}=a_{n}(T, \mu):$ GL parameters
- case 1: $a_{4, a}, a_{4, b}>0$
- 2nd-order p.t. at $a_{2}=0$

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\Omega[\Delta]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{a_{2}|\Delta(\vec{x})|^{2}+a_{4, a}(\vec{x})|\Delta|^{4}+a_{4, b}|\vec{\nabla} \Delta(\vec{x})|^{2}+\ldots\right\}
$$

- $\Delta(\vec{x})$: order parameter function, $\quad a_{n}=a_{n}(T, \mu):$ GL parameters
- case 1: $a_{4, a}, a_{4, b}>0$
- 2nd-order p.t. at $a_{2}=0$

- case 2: $a_{4, a}<0, a_{4, b}>0$
- 1st-order phase trans. at $a_{2}>0$

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\Omega[\Delta]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{a_{2}|\Delta(\vec{x})|^{2}+a_{4, a}(\vec{x})|\Delta|^{4}+a_{4, b}|\vec{\nabla} \Delta(\vec{x})|^{2}+\ldots\right\}
$$

- $\Delta(\vec{x})$: order parameter function, $\quad a_{n}=a_{n}(T, \mu):$ GL parameters
- case 1: $a_{4, a}, a_{4, b}>0$
- 2nd-order p.t. at $a_{2}=0$

- case 2: $a_{4, a}<0, a_{4, b}>0$
- 1st-order phase trans. at $a_{2}>0$

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\Omega[\Delta]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{a_{2}|\Delta(\vec{x})|^{2}+a_{4, a}(\vec{x})|\Delta|^{4}+a_{4, b}|\vec{\nabla} \Delta(\vec{x})|^{2}+\ldots\right\}
$$

- $\Delta(\vec{x})$: order parameter function, $\quad a_{n}=a_{n}(T, \mu):$ GL parameters
- case 1: $a_{4, a}, a_{4, b}>0$
- 2nd-order p.t. at $a_{2}=0$

- case 2: $a_{4, a}<0, a_{4, b}>0$
- 1st-order phase trans. at $a_{2}>0$

\Rightarrow tricritical point (CP): $\quad a_{2}=a_{4, a}=0$

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\Omega[\Delta]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{a_{2}|\Delta(\vec{x})|^{2}+a_{4, a}(\vec{x})|\Delta|^{4}+a_{4, b}|\vec{\nabla} \Delta(\vec{x})|^{2}+\ldots\right\}
$$

- $\Delta(\vec{x})$: order parameter function, $\quad a_{n}=a_{n}(T, \mu):$ GL parameters
- case 1: $a_{4, a}, a_{4, b}>0$
- 2nd-order p.t. at $a_{2}=0$
\Rightarrow tricritical point (CP): $\quad a_{2}=a_{4, a}=0$
- case 2: $a_{4, a}<0, a_{4, b}>0$
- 1st-order phase trans. at $a_{2}>0$
- case 3: $a_{4, b}<0$
- inhomogeneous phase possible

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\Omega[\Delta]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{a_{2}|\Delta(\vec{x})|^{2}+a_{4, a}(\vec{x})|\Delta|^{4}+a_{4, b}|\vec{\nabla} \Delta(\vec{x})|^{2}+\ldots\right\}
$$

- $\Delta(\vec{x})$: order parameter function, $\quad a_{n}=a_{n}(T, \mu):$ GL parameters
- case 1: $a_{4, a}, a_{4, b}>0$
- 2nd-order p.t. at $a_{2}=0$
\Rightarrow tricritical point (CP): $\quad a_{2}=a_{4, a}=0$
- case 2: $a_{4, a}<0, a_{4, b}>0$
- 1st-order phase trans. at $a_{2}>0$
- case 3: $a_{4, b}<0$

Lifshitz point (CP): $\quad a_{2}=a_{4, b}=0$

- inhomogeneous phase possible

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\Omega[\Delta]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{a_{2}|\Delta(\vec{x})|^{2}+a_{4, a}(\vec{x})|\Delta|^{4}+a_{4, b}|\vec{\nabla} \Delta(\vec{x})|^{2}+\ldots\right\}
$$

