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Motivation

“Collectivity” in small systems”

p-A and even p-p systems not many particles are produced, but collectivity
signatures are observed.

Is it “thermalization” or “hydro”?

Or is it something inherited from the proton wave function?
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Quantum Entanglement?

Proton wave function is a complicated quantum object.
We only observe part of the degrees of freedom. In the proton they are
entangled with the rest.

Could the rest mimic “thermal bath”? After scattering this might produce
thermal like signals, or signs of “collectivity”.

A bunch of ideas:
Kharzeev-Levin Phys.Rev. D95 (2017) no.11, 114008, Baker-Kharzeev
arXiv:1712.04558 : scattering is a quench that releases the entanglement
entropy of observed modes into the final state.

Somewhat different idea: Eigenstate Thermalization Hypothesis.
Scattering produces highly energetic state, which behaves like thermal for
certain set of observables.
AMO experiments seem to confirm ETH: find the entanglement entropy of
a subsystem grows after quench and attains thermal value.
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Learn by Doing

Not entirely clear whether it makes sense, but sounds like fun.

Color Glass Condensate: model of the entangled proton wave function.

There soft modes are strongly entangled with the valence modes.

What entropy does this entanglement carry, and how is this entropy
reflected in the particle production in high energy scattering?
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The CGC

Color Glass Condensate wave fuction: energetic “valence” partons carry
Coulomb color field.
Boosted it becomes Weizsacker-Williams equivalent soft gluons.

|ψ⟩ = |s⟩ ⊗ |v⟩ ,

|s⟩ = Ω|0⟩ = exp

{
i

∫
q+<Λ

b̃ia(q)
[
aai (q

+,q) + a†ai (q+,−q)
]}

|0⟩ ,

The Weizsacker-Williams field :

bai (x) =
g

2π

∫
d2y

(x− y)i
(x− y)2

ρa(y) , bai (q) = − i g ρa(q)qi
q2

,

where ρa(x) - valence color charge density in the projectile wave function.
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Entangled state

This is typical Born-Oppenheimer situation: slow (small k−) valence
modes determine the state of the faster (higher k−) soft guons.

Note: the state is strongly entangled. The soft state depends on valence
ρ, while ρ is distributed in some way in the valence state |v⟩.

Need nonperturbative information for |v⟩.

Will use the McLerran-Venugopalan (MV) model.

⟨ρa(x)|v⟩⟨v |ρa(x)⟩ = N exp

{
−1

2

∫
d2x d2y ρa(x)µ−2(x− y)ρa(y)

}
,
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Eikonal scattering

When scattering on a target, the partons of the projectile undergo eikonal
scattering

aa(x, p+) → Sab(x)ab(x, p+); ρa(x) → Sab(x)ρb(x) .

The eikonally scattered CGC soft ground state is

Ŝ Ω |0⟩ ⊗ |v⟩ = exp

{
i

∫
q+<Λ

∫
x
b̃
′a
i (q

+, x)Sab(x)ϕb(q+, x)

}
|0⟩ ⊗ Ŝ |v⟩ ,

where the Weizsäcker-Williams field of the eikonally rotated charge is

b
′a
i (x) =

g

2π

∫
d2y

(x− y)i
(x− y)2

ρ̄a(y) ,

and
ρ̄a(y) = Sab(y) ρa(y) .

Between the scattering time and the observation time it evolves with the
“free” QCD Hamiltonian, so that at any time t we have

Ψout = U(0, t) Ŝ Ω |0⟩ ⊗ |v⟩; U(0, t) = exp{−iHt} ,
Alex Kovner (University of Connecticut ) Entanglement and Entropy production at High Energy. August 2, 2018 7 / 23
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Goals

We have an explicit model of the projectile wave function before scattering
and the scattered state.

The questions we are asking:

1. What is the entanglement entropy between the soft gluons and valence
partons?

2. What is the entropy of the ensemble of soft gluons produced in the
scattering process?

3. Can we sensibly talk about entropy produced in a single event?
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The reduced density matrix.

