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Bayesian Analysis

P (A|B)P (B) = P (B|A)P (A)
(Bayes’ theorem)

B : M-R Observation 
A : EoS Parameters

Want to know

Normalization

Likelihood
Calculable by TOV

prior
Model

Model must be assumed. 
EoS parametrization must be introduced. 
Integration in parameter space must be defined.
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Several M-R 
observation points  
with errors

Several parameters  
to characterize EoS

Nonlinear 
Mapping

{Mi, Ri} {Pi}{Pi} = F ({Mi, Ri})

~ 5 Points~ 15 Points

・Bayesian Analysis 
・Supervised Learning

corresponding to 
5 polytropes (your choice)

observation data hopefully 
available in the future
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Test with mock data 
(not fitted results but reconstructed!)

Fujimoto-Fukushima-Murase, PRD(2018)

 : randomly generated original EoS
 : reconstructed EoS and guessed M-R

Two Typical Examples (not biased choice) 4
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FIG. 3. Two examples of the randomly generated EoSs
(dashed lines) and the machine learning outputs (solid lines)
reconstructed from one observation of 15 M -R points [see
Fig. 4 for actual (Mi, Ri)].

FIG. 4. Randomly sampled 15 data points and the M -R rela-
tions with the reconstructed EoS (solid lines) and the original
EoS (dashed lines). The red and blue colors correspond to two
EoSs shown with the same color in Fig. 3.

observation with error deviations from the genuine M -R
relation (which is shown by the dashed lines). Thus, each
set of 15 points is considered as mock data of the neutron
star observation. Since the neural network learns through
the training data that the observation contains errors, the
most likely EoS is reconstructed from one observation of
15 points with errors. The reconstructed EoSs are de-
picted by solid lines in Fig. 3. We can see that the re-
constructed EoSs agree quite well with the original EoSs
for these examples. It would also be interesting to make
a comparison of the M -R relations corresponding to the
original and reconstructed EoSs. The solid and dashed
lines in Fig. 4 represent the M -R relations calculated
with the original and reconstructed EoSs, respectively.
Since the EoSs look consistent in Fig. 3, the original and
reconstructed M -R relations are close to each other.

Mass (M�) 0.6 0.8 1.0 1.2 1.4 1.6 1.8

RMS (km) 0.16 0.12 0.10 0.099 0.11 0.11 0.12

TABLE II. Root mean square of radius deviations for fixed
masses.

For other EoSs in validation data, the corresponding
M -R curves are reconstructed well similarly to examples
discussed above. To quantify the overall reconstruction
accuracy, we calculated the root mean square (RMS) of
radius deviations using 196 validation data for several
masses as shown in Tab. II. We defined the RMS from the
deviations between not the observational data points but
the genuine and reconstructed M -R relations (i.e. dis-
tances between the solid and the dashed lines in Fig. 4),
that is, �R(M) = R(rec)(M) � R(0)(M). The RMS val-
ues in Tab. II are around ⇠ 0.1 km for all masses! This
indicates that our method works surprisingly good; re-
member that data points have random fluctuations by
�R ⇠ 0.5 km. It should be noticed that, even without
neutron stars around M = 0.6–0.8M� in our setup, the
RMS of the corresponding radii are still reconstructed
within the accuracy of the order ⇠ 0.1 km.

Finally, let us comment on the relation to Bayesian
analysis using symbolic notations. In our analysis we
parametrized the EoS by ✓ := {c2s,i}, which spans pa-
rameter space ⇥, and generated EoSs by a probability
distribution Pr(✓). Then, we sampled D = {(Mi, Ri)}
by an observational distribution, Pr(D|✓) for each EoS.
The neural network is a function f to obtain an EoS from
data points, i.e. f(D|W ) 2 ⇥, where W represents the
fitting parameters. The training is actually a process to
minimize the following loss function:

h`[f ]i =
Z

d✓dDPr(✓) Pr(D|✓)`(✓, f(D)). (3)