- $\Delta(\vec{x})$: order parameter function, $\quad a_{n}=a_{n}(T, \mu):$ GL parameters
- case 1: $a_{4, a}, a_{4, b}>0$
- 2nd-order p.t. at $a_{2}=0$
\Rightarrow tricritical point (CP): $\quad a_{2}=a_{4, a}=0$
- case 2: $a_{4, a}<0, a_{4, b}>0$
- 1st-order phase trans. at $a_{2}>0$
- case 3: $a_{4, b}<0$

Lifshitz point (CP): $\quad a_{2}=a_{4, b}=0$

- inhomogeneous phase possible
- 2-flavor NJL: $a_{4, a}=a_{4, b} \quad \Rightarrow \quad C P=L P!~[N i c k e l, ~ P R L ~(2009)] ~$

3-flavor NJL model

- Lagrangian: $\mathcal{L}=\bar{\psi}(i \not \partial-\hat{m}) \psi+\mathcal{L}_{4}+\mathcal{L}_{6}$
- fields and bare masses: $\psi=(u, d, s)^{T}, \quad \hat{m}=\operatorname{diag}_{f}\left(0,0, m_{s}\right)$
- 4-point interaction:

$$
\mathcal{L}_{4}=G \sum_{a=0}^{8}\left[\left(\bar{\psi} \tau_{a} \psi\right)^{2}+\left(\bar{\psi} i_{5} \tau_{a} \psi\right)^{2}\right]
$$

- 6-point ('t Hooft) interaction: $\mathcal{L}_{6}=-K\left[\operatorname{det}_{f} \bar{\psi}\left(1+\gamma_{5}\right) \psi+\operatorname{det}_{f} \bar{\psi}\left(1-\gamma_{5}\right) \psi\right]$

3-flavor NJL model

- Lagrangian: $\mathcal{L}=\bar{\psi}(i \not \partial-\hat{m}) \psi+\mathcal{L}_{4}+\mathcal{L}_{6}$
- fields and bare masses: $\psi=(u, d, s)^{T}, \quad \hat{m}=\operatorname{diag}_{f}\left(0,0, m_{s}\right)$
- 4-point interaction:

$$
\mathcal{L}_{4}=G \sum_{a=0}^{8}\left[\left(\bar{\psi} \tau_{a} \psi\right)^{2}+\left(\bar{\psi} i \gamma_{5} \tau_{a} \psi\right)^{2}\right]
$$

- 6-point ('t Hooft) interaction: $\mathcal{L}_{6}=-K\left[\operatorname{det}_{f} \bar{\psi}\left(1+\gamma_{5}\right) \psi+\operatorname{det}_{f} \bar{\psi}\left(1-\gamma_{5}\right) \psi\right]$
- Mean fields:
- light sector: $\langle\bar{u} u\rangle=\langle\bar{d} d\rangle \equiv \frac{s}{2}, \quad\left\langle\bar{u} i \gamma_{5} u\right\rangle=-\left\langle\bar{d} i \gamma_{5} d\right\rangle \equiv \frac{P}{2}$

$$
\left(\Rightarrow\left\langle\bar{\psi}_{\ell} \psi_{\ell}\right\rangle \equiv\langle\bar{u} u\rangle+\langle\bar{d} d\rangle=S, \quad\left\langle\bar{\psi}_{\ell} i \gamma_{5} \tau_{3} \psi_{\ell}\right\rangle \equiv\left\langle\bar{u} i \gamma_{5} u\right\rangle-\left\langle\bar{d} i \gamma_{5} d\right\rangle=P\right)
$$

- strange sector: $\langle\bar{s} s\rangle \equiv S_{s}, \quad\left\langle\bar{s} i \gamma_{5} s\right\rangle=0$
- no flavor-nondiagonal mean fields
- allow for inhomogeneities: $\quad S=S(\vec{x}), \quad P=P(\vec{x}), \quad S_{s}=S_{s}(\vec{x})$