This defines the density matrix (operator) on the soft gluon Hilbert space:

ρ̂ = N
∫

D[ρ] e
−

∫
k

1
2µ2(k)

ρa(k)ρa(−k)
e i

∫
q b

i
b(q)ϕ

i
b(−q)|0⟩⟨0| e−i

∫
p b

j
c(p)ϕ

j
c(−p)

with
ϕia(k) = aia(k) + a†ia (−k)

Easiest in the “ϕ-basis”:

⟨ϕ|0⟩ = Ne−
π
2

∫
k ϕ

i
a(k)ϕ

i
a(−k)

⟨ϕ1|ρ̂|ϕ2⟩ = N
∫

D[ρ] e
−

∫
k

1
2µ2(k)

ρa(k)ρa(−k)
e i

∫
q b

i
b(q)[ϕ

1i
b (−q)−ϕ2i

b (−q)]

× e−
π
2

∫
k[ϕ

1i
a (k)ϕ1i

a (−k)+ϕ2i
a (k)ϕ2i

a (−k)]
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Entanglement Entropy in the Projectile

The gaussian integral over ρ:

⟨ϕ1|ρ̂|ϕ2⟩ = e−
1
2
[ϕ1−ϕ2]M[ϕ1−ϕ2]e−

π
2
[(ϕ1)2+(ϕ2)2]

With:

Mij ≡ g2

∫
u,v
µ2(u, v)

(x − u)i
(x − u)2

(y − v)j
(y − v)2

δab

Entanglement entropy:
σE = −tr [ρ̂ ln ρ̂]

How to calculate ln? The standard “replica trick”:

ln ρ̂ = lim
ϵ→0

1

ϵ
(ρ̂ϵ − 1)

Calculate ρN and take N → 1. N copies of the field - replicas, do the job.

The result

σE =
1

2
tr

{
ln

M

π
+

√
1 +

4M

π
ln

[
1 +

π

2M

(
1 +

√
1 +

4M

π

)]}
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Calculating σE

Translationally invariant limit (and original MV model):

Mab
ij (p) = g2µ2

pipj
p4

δab

For small M, or the UV contribution

σEUV = tr

[
M

π
ln
πe

M

]
= − N2

c − 1

π
S

∫
p2>

Q2
s

g2

d2p

(2π)2
Q2

s

g2p2
ln

Q2
s

eg2 p2

where Q2
s = g4

π µ
2 In all σE is formally UV divergent

σEUV =
Q2

s

4πg2
(N2

c − 1)S

[
ln2

g2Λ2

Q2
s

+ ln
g2Λ2

Q2
s

]
The large M, IR contribution is

σEIR ≃ 1

2
tr [ln

e2M

π
] =

N2
c − 1

2
S

∫
p2<

Q2
s

g2

d2p

(2π)2
ln

e2Q2
s

g2p2
=

3(N2
c − 1)

8πg2
SQ2

s
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Properties of σE .

Putting it together:

σE ≈ σEUV + σEIR =
SQ2

s

4πg2
(N2

c − 1)

[
ln2

g2Λ2

Q2
s

+ ln
g2Λ2

Q2
s

+
3

2

]
UV divergent: the divergence is cutoff physically at Λ ∼ MeY0 ≫ M,
where eikonal approximation breaks down.

Similar to “topological entropy”: insensitive to boundary region between
the modes.

But not quite what we would like to know.
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Density matrix of the produced system of gluons.

After eikonal scattering:

ρ̂S = N
∫

D[ρ] e−
1
2
ρµ−2ρe i

∫
q b

i
b(Sρ)Sϕ|0⟩⟨0| e−ib(Sρ)Sϕ

Not quite the right density matrix: it contains gluons that are part of the
Weizsacker-Williams cloud of receding charges. We don’t want want those
gluons in our Hilbert space.
The correct solution: to “project” onto transformed states (before
integrating over ρ:

ρ̂→ Ω†ρ̂Ω

Long story short: same as the incoming density matrix, but with

M → MP

with

MP ≡ g2

∫
u,v
µ2(u, v)

(x − u)i
(x − u)2

(y − v)j
(y − v)2

[(S(u)− S(x))(S†(v)− S†(y))]ab
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Entropy of the produced gluons

The entropy of the system of produced particles is formally

σP =
1

2
⟨tr

{
ln

MP

π
+

√
1 +

4MP

π
ln

[
1 +

π

2MP

(
1 +

√
1 +

4MP

π

)]}
⟩T

Here ⟨...⟩T is average over the target.

⟨MP⟩T = δab
Q2

Pπ

g2

∫
z

(x − z)i
(x − z)2

(y − z)j
(y − z)2

[PA(x , y)+1−PA(x , z)−PA(z , y)]

PA - S-matrix of an adjoint dipole on the target
Qp - saturation momentum of the projectile.
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Entropy and inclusive gluons production.

Expand σP around M̄ (dilute projectile limit):

σP = tr

[
M̄

π
ln
πe

M̄

]
− 1

2π
tr
[{

⟨(MP − M̄) (MP − M̄)⟩T
}
M̄−1

]
....

M̄ is almost single inclusive gluon.

Second term - almost correlated part of double inclusive gluon
production.