Here, let us translate Bayesian analysis into the above
language. In Bayesian analysis a prior distribution of
the EoS is assumed to be Pr(✓). The posterior EoS dis-
tribution is obtained by Bayesian updating; Pr(✓|D) /
Pr(✓) Pr(D|✓). To determine the most likely EoS, we can
use the MAP (maximum a posteriori) estimator,

fMAP(D) = argmax
✓

[Pr(✓) Pr(D|✓)] . (4)

This can be interpreted as an approximation of f that
minimizes Eq. (3). This means that machine learning en-
compasses Bayesian analysis as a particular limit. Hence,
an advantage of machine learning over Bayesian analysis
lies in the direct design of the loss function or optimiza-
tion target, suited for problems under consideration. We
emphasize the generality of our method which can be ap-
plied, with a little e↵ort, to any underdetermined prob-
lems; an e�cient procedure to find the most likely solu-
tion optimized with insu�cient information and limited

4

FIG. 3. Two examples of the randomly generated EoSs
(dashed lines) and the machine learning outputs (solid lines)
reconstructed from one observation of 15 M -R points [see
Fig. 4 for actual (Mi, Ri)].
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FIG. 4. Randomly sampled 15 data points and the M -R rela-
tions with the reconstructed EoS (solid lines) and the original
EoS (dashed lines). The red and blue colors correspond to two
EoSs shown with the same color in Fig. 3.

observation with error deviations from the genuine M -R
relation (which is shown by the dashed lines). Thus, each
set of 15 points is considered as mock data of the neutron
star observation. Since the neural network learns through
the training data that the observation contains errors, the
most likely EoS is reconstructed from one observation of
15 points with errors. The reconstructed EoSs are de-
picted by solid lines in Fig. 3. We can see that the re-
constructed EoSs agree quite well with the original EoSs
for these examples. It would also be interesting to make
a comparison of the M -R relations corresponding to the
original and reconstructed EoSs. The solid and dashed
lines in Fig. 4 represent the M -R relations calculated
with the original and reconstructed EoSs, respectively.
Since the EoSs look consistent in Fig. 3, the original and
reconstructed M -R relations are close to each other.

Mass (M�) 0.6 0.8 1.0 1.2 1.4 1.6 1.8

RMS (km) 0.16 0.12 0.10 0.099 0.11 0.11 0.12

TABLE II. Root mean square of radius deviations for fixed
masses.

For other EoSs in validation data, the corresponding
M -R curves are reconstructed well similarly to examples
discussed above. To quantify the overall reconstruction
accuracy, we calculated the root mean square (RMS) of
radius deviations using 196 validation data for several
masses as shown in Tab. II. We defined the RMS from the
deviations between not the observational data points but
the genuine and reconstructed M -R relations (i.e. dis-
tances between the solid and the dashed lines in Fig. 4),
that is, �R(M) = R(rec)(M) � R(0)(M). The RMS val-
ues in Tab. II are around ⇠ 0.1 km for all masses! This
indicates that our method works surprisingly good; re-
member that data points have random fluctuations by
�R ⇠ 0.5 km. It should be noticed that, even without
neutron stars around M = 0.6–0.8M� in our setup, the
RMS of the corresponding radii are still reconstructed
within the accuracy of the order ⇠ 0.1 km.

Finally, let us comment on the relation to Bayesian
analysis using symbolic notations. In our analysis we
parametrized the EoS by ✓ := {c2s,i}, which spans pa-
rameter space ⇥, and generated EoSs by a probability
distribution Pr(✓). Then, we sampled D = {(Mi, Ri)}
by an observational distribution, Pr(D|✓) for each EoS.
The neural network is a function f to obtain an EoS from
data points, i.e. f(D|W ) 2 ⇥, where W represents the
fitting parameters. The training is actually a process to
minimize the following loss function:

h`[f ]i =
Z

d✓dDPr(✓) Pr(D|✓)`(✓, f(D)). (3)