Mean-field Thermodynamic Potential

- $\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(i \not \partial+\mu \gamma^{0}-\hat{M}\right)+\frac{1}{V} \int d^{3} \times \mathcal{V}(\vec{x})$
- dressed "masses": $\quad \hat{M}_{u, d}(\vec{X})=-\left(2 G-K S_{s}(\vec{x})\right)\left(S(\vec{x}) \pm i \gamma_{5} P(\vec{x})\right)$

$$
\hat{M}_{s}(\vec{x})=m_{s}-4 G S_{s}(\vec{x})+\frac{1}{2} K\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

- "potential field": $\quad \mathcal{V}(\vec{x})=G\left(S^{2}(\vec{x})+P^{2}(\vec{x})+2 S_{s}(\vec{x})\right)-K S_{s}(\vec{x})\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$

Mean-field Thermodynamic Potential

- $\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(i \not \partial+\mu \gamma^{0}-\hat{M}\right)+\frac{1}{V} \int d^{3} x \mathcal{V}(\vec{x})$
- dressed "masses": $\quad \hat{M}_{u, d}(\vec{X})=-\left(2 G-K S_{s}(\vec{x})\right)\left(S(\vec{x}) \pm i \gamma_{5} P(\vec{x})\right)$

$$
\hat{M}_{s}(\vec{x})=m_{s}-4 G S_{s}(\vec{x})+\frac{1}{2} K\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

- "potential field": $\quad \mathcal{V}(\vec{x})=G\left(S^{2}(\vec{x})+P^{2}(\vec{x})+2 S_{s}(\vec{x})\right)-K S_{s}(\vec{x})\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$
- $K=0$: light and strange sectors decouple!

$$
\hat{M}_{u, d}=-2 G\left(S \pm i \gamma_{5} P\right), \quad \hat{M}_{s}(\vec{x})=m_{s}-4 G S_{s} ; \quad \mathcal{V}=G\left(S^{2}+P^{2}\right)+2 G S_{s}
$$

Mean-field Thermodynamic Potential

- $\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(i \not \partial+\mu \gamma^{0}-\hat{M}\right)+\frac{1}{V} \int d^{3} x \mathcal{V}(\vec{x})$
- dressed "masses": $\quad \hat{M}_{u, d}(\vec{X})=-\left(2 G-K S_{s}(\vec{x})\right)\left(S(\vec{x}) \pm i \gamma_{5} P(\vec{x})\right)$

$$
\hat{M}_{s}(\vec{x})=m_{s}-4 G S_{s}(\vec{x})+\frac{1}{2} K\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

- "potential field": $\quad \mathcal{V}(\vec{x})=G\left(S^{2}(\vec{x})+P^{2}(\vec{x})+2 S_{s}(\vec{x})\right)-K S_{s}(\vec{x})\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$
- $K=0$: light and strange sectors decouple!

$$
\hat{M}_{u, d}=-2 G\left(S \pm i \gamma_{5} P\right), \quad \hat{M}_{s}(\vec{x})=m_{s}-4 G S_{s} ; \quad \mathcal{V}=G\left(S^{2}+P^{2}\right)+2 G S_{s}
$$

- Chiral density wave ansatz for the light sector:

$$
\begin{aligned}
& S(\vec{x})=\phi_{0} \cos (\vec{q} \cdot \vec{x}), \quad P(\vec{x})=\phi_{0} \sin (\vec{q} \cdot \vec{x}), \quad S_{s}=\phi_{s}=\text { const } . \\
& \Rightarrow \quad \hat{M}_{u, d}=\Delta e^{ \pm i \gamma_{5} \vec{q} \cdot \vec{x}}, \quad \Delta \equiv-\left(2 G-K \phi_{s}\right) \phi_{0}, \\
& M_{s}=\text { const. }, \quad \mathcal{V}=\text { const. }
\end{aligned}
$$

consistent with the literature [Moreira et al., PRD (2014)]

Ginzburg-Landau expansion

- Difficulty at $m_{s} \neq 0$: No $S U(3)_{L} \times S U(3)_{R}$ restored solution
- $m_{u}=m_{d}=0$
\Rightarrow Expand about two-flavor restored solution $S=P=0$:

$$
\Omega_{M F}\left[S, P, S_{s}\right]=\Omega_{M F}\left[0,0, S_{s}^{(0)}\right]+\frac{1}{V} \int d^{3} x \Omega_{G L}[S(\vec{x}), P(\vec{x}), X(\vec{x})]
$$

- strange condensate: $S_{s}(\vec{x})=S_{s}^{(0)}+X(\vec{x})$
- $S_{S}^{(0)}$: homogeneous solution of the gap equation for $S=P=0$ at given T and μ
- Expand $\Omega_{G L}$ in S, P and X, and their gradients.