Correlations between gluons decrease entropy of the produced state.

We can naturally define temperature through: T−1 = dσ
dET

Keeping only mean field term in the entropy: T = π
2 < kT >.
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Entropy event-by-event?

What does our calculation mean?

Remember: ρ are slow valence degrees of freedom. Scattering on an
energetic target moving with the speed of light is very fast.

So in each scattering event only a fixed configuration of ρa(x) is probed.

Reducing the density matrix over ρ is equivalent to averaging over the
ensemble of scattering events!

Can we sensibly speak abut entropy of a single event?
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Entropy of a pure state?

Strictly speaking for a fixed ρa(x) (and S(x)) the soft gluons after
scattering are in a pure state.

|Ψ⟩out = Ω†[ρ]Ŝ [S ]Ω[ρ]|0⟩

So the entropy vanishes?

Not what we intuitively feel...
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“Almost mixed state”

Pure state evolved in time:

|ψ(t)⟩ =
∑
n

e−iEntcn|ψn⟩ ,

Density matrix:

ρ̂(t) = |ψ(t)⟩⟨ψ(t)| =


|c1|2 c1c

∗
2 e

i(E1−E2)t . . .

c2c
∗
1 e

i(E2−E1)t |c2|2 . . .
. . . . . . . . .

 .

Finite time resolution - same as “averaging over time”.
If T > |E − 1− E2|−1 almost like “reduction”

ρ̂ ∼


|c1|2 0 . . .

0 |c2|2 . . .
. . . . . . . . .

 ,

This is mixed and has entropy.
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The white noise

Except this is not quite “reduction over part of Hilbert space”. Time is
not degree of freedom.

But real measurement has time resolution, and provides external degree of
freedom coupled to the observed system.

“Calorimeter” degree of freedom (“White noise”)

Should couple to energy;

Should have a typical time scale;

Couple in the “calorimeter” in the Hilbert space:

ρ̂P,ξ = e−iHξ Ω†Ŝ Ω|G ⟩ ⊗ |0⟩ ⊗ |v⟩⟨v | ⊗ ⟨0| ⊗ ⟨G |Ω† Ŝ†Ωe iHξ

with a (rather arbitrary, but convenient)

⟨ξ|G ⟩ = e−
ξ2

2T2
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The Entropy

For fixed ρ and fixed S - single event

⟨ξ1|ρ̂′P,ξ|ξ2⟩

=
1√
πT

e−
ξ21+ξ22
2T2 e−iH0ξ1 e i

∫
q ∆b̃ai (q)ϕ

a
i (q

+,q)|0⟩⟨0|e−i
∫
p ∆b̃bj (p)ϕ

b
j (p

+,p) e iH0ξ2 ,

with

∆bai (x) ≡ g

2π

∫
d2z

(x− z)i
(x− z)2

(
Sab(x)− Sab(z)

)
ρb(z) ,

∆bai (q) = i g

∫
d2l

(2π)2

[
qi
q2

− li
l2

]
Sab(q− l) ρb(l) ,

Now trace over ξ and calculate entropy.
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Weak Field Limit

Not completely straightforward, but doable in the weak field limit.

σE∆b2≪1 ≈ −
[∫

q
∆b̃2(q)

(
1− e−

E2
qT

2

2

)]
log

[∫
p
∆b̃2(p)

(
1− e−

E2
pT

2

2

)]
.

Very natural interpretation. As time goes by after scattering more and
more energy eigenstates “decohere” from each other due to phase
oscillations. Those soft gluons are “produced” - or resolved by the
apparatus.
Number of particles produced by the time T

n(T ) =

∫
q
∆b̃2(q)

(
1− e−

E2
qT

2

2

)
,

The entropy produced (in a singe event) at time T :

σE (T ) = −n(T ) log n(T ) .

As T → ∞, n(T ) →
∫
q ∆b̃2(q) - total number of produced particles in

the CGC approximation.
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Monogamy of entanglement

An interesting exercise: calculate time dependent entropy (time given by
the calorimeter resolution T ) of the ensemble of events. That means
introduce both the “white noise” ξ, and the reduction over the valence
space.
We find:

σ = −n log n

with

n = ⟨
∫
q
∆b̃ai (q)∆b̃ai (−q)⟩(ρ,S)

No time dependence! (Although it does appear in next order in n.)
Possible reason: “monogamy of entanglement. Two degrees of freedom
which are maximally entangled with each other cannot be entangled with
anything else.
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Summary

None.

Alex Kovner (University of Connecticut ) Entanglement and Entropy production at High Energy. August 2, 2018 23 / 23