Here, let us translate Bayesian analysis into the above
language. In Bayesian analysis a prior distribution of
the EoS is assumed to be Pr(✓). The posterior EoS dis-
tribution is obtained by Bayesian updating; Pr(✓|D) /
Pr(✓) Pr(D|✓). To determine the most likely EoS, we can
use the MAP (maximum a posteriori) estimator,

fMAP(D) = argmax
✓

[Pr(✓) Pr(D|✓)] . (4)

This can be interpreted as an approximation of f that
minimizes Eq. (3). This means that machine learning en-
compasses Bayesian analysis as a particular limit. Hence,
an advantage of machine learning over Bayesian analysis
lies in the direct design of the loss function or optimiza-
tion target, suited for problems under consideration. We
emphasize the generality of our method which can be ap-
plied, with a little e↵ort, to any underdetermined prob-
lems; an e�cient procedure to find the most likely solu-
tion optimized with insu�cient information and limited
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Overall performance test 4

FIG. 3. Two examples of the randomly generated EoSs
(dashed lines) and the machine learning outputs (solid lines)
reconstructed from one observation of 15 M -R points [see
Fig. 4 for actual (Mi, Ri)].

FIG. 4. Randomly sampled 15 data points and the M -R rela-
tions with the reconstructed EoS (solid lines) and the original
EoS (dashed lines). The red and blue colors correspond to two
EoSs shown with the same color in Fig. 3.

observation with error deviations from the genuine M -R
relation (which is shown by the dashed lines). Thus, each
set of 15 points is considered as mock data of the neutron
star observation. Since the neural network learns through
the training data that the observation contains errors, the
most likely EoS is reconstructed from one observation of
15 points with errors. The reconstructed EoSs are de-
picted by solid lines in Fig. 3. We can see that the re-
constructed EoSs agree quite well with the original EoSs
for these examples. It would also be interesting to make
a comparison of the M -R relations corresponding to the
original and reconstructed EoSs. The solid and dashed
lines in Fig. 4 represent the M -R relations calculated
with the original and reconstructed EoSs, respectively.
Since the EoSs look consistent in Fig. 3, the original and
reconstructed M -R relations are close to each other.

Mass (M�) 0.6 0.8 1.0 1.2 1.4 1.6 1.8

RMS (km) 0.16 0.12 0.10 0.099 0.11 0.11 0.12

TABLE II. Root mean square of radius deviations for fixed
masses.

For other EoSs in validation data, the corresponding
M -R curves are reconstructed well similarly to examples
discussed above. To quantify the overall reconstruction
accuracy, we calculated the root mean square (RMS) of
radius deviations using 196 validation data for several
masses as shown in Tab. II. We defined the RMS from the
deviations between not the observational data points but
the genuine and reconstructed M -R relations (i.e. dis-
tances between the solid and the dashed lines in Fig. 4),
that is, �R(M) = R(rec)(M) � R(0)(M). The RMS val-
ues in Tab. II are around ⇠ 0.1 km for all masses! This
indicates that our method works surprisingly good; re-
member that data points have random fluctuations by
�R ⇠ 0.5 km. It should be noticed that, even without
neutron stars around M = 0.6–0.8M� in our setup, the
RMS of the corresponding radii are still reconstructed
within the accuracy of the order ⇠ 0.1 km.

Finally, let us comment on the relation to Bayesian
analysis using symbolic notations. In our analysis we
parametrized the EoS by ✓ := {c2s,i}, which spans pa-
rameter space ⇥, and generated EoSs by a probability
distribution Pr(✓). Then, we sampled D = {(Mi, Ri)}
by an observational distribution, Pr(D|✓) for each EoS.
The neural network is a function f to obtain an EoS from
data points, i.e. f(D|W ) 2 ⇥, where W represents the
fitting parameters. The training is actually a process to
minimize the following loss function:

h`[f ]i =
Z

d✓dDPr(✓) Pr(D|✓)`(✓, f(D)). (3)