Ginzburg-Landau potential

- Define: $\Delta_{\ell}=-2 G(S+i P), \quad \Delta_{s}=-4 G X$

$$
\left[\Delta_{i}\right]=(\text { mass }) \rightarrow \text { counting scheme: } \mathcal{O}(\vec{\nabla})=\mathcal{O}\left(\Delta_{i}\right)
$$

Ginzburg-Landau potential

- Define: $\Delta_{\ell}=-2 G(S+i P), \quad \Delta_{s}=-4 G X$

$$
\left[\Delta_{i}\right]=(\text { mass }) \rightarrow \text { counting scheme: } \mathcal{O}(\vec{\nabla})=\mathcal{O}\left(\Delta_{i}\right)
$$

- Resulting structure:

$$
\begin{aligned}
\Omega_{G L} & =a_{2}\left|\Delta_{\ell}\right|^{2}+a_{4, a}\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +b_{1} \Delta_{s}+b_{2} \Delta_{s}^{2}+b_{3} \Delta_{s}^{3}+b_{4, a} \Delta_{s}^{4}+b_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +c_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+c_{4}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}\left(\vec{\nabla} \Delta_{s}\right)^{2} \quad+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

Ginzburg-Landau potential

- Define: $\Delta_{\ell}=-2 G(S+i P), \quad \Delta_{s}=-4 G X$

$$
\left[\Delta_{i}\right]=(\text { mass }) \rightarrow \text { counting scheme: } \mathcal{O}(\vec{\nabla})=\mathcal{O}\left(\Delta_{i}\right)
$$

- Resulting structure:

$$
\begin{aligned}
\Omega_{G L} & =a_{2}\left|\Delta_{\ell}\right|^{2}+a_{4, a}\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +b_{1} \Delta_{s}+b_{2} \Delta_{s}^{2}+b_{3} \Delta_{s}^{3}+b_{4, a} \Delta_{s}^{4}+b_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +c_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+c_{4}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}\left(\vec{\nabla} \Delta_{s}\right)^{2} \quad+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

- Stationarity condition: $\left.\quad \frac{\partial \Omega_{G L}}{\partial \Delta_{s}}\right|_{\Delta_{\ell}=\Delta_{s}=0}=0 \quad \Leftrightarrow \quad b_{1}=0$

Ginzburg-Landau potential

- Define: $\Delta_{\ell}=-2 G(S+i P), \quad \Delta_{s}=-4 G X$

$$
\left[\Delta_{i}\right]=(\text { mass }) \rightarrow \text { counting scheme: } \mathcal{O}(\vec{\nabla})=\mathcal{O}\left(\Delta_{i}\right)
$$

- Resulting structure:

$$
\begin{aligned}
\Omega_{G L} & =a_{2}\left|\Delta_{\ell}\right|^{2}+a_{4, a}\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +b_{2} \Delta_{s}^{2}+b_{3} \Delta_{s}^{3}+b_{4, a} \Delta_{s}^{4}+b_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +c_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+c_{4}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}\left(\vec{\nabla} \Delta_{s}\right)^{2}+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

- Stationarity condition: $\left.\quad \frac{\partial \Omega_{G l}}{\partial \Delta_{s}}\right|_{\Delta_{\ell}=\Delta_{s}=0}=0 \quad \Leftrightarrow \quad b_{1}=0$

Ginzburg-Landau potential

- Define: $\Delta_{\ell}=-2 G(S+i P), \quad \Delta_{s}=-4 G X$

$$
\left[\Delta_{i}\right]=(\text { mass }) \rightarrow \text { counting scheme: } \mathcal{O}(\vec{\nabla})=\mathcal{O}\left(\Delta_{i}\right)
$$

- Resulting structure:

$$
\begin{aligned}
\Omega_{G L} & =a_{2}\left|\Delta_{\ell}\right|^{2}+a_{4, a}\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +b_{2} \Delta_{s}^{2}+b_{3} \Delta_{s}^{3}+b_{4, a} \Delta_{s}^{4}+b_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +c_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+c_{4}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}\left(\vec{\nabla} \Delta_{s}\right)^{2}+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

- Stationarity condition: $\left.\quad \frac{\partial \Omega_{G l}}{\partial \Delta_{s}}\right|_{\Delta_{\ell}=\Delta_{s}=0}=0 \quad \Leftrightarrow \quad b_{1}=0$

$$
\begin{aligned}
\Rightarrow \quad M_{s}^{(0)}=m_{s}-16 N_{c} G T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{M_{s}^{(0)}}{\left(i \omega_{n}+\mu\right)^{2}-\vec{\rho}^{2}-M_{s}^{(0)}} \\
\quad\left(=\text { gap equation for } M_{s}^{(0)} \equiv \hat{M}_{s} \mid S=P=X=0=m_{s}-4 G S_{S}^{(0)}\right)
\end{aligned}
$$

Eliminating the strange condensate

- Extremizing $\Omega_{M F}$ w.r.t. $\Delta_{S}(\vec{x})$
\rightarrow Euler-Lagrange equation $\frac{\partial \Omega_{G L}}{\partial \Delta_{s}}-\partial_{i} \frac{\partial \Omega_{G L}}{\partial \partial_{i} \Delta_{s}}=0$
$\Leftrightarrow \quad \Delta_{s}=-\frac{c_{3}}{2 b_{2}}\left|\Delta_{\ell}\right|^{2}+\mathcal{O}\left(\left|\Delta_{\ell}\right|^{4}\right)$

Eliminating the strange condensate

- Extremizing $\Omega_{M F}$ w.r.t. $\Delta_{S}(\vec{x})$
\rightarrow Euler-Lagrange equation $\frac{\partial \Omega_{G L}}{\partial \Delta_{s}}-\partial_{i} \frac{\partial \Omega_{G L}}{\partial \partial_{i} \Delta_{s}}=0$
$\Leftrightarrow \quad \Delta_{s}=-\frac{c_{3}}{2 b_{2}}\left|\Delta_{\ell}\right|^{2}+\mathcal{O}\left(\left|\Delta_{\ell}\right|^{4}\right)$
- Insert into $\Omega_{G L}$:

$$
\Omega_{G L}=a_{2}\left|\Delta_{\ell}\right|^{2}+\left(a_{4, a}-\frac{c_{3}^{2}}{4 b_{2}}\right)\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}+\mathcal{O}\left(\Delta_{\ell}^{6}\right)
$$

Eliminating the strange condensate

- Extremizing $\Omega_{M F}$ w.r.t. $\Delta_{S}(\vec{x})$
\rightarrow Euler-Lagrange equation $\frac{\partial \Omega_{G L}}{\partial \Delta_{s}}-\partial_{i} \frac{\partial \Omega_{G L}}{\partial \partial_{i} \Delta_{s}}=0$
$\Leftrightarrow \quad \Delta_{s}=-\frac{c_{3}}{2 b_{2}}\left|\Delta_{\ell}\right|^{2}+\mathcal{O}\left(\left|\Delta_{\ell}\right|^{4}\right)$
- Insert into $\Omega_{G L}$:

$$
\Omega_{G L}=a_{2}\left|\Delta_{\ell}\right|^{2}+\left(a_{4, a}-\frac{C_{3}^{2}}{4 b_{2}}\right)\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}+\mathcal{O}\left(\Delta_{\ell}^{6}\right)
$$

- Critical and Lifshitz points:
- CP: $a_{2}=a_{4, a}-\frac{c_{3}^{2}}{4 b_{2}}=0$
- LP: $a_{2}=a_{4, b}=0$