Here, let us translate Bayesian analysis into the above
language. In Bayesian analysis a prior distribution of
the EoS is assumed to be Pr(✓). The posterior EoS dis-
tribution is obtained by Bayesian updating; Pr(✓|D) /
Pr(✓) Pr(D|✓). To determine the most likely EoS, we can
use the MAP (maximum a posteriori) estimator,

fMAP(D) = argmax
✓

[Pr(✓) Pr(D|✓)] . (4)

This can be interpreted as an approximation of f that
minimizes Eq. (3). This means that machine learning en-
compasses Bayesian analysis as a particular limit. Hence,
an advantage of machine learning over Bayesian analysis
lies in the direct design of the loss function or optimiza-
tion target, suited for problems under consideration. We
emphasize the generality of our method which can be ap-
plied, with a little e↵ort, to any underdetermined prob-
lems; an e�cient procedure to find the most likely solu-
tion optimized with insu�cient information and limited

(with �M = 0.1M�, �R = 0.5 km)

Too good to be true?

Credibility estimate has not been done for simplicity, but 
it can be included in the learning process (in progress).

Fujimoto-Fukushima-Murase, PRD(2018)

0.5km/
p
15 ' 0.13km
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・QCD (very hard)  
・Phenomenological?
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µ

P

EoS of 
Nuclear Matter

EoS of Quark Matter
1st-order transition  
  too soft EoS 
 (excludable)

Old View
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µ

P

EoS of 
Nuclear Matter

EoS of Quark Matter
Smooth Crossover 
from NM to QM

Another Possible View

No need to overcome 
the NM pressure 
(no two separate lines)
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Crossover = Duality

Hadron gas has a larger pressure saturated by interaction
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Overlap of meson wave-functions → Quark mobility

Dominated by (non-interacting) mesons
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Hadronic and color-superconducting matter indistinguishable

2

Abelian vortex.1 Thus one might envisage a join with a
continuous baryon velocity, as shown in Fig. 1(b), where a
boojum connects three hadronic vortices with three non-
Abelian CFL vortices [10, 11]. However, as we discuss in
this paper, one does not have to make a join involving
three vortices in the hadronic phase, but rather one can
make a baryon-velocity conserving join between a single
hadronic vortex and a single non-Abelian vortex in the
CFL phase, as shown in Fig. 1(c), without any need for a
boojum. To the extent that the various flavor quantum
numbers permit a smooth transition from the hadronic
to the CFL quark phase, angular momentum carrying
states remain consistent with quark-hadron continuity.

To spell out this picture in detail, we first discuss more
precisely the nature of quark-hadron continuity between
the hadronic and quark phases. On the deconfined quark
side the (ideal) CFL phase contains u (up), d (down),
and s (strange) quarks, all with the same mass, with a
Fermi sea equally populated with all three flavors and
all three colors of quarks. The corresponding hadronic
phase, three-flavor hyperonic matter, contains all mem-
bers of the light baryon flavor octet – n, p, ⇤, ⌃0, ⌃±,
⌅0, and ⌅� – all of the same mass. In the ground state
at finite density, the particles populate a Fermi sea with
all states of the octet equally present.

Both phases break chiral symmetry [1] and U(1)B, with
the same symmetry breaking pattern [SU(3)L⌦SU(3)R⌦
U(1)B ! SU(3)V]. In both phases BCS pairing leads
to breaking of U(1)B symmetry and superfluidity. The
hadronic dibaryon condensate is a flavor singlet formed
from two paired flavor octets. The CFL phase is usu-
ally described in the unitary gauge, in which the ground
state has a diquark condensate with the same color-flavor
orientation everywhere.2 In the hadronic phase, chiral
symmetry is spontaneously broken by a quark-antiquark
chiral condensate, producing a light octet of pseudoscalar
mesons, i.e., ⇡0, ⇡±, K0, K̄0, K±, and ⌘. The CFL con-
densate spontaneously breaks chiral symmetry, produc-
ing a light octet of pseudoscalar mesons [14–16]. Pre-
vious studies [2, 3, 17, 18] have established the conti-
nuity between the low-energy excitations of such three-
flavor hadronic and three-flavor quark matter.3 The nine
single-quark excitations of di↵erent colors and flavors can
be mapped, in the unitary gauge, onto the baryon octet
plus a baryon singlet which is usually not mentioned in
discussions of the confined phase because it is much heav-
ier than the octet baryons [3].

1
In Ref. [8] these configurations were referred to as “semi-

superfluid strings,” however we will call them “non-Abelian vor-

tices” to emphasize the presence of non-Abelian color magnetic

flux in the core combined with vortex-like global rotation of the

quark condensate.
2
With full three-flavor symmetry, CFL pairing is the most sta-

ble [12, 13].
3
This continuity is an example of the complementarity between

the confined and Higgs phases of a non-Abelian gauge theory

[19].

q

qq q qq q

q
qq
qq

FIG. 2. Schematic illustration of the smooth evolution of

a hadronic vortex into a non-Abelian CFL vortex. In the

hadronic phase, the phase of the condensate corresponding

to paired baryons (six quarks) increases by 2⇡ in winding

around the vortex core. In the CFL phase in the gauge-fixed

picture, one component of the order parameter picks up a

phase 2⇡ in winding, as shown. In the gauge-invariant picture

the phase of the entire six-quark order parameter changes by

2⇡ in winding.

One can further understand quark-hadron continuity
in terms of the anomaly-induced coupling between the
chiral and diquark condensates [20, 21]. The implica-
tions of quark-hadron continuity for the QCD phase di-
agram are reviewed in Ref. [22], and for neutron stars in
Ref. [23].

Figure 2 summarizes our results. In the confined phase
(upper half of the figure) the hadronic vortex carries an-
gular momentum via the circulation of a gauge-invariant
dibaryon condensate which acquires a phase of 2⇡ when
transported around the core. This vortex can be con-
tinuously connected to a non-Abelian CFL vortex [8] in
the CFL quark phase (lower half of the figure) where the
vortex has the same baryon circulation, but it arises in
the unitary gauge from three diquark condensates, one of
which acquires a phase of 2⇡ when transported around
the core. On the other hand, in the gauge-invariant pic-
ture, described in detail in Sec. IIID, the phase increase
is attributed to the entire six quark order parameter.

This paper is organized as follows. In Sec. II we re-
view the generic properties of vortices in a superfluid. In
Sec. III we discuss the vortex configurations that exist
in three-flavor hadronic and quark matter. After dis-
cussions of hadronic vortices in Sec. III A, we describe
two di↵erent vortex configurations that have been con-
structed in three-flavor quark matter, the Abelian CFL
vortices in Sec. III B and the non-Abelian CFL vortices
in Sec. III C. and then we show how the non-Abelian
vortex can be continuously connected with the hadronic
vortex. In Sec. IIID we show how these non-Abelian
vortices can be understood in a gauge-invariant descrip-
tion, and in Sec. III E we explore the consequences of
explicit breaking of the SU(3) flavor symmetry. Finally,
in Sec. IV we discuss the role of color magnetic flux. We
focus throughout on the properties of connecting single
vortices, and leave the discussion of an array of vortices

Continuity of superfluid vortices

Alford-Baym-Fukushima- 
-Hatsuda-Tachibana (2018)

Confinement / deconfinement 
very smooth change at high density 
(center symmetry badly broken)
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(a) (b)
Fig. 7. States of hard core baryons: full mobility (a), “jammed” (b)

overlap of such hadrons in percolation studies is thus restricted; nevertheless,
the percolation onset can still be determined [57], and it is found [53] that the
density of a spanning cluster now becomes

nhc

p
' 2

V0

, (6)

assuming Rhc = R0/2. With R0 = 0.8 fm, this leads at T = 0 to a limit
of about 5.5 times standard nuclear density. Requiring the baryon density
(baryons minus antibaryons) in an ideal resonance gas to attain this limit as
function of T and µ then defines a critical curve based on baryon percolation.
In the simplest model,

µp ' 1.12 GeV (7)

becomes the limiting baryochemical potential T = 0. The general curve is
included in Fig. 6 [53].