Eliminating the strange condensate

- Extremizing $\Omega_{M F}$ w.r.t. $\Delta_{S}(\vec{x})$
\rightarrow Euler-Lagrange equation $\frac{\partial \Omega_{G L}}{\partial \Delta_{s}}-\partial_{i} \frac{\partial \Omega_{G L}}{\partial \partial_{i} \Delta_{s}}=0$
$\Leftrightarrow \quad \Delta_{s}=-\frac{c_{3}}{2 b_{2}}\left|\Delta_{\ell}\right|^{2}+\mathcal{O}\left(\left|\Delta_{\ell}\right|^{4}\right)$
- Insert into $\Omega_{G L}$:

$$
\Omega_{G L}=a_{2}\left|\Delta_{\ell}\right|^{2}+\left(a_{4, a}-\frac{C_{3}^{2}}{4 b_{2}}\right)\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}+\mathcal{O}\left(\Delta_{\ell}^{6}\right)
$$

- Critical and Lifshitz points:
- CP: $a_{2}=a_{4, a}-\frac{c_{3}^{2}}{4 b_{2}}=0$
- LP: $a_{2}=a_{4, b}=0$

CP and LP don't coincide anymore!

Discussion

- Relevant GL coefficients (no guarantee yet!):

$$
\begin{aligned}
& a_{2}=\frac{1}{4 G}(1+2 \delta)+(1+\delta)^{2} 4 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+\frac{K}{2 G^{2}} N_{c} \frac{1}{V_{4}} \sum \frac{M_{s}^{(0)}}{p^{2}-M_{s}^{(0) 2}} \\
& a_{4, a}=(1+\delta)^{4} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}}+\frac{K^{2}}{32 G^{4}} N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left[p^{2}-M_{s}^{(0)}\right]^{2}} \\
& a_{4, b}=(1+\delta)^{2} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}} \\
& c_{3}=\frac{K}{2 G^{2}}\left[\frac{1}{8 G}+(1+\delta) 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left.\left[p^{2}-M_{s}^{(0) 2}\right]^{2}\right]}\right. \\
& \text { - abbreviations: } \quad \delta \equiv-\frac{K}{2 G} S_{s}^{(0)}, \quad \frac{1}{V_{4}} \sum \equiv T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}}
\end{aligned}
$$

Discussion

- Relevant GL coefficients (no guarantee yet!):

$$
\begin{aligned}
& a_{2}=\frac{1}{4 G}(1+2 \delta)+(1+\delta)^{2} 4 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+\frac{K}{2 G^{2}} N_{c} \frac{1}{V_{4}} \sum \frac{M_{s}^{(0)}}{p^{2}-M_{s}^{(0) 2}} \\
& a_{4, a}=(1+\delta)^{4} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}}+\frac{K^{2}}{32 G^{4}} N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left.\left[p^{2}-M_{s}^{0}\right)^{(0)}\right]^{2}} \\
& a_{4, b}=(1+\delta)^{2} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}} \\
& c_{3}=\frac{K}{2 G^{2}}\left[\frac{1}{8 G}+(1+\delta) 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left.\left[p^{2}-M_{s}^{(0) 2}\right]^{2}\right]}\right. \\
& \text { - abbreviations: } \quad \delta \equiv-\frac{K}{2 G} S_{s}^{(0)}, \quad \frac{1}{V_{4}} \sum \equiv T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}}
\end{aligned}
$$

- Interesting limits:
- $K=0 \Rightarrow \delta=0 \Rightarrow C P=L P$

Discussion

- Relevant GL coefficients (no guarantee yet!):

$$
\begin{aligned}
& a_{2}=\frac{1}{4 G}(1+2 \delta)+(1+\delta)^{2} 4 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+\frac{K}{2 G^{2}} N_{c} \frac{1}{V_{4}} \sum \frac{M_{s}^{(0)}}{p^{2}-M_{s}^{(0) 2}} \\
& a_{4, a}=(1+\delta)^{4} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}}+\frac{K^{2}}{32 G^{4}} N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left[p^{2}-M_{s}^{(0)}\right]^{2}} \\
& a_{4, b}=(1+\delta)^{2} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}} \\
& c_{3}=\frac{K}{2 G^{2}}\left[\frac{1}{8 G}+(1+\delta) 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left.\left[p^{2}-M_{s}^{(0) 2}\right]^{2}\right]}\right. \\
& \text { - abbreviations: } \quad \delta \equiv-\frac{K}{2 G} S_{s}^{(0)}, \quad \frac{1}{V_{4}} \sum \equiv T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}}
\end{aligned}
$$