In the case of hard core percolation, a connection to thermodynamic critical
behaviour has also been discussed [57]. If a system with hard core repulsion
between its constituents is in addition subject to a density-dependent negative
background potential, first order critical behaviour can appear, ending in a
second order critical point specified by the background potential strength and
the hard core volume.

The interpretation of the situation illustrated in Fig. 6 allows diÆerent in-
teresting possibilities. In Ref. [53] it is assumed that the state outside the
hadronic matter region is a deconfined Quark-Gluon Plasma. It is, however,
also conceivable that below the meson percolation/resonance curve confined
mesonic states remain, with only baryons entering into a new phase. Such
Quarkyonic matter [32,33] is dealt with in detail in this work.

One can get some insight into the nature of the transition in the various regions

13

 Percolation model by Helmut Satz

Hard core radius: Rhc = R0/2 = 0.4 fm

Clustering density: nhc
p ' 2/V0 ⇠ 5.5n0

But, baryons are strongly interacting unlike mesons
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Baryon Interactions

N N

¼

When baryons interact,  
quarks are inevitably exchanged 

Nuclear matter knows  
quark d.o.f. via interactions 

P ⇠ O(Nc)
<latexit sha1_base64="WYtZsUsEi0a6ULXyF1Ib/9Cqpvw="></latexit><latexit sha1_base64="WYtZsUsEi0a6ULXyF1Ib/9Cqpvw="></latexit><latexit sha1_base64="WYtZsUsEi0a6ULXyF1Ib/9Cqpvw="></latexit><latexit sha1_base64="WYtZsUsEi0a6ULXyF1Ib/9Cqpvw=">AAACgHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQtIByjEWMcUZ+bGWCvE5CaWZCQn5lT712r4xSdrxgsoG+gZgIECJsMQylBmgIKAfIHlDDEMKQz5DMkMpQy5DKkMeQwlQHYOQyJDMRBGMxgyGDAUAMViGaqBYkVAViZYPpWhloELqLcUqCoVqCIRKJoNJNOBvGioaB6QDzKzGKw7GWhLDhAXAXUqMKgaXDVYafDZ4ITBaoOXBn9wmlUNNgPklkognQTRm1oQz98lEfydoK5cIF3CkIHQhdfNJQxpDBZgt2YC3V4AFgH5Ihmiv6xq+udgqyDVajWDRQavge5faHDT4DDQB3llX5KXBqYGzWbgAkaAIXpwYzLCjPQMDfQMA02UHZygUcHBIM2gxKABDG9zBgcGD4YAhlCgvY0Myxk2MGxkYmLSYNJnMoQoZWKE6hFmQAFMVgAvn5L3</latexit>

Confined NM and deconfined QM indistinguishable!
(cf. Quarkyonic Matter)
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Duality implies:
NM EoS extrapolated upward to approximate QM EoS 
                                  (common strategy implicitly assumed) 
QM EoS extrapolated downward to approximate NM EoS 
           (exotic strategy but works good!  Fukushima-Kojo (2016))

THE QUARKYONIC STAR
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ABSTRACT

We discuss theoretical scenarios on crossover between nuclear matter (NM) and quark matter (QM). We classify
various possibilities into three major scenarios according to the onset of diquark degrees of freedom that
characterizes color-superconducting (CSC) states. In the conventional scenario NM occurs at the liquid–gas (or
liquid–vacuum at zero temperature) phase transition and QM occurs next, after which CSC eventually appears.
With the effect of strong correlation, the BEC–BCS (Bose Einstein Condensation–Bardeen Cooper Schrieffer)
scenario implies that CSC occurs next to NM and QM comes last in the BCS regime. We adopt the quarkyonic
scenario in which NM, QM, and CSC are theoretically indistinguishable and thus these names refer to not distinct
states but relevant descriptions of the same physical system. Based on this idea, we propose a natural scheme to
interpolate NM near normal nuclear density and CSC with vector coupling at high baryon density. We finally
discuss the mass–radius relation of the neutron star and constraints on parameters in the proposed scheme.