- Interesting limits:
- $K=0 \Rightarrow \delta=0 \Rightarrow$ CP=LP
- $m_{s} \rightarrow 0 \Rightarrow M_{s}^{(0)}, S_{s}^{(0)}, \delta \rightarrow 0 \Rightarrow \mathrm{LP} \rightarrow \mathrm{LP}(\mathrm{K}=0) \neq \mathrm{CP}$

Discussion

- Relevant GL coefficients (no guarantee yet!):

$$
\begin{aligned}
& a_{2}=\frac{1}{4 G}(1+2 \delta)+(1+\delta)^{2} 4 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+\frac{K}{2 G^{2}} N_{c} \frac{1}{V_{4}} \sum \frac{M_{s}^{(0)}}{p^{2}-M_{s}^{(0) 2}} \\
& a_{4, a}=(1+\delta)^{4} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}}+\frac{K^{2}}{32 G^{4}} N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left.\left[p^{2}-M_{s}^{0}\right)^{(0)}\right]^{2}} \\
& a_{4, b}=(1+\delta)^{2} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}} \\
& c_{3}=\frac{K}{2 G^{2}}\left[\frac{1}{8 G}+(1+\delta) 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left.\left[p^{2}-M_{s}^{(0) 2}\right]^{2}\right]}\right. \\
& \text { - abbreviations: } \quad \delta \equiv-\frac{K}{2 G} S_{s}^{(0)}, \quad \frac{1}{V_{4}} \sum \equiv T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}}
\end{aligned}
$$

- Interesting limits:
- $K=0 \Rightarrow \delta=0 \Rightarrow C P=L P$
- $m_{s} \rightarrow 0 \Rightarrow M_{s}^{(0)}, s_{s}^{(0)}, \delta \rightarrow 0 \Rightarrow \mathrm{LP} \rightarrow \mathrm{LP}(\mathrm{K}=0) \neq \mathrm{CP}$
- Numerical survey of the general case still to be done.

Finite bare quark masses

- What is the effect of nonzero m_{u} and m_{d} ?

Finite bare quark masses

- What is the effect of nonzero m_{u} and m_{d} ?
- Andersen, Kneschke, PRD (2018):

No inhomogeneous phase in the 2-flavor quark-meson model for $m_{\pi}>37.1 \mathrm{MeV}$

Finite bare quark masses

- What is the effect of nonzero m_{u} and m_{d} ?
- Andersen, Kneschke, PRD (2018):

No inhomogeneous phase in the 2-flavor quark-meson model for $m_{\pi}>37.1 \mathrm{MeV}$

$$
m_{u, d}=0,5 \mathrm{MeV}, 10 \mathrm{MeV}
$$

- Nickel, PRD (2009):

Inhomogeneous phase in 2-flavor NJL gets smaller but still reaches the CEP

Finite bare quark masses

- What is the effect of nonzero m_{u} and m_{d} ?
- Andersen, Kneschke, PRD (2018):

No inhomogeneous phase in the 2-flavor quark-meson model for $m_{\pi}>37.1 \mathrm{MeV}$

$$
m_{u, d}=0,5 \mathrm{MeV}, 10 \mathrm{MeV}
$$

- Nickel, PRD (2009):

Inhomogeneous phase in 2-flavor NJL gets smaller but still reaches the CEP

- Can we investigate this more systematically within GL?

Ginzburg-Landau analysis with nonzero bare masses

- No restored phase \Rightarrow Expand about arbitrary homogeneous Δ_{0} :
$\Omega_{G L}=a_{1}\left(\Delta-\Delta_{0}\right)+a_{2}\left(\Delta-\Delta_{0}\right)^{2}+a_{3}\left(\Delta-\Delta_{0}\right)^{3}+a_{4, a}\left(\Delta-\Delta_{0}\right)^{4}+a_{4, b}(\vec{\nabla} \Delta)^{2}+\ldots$
- Extremum \Rightarrow gap equation: $\quad a_{1}(T, \mu)=0 \quad$ (partially fixes $\Delta_{0}(T, \mu)$)