Key words: stars: interiors – stars: massive – stars: neutron

1. INTRODUCTION

Quantum chromodynamics (QCD) is one fundamental
theory in the Standard Model in which non-Abelian gauge
fields (gluons) and fermions (quarks) interact nonperturbatively
and QCD-related phenomena are characterized by an energy
scale: 0.2 GeVQCDL � . The QCDvacuum has a rich structure
with a variety of condensates, and it dynamically confines any
colored excitation. At finite temperature of T QCD~ L and low
baryon density of nB QCD

3L� , ultrarelativistic nucleus–nucleus
collision at the Relativistic Heavy-Ion Collider (RHIC) and the
Large Hadron Collider (LHC), supported by the lattice-QCD
MonteCarlo calculations, has revealed quantitative properties
of a novel strongly correlated state of QCD matter, hadronic
gas at T QCD1 L and the quark–gluon plasma (QGP) at
T QCD2 L . In contrast, when T QCDL� and nB QCD

3~ L , our
knowledge from QCD is severely limited because the first-
principle numerical method based on the importance sampling
fails at finite baryon density. Therefore, it is important to
impose constraints on theoretical uncertainties from the
experimental side such as the neutron star observation and
the beam-energy scan program at RHIC and future heavy-ion
facilities. The purpose of this paper is to import the state-of-the-
art idea of a color deconfinement phenomenon at high T and
high nB, especially a special feature of dense and large-Nc
QCD, into the neutron star phenomenology, which in turn
provides us with useful constraints.

In some limiting cases at low and high baryon densities we
have a reasonable understanding of cold QCD matter. At
n n1 2B 0( )= ~ (where n 0.16 fm0

3-� is the nuclear satura-
tion density), on the one hand, one can utilize empirical
knowledge from nuclear physics and well-developed theore-
tical methods to analyze nuclear matter (NM) properties
(Weinberg 1990; Epelbaum et al. 2009). Recent developments
include not only the chiral perturbation theory (Fiorilla
et al. 2012; Krueger et al. 2013) and the chiral effective model
(Holt et al. 2014; Lastowiecki et al. 2015) but also the
functional renormalization group (Drews & Weise 2015). On
the other hand, at asymptotically high density n n100B 02 (or

even smaller densities hopefully), perturbative QCD (pQCD)
calculations are validated for the bulk quantities of quark
matter (QM) as seen from the convergence of three-loop
perturbative results (Freedman & McLerran 1977; Kurkela
et al. 2010; Fraga et al. 2015). Besides, pQCD works well to
describe the color-superconducting (CSC) states. In particular,
the ground state of QCD in the high-density limit has been
identified as the color-flavor-locked (CFL) state (Alford
et al. 1999b; see also a review by Fukushima & Hatsuda
2011 and references therein).
The most problematic is the QCD matter study in

the intermediate-density region: n n n2 1000 B 0< < or
1.1 GeV 3 GeVBm< < in terms of the baryon chemical
potential. Neutron stars are unique cosmic laboratories to
access such domains experimentally (Buballa et al. 2014).
Useful observations include the mass–radius (M–R) relation,
the cooling curve (Blaschke et al. 2000, 2004; Tsuruta et al.
2002; Page et al. 2004, 2006, 2011; Shternin et al. 2011), the
surface and toroidal magnetic fields (Duncan & Thomp-
son 1992; Cardall et al. 2001; Kitamoto et al. 2014; Olausen
& Kaspi 2014), the gravitational waves from the merger of
binary neutron stars (Abbott et al. 2009; Hotokezaka
et al. 2011, 2013), and so on. In the present work we will
specifically pay attention to the mass–radius relation.
The interesting point of the M–R relation is that it has a one-