Ginzburg-Landau analysis with nonzero bare masses

- No restored phase \Rightarrow Expand about arbitrary homogeneous Δ_{0} :
$\Omega_{G L}=a_{1}\left(\Delta-\Delta_{0}\right)+a_{2}\left(\Delta-\Delta_{0}\right)^{2}+a_{3}\left(\Delta-\Delta_{0}\right)^{3}+a_{4, a}\left(\Delta-\Delta_{0}\right)^{4}+a_{4, b}(\vec{\nabla} \Delta)^{2}+\ldots$
- Extremum \Rightarrow gap equation: $a_{1}(T, \mu)=0 \quad$ (partially fixes $\Delta_{0}(T, \mu)$)
- Critical endpoint
- left spinodal: $a_{2}=0, a_{3}<0$
- right spinodal: $a_{2}=0, a_{3}>0$
\Rightarrow CEP: $a_{2}=a_{3}=0$

Ginzburg-Landau analysis with nonzero bare masses

- No restored phase \Rightarrow Expand about arbitrary homogeneous Δ_{0} :

$$
\Omega_{G L}=a_{1}\left(\Delta-\Delta_{0}\right)+a_{2}\left(\Delta-\Delta_{0}\right)^{2}+a_{3}\left(\Delta-\Delta_{0}\right)^{3}+a_{4, a}\left(\Delta-\Delta_{0}\right)^{4}+a_{4, b}(\vec{\nabla} \Delta)^{2}+\ldots
$$

- Extremum \Rightarrow gap equation: $\quad a_{1}(T, \mu)=0 \quad$ (partially fixes $\left.\Delta_{0}(T, \mu)\right)$
- Critical endpoint
- left spinodal: $a_{2}=0, a_{3}<0$
- right spinodal: $a_{2}=0, a_{3}>0$
\Rightarrow CEP: $a_{2}=a_{3}=0$

- "Lifshitz point" = upper corner of the inhomogeneous phase?
- @ CEP: We find $a_{4, b}<0 \Rightarrow$ The CEP is inside the inhomogeneous phase.
- No point with $a_{2}=a_{4, b}=0 \Rightarrow$ No point with $\vec{\nabla} \Delta=0$ at the phase boundary
\Rightarrow Further investigations necessary

Ginzburg-Landau analysis with nonzero bare masses

- No restored phase \Rightarrow Expand about arbitrary homogeneous Δ_{0} :

$$
\Omega_{G L}=a_{1}\left(\Delta-\Delta_{0}\right)+a_{2}\left(\Delta-\Delta_{0}\right)^{2}+a_{3}\left(\Delta-\Delta_{0}\right)^{3}+a_{4, a}\left(\Delta-\Delta_{0}\right)^{4}+a_{4, b}(\vec{\nabla} \Delta)^{2}+\ldots
$$

- Extremum \Rightarrow gap equation: $\quad a_{1}(T, \mu)=0 \quad$ (partially fixes $\left.\Delta_{0}(T, \mu)\right)$
- Critical endpoint
- left spinodal: $a_{2}=0, a_{3}<0$
- right spinodal: $a_{2}=0, a_{3}>0$
\Rightarrow CEP: $a_{2}=a_{3}=0$

- "Lifshitz point" = upper corner of the inhomogeneous phase?
- @ CEP: We find $a_{4, b}<0 \Rightarrow$ The CEP is inside the inhomogeneous phase.
- No point with $a_{2}=a_{4, b}=0 \Rightarrow$ No point with $\vec{\nabla} \Delta=0$ at the phase boundary
\Rightarrow Further investigations necessary
Ongoing work: Determine phase boundary via $1-\Pi_{\sigma, \pi}(\omega=0, \vec{q})=0$

Conclusions

- Ginzburg-Landau analysis of the effect of strangeness and bare quark masses on the inhomogeneous chiral phase in NJL
- strange quarks: CP and LP no longer agree
- nonzero $m_{u, d}$ (very preliminary):
- CEP inside the inhomogeneous phase
- No LP-like point with $\vec{\nabla} \Delta=0$
- Detailed numerical study to be done.