to-one correspondence to the QCD equation of state (EOS)
through the Tolman–Oppenheimer–Volkoff (TOV) equation.
The overall size of neutron star radii is determined by the EOS
around n n1 2B 0( )= ~ (Lattimer & Prakash 2001, 2007),
while the typical neutron star masses M M2 : (where M:
denotes the solar mass) are largely correlated with the pressure
at the central cores with n n2 10B 0( )= ~ . According to the
discoveries of PSR J1614-2230 (Demorest et al. 2010) and
PSR J0348+0432 (Antoniadis et al. 2013), there should be
neutron stars whose mass exceeds M2 :, indicating that the
QCD EOS must be very stiff at n n2B 0> as compared to what
was naïvely considered.
The requirement of stiffness challenges conventional EOSs

beyond the nuclear regime. In typical hadronic models the
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Refined Percolation Scenario
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Dilute baryonic gas

(as discussed by G. Baym)
see: arXiv:0806.2706



August 3, 2018 @ Maynooth, Dublin

Refined Percolation Scenario
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Dense baryonic gas
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Simple Toy Modeling
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In the limit of “heavy” nucleons (as in the large Nc)  
the physics can be modeled in terms of the site percolation:
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Simple Toy Modeling
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Increasing Density ~ “Site Percolation” in d = 3
Classical critical probability  
 of particles sitting on the site

(Gaunt-Ruskin 1978, Aharony-Binder 1980)

Assume (1) Interaction cloud size ~ 1/(2mp) ~ 0.7fm 
              (2) p = 1 means complete saturation

Site-spacing ~ 1.1fm

Not an unphysical number but too small (?)

pc ' 0.31

nc ' 0.23 fm�3 ⇠ 1.4n0
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Simple Toy Modeling
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Quantum Percolation Model

H =
X

n

|ni"nhn|+
X

n 6=m

|niVnmhm|

P ("n) = p�("n � "A) + (1� p)�("n � "B)

P (Vnm) = p�(Vnm � VA) + (1� p)�(Vnm � VB)

Site-Percolation

Bond-Percolation

V = (const.)

e = (const.)
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Simple Toy Modeling
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Quantum Percolation Model

H =
X

n

|ni"nhn|+
X

n 6=m

|niVnmhm|

P ("n) = p�("n � "A) + (1� p)�("n � "B)

Site-Percolation V = (const.)

"A = �"B ! 1
Classical Site-Percolation Limit

(quarks tightly bound in N)
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Simple Toy Modeling
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Percolation eased by quantum tunneling?
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Simple Toy Modeling
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pc ! pqQuantum Fluctuations

One might naively think that quantum tunneling makes:

However, this is NOT true, and the answer should be:

Quantum Fluct. ~ Impurities ~ Anderson Localization

pq < pc (?)

pq > pc (!)
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d=3 Quantum Site-Percolation
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Minimum: pq ' 0.44
(Soukoulis-Li-Grest 1992)
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d=3 Quantum Site-Percolation
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pq ' 0.44 nc ' 0.33 fm�3 ⇠ 2.1n0

(Confined)
Nuclear Matter

Quarkyonic
Regime

(Deconfined)
Quark Matter

(Nothing happens) (Anderson Metal-Insulator Transition)

1.4n0 > 2.1n0

Precise value may  
depend on E/2V 
and crystal lattice  
(not square lattice  
 but bcc/fcc)
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Work in Progress

Realistic Model Building 
□Nuclear Matter + Many-body Localization of Quarks 
□ Pion Clouds in NM  →  Quasi-quarks in QM 
□Quantifying the EoS ? 

Novel Implication 
□ Scaling properties near the (pseudo) percolation point 
□New (to QCD but not to cond-mat) mechanism of  

confinement — like metal-insulator transition 
Fundamental-level Question 
□No clear order parameter : similarity between quark  

confinement and the Anderson localization
!27


