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 Process mediated by the weak interaction which occurs in those even-even nuclei 
where the single beta decay is energetically forbidden.   

Double beta decay
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Double beta decay

Double beta decay is a second-order
process which appears when single-�
decay is energetically forbidden or
hindered by large �J
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Only lower limits to the half-lives have been measured so far
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see Andrea Giachero’s talk!
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Weak decays in nuclei
Chiral EFT

Double beta decay: origin

Double beta decay only appears when single-� decay
is energetically forbidden or hindered by large J difference
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• Violates the leptonic number conservation

• Neutrinos are massive Majorana particles 

• Mass hierarchy of neutrinos

• Experimentally not observed (T1/2 >1025 y)

• Beyond the Standard Model

• Most plausible mechanism: exchange of light 
Majorana neutrinos
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• Leading lepton number violating process contributing to 0νββ decay

- Exchange of light Majorana neutrino. 
- Exchange of heavy Majorana neutrino.

- Leptoquarks.

- Supersymmetric particles.

- … 


• Transition operator connecting initial and final states

- Relativistic/Non-relativistic.

- Nucleon size effects.

- Two-body weak currents.

- Short-range correlations.

- Closure approximation.

- …

NME: Starting points

• Nuclear structure method (fully consistent or not with the operator) for calculating 
these NME.


- Correlations.

- Symmetry conservation.

- Valence space.

- …
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NME: Starting points

M0⇥�� = �
�

gV (0)
gA(0)

⇥2

M0⇥��
F + M0⇥��

GT �M0⇥��
T

• Each term can be written as the expectation value of a transition operator 
acting on the initial al final states:

M0⇥��
⇤ = �0+

f |Ô0⇥��
⇤ |0+

i ⇥

• Nuclear structure methods for calculating these NME deal with:

 - Finding the best initial and final ground states. 

 - Handling the transition operator (inclusion of most relevant terms, 
corrections, approximations, etc.). 
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Method Some recent (and key) references

Interacting Shell Model (ISM)

- Phys. Rev. Lett. 100, 052503 (2008).


- Nucl. Phys. A 818, 139 (2009).


- Phys. Rev. C 87, 014320 (2013). 


- Phys. Rev. Lett. 113, 262501 (2014).


- Phys. Rev. Lett. 116, 112502 (2016).

pnQRPA
- Phys. Rev. C 77, 045503 (2008). 


- Phys Rev. C 87, 045501 (2013).


- J. Phys. G 39, 124005 (2012).

Interacting Boson Model (IBM)
- Phys. Rev. C 79, 044301 (2009). 


- Phys Rev. C 87, 014315 (2013).


- Phys. Rev. C 96, 064305 (2017).

Generator Coordinate Method (GCM-EDF)

- Phys. Rev. Lett. 105, 252503 (2010). 


- Phys. Rev. Lett 111, 142501 (2013).


- Phys. Rev. C 90, 031031(R) (2014). 


- Phys. Rev. C 90, 054309 (2014).


- Phys. Rev. C 91, 024316 (2015).


- Phys. Rev. C 96, 054310 (2017).


- arXiv:1709.05313


- arXiv:1807.11053

Nuclear structure methods
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Nuclear structure methods

see Amy Nicholson’s talk tomorrow 

for lattice QCD calculations!
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Current theoretical status

Different methods give different values of 
NME’s with a factor ~3 difference

J. Engel and J. Menéndez, Reports on Progress in Physics 80, 046301 (2017)

8

has been ignored in this analysis. We really need better
calculations. Fortunately, we are now finally in a position
to undertake them.

III. NUCLEAR MATRIX ELEMENTS AT
PRESENT

As we have noted, calculated matrix elements at
present carry large uncertainties. Matrix elements ob-
tained with di↵erent nuclear-structure approaches dif-
fer by factors of two or three. Figure 5 compares ma-
trix elements produced by the shell model [82, 113, 114],
di↵erent variants of the quasiparticle random phase ap-
proximation (QRPA) [81, 115–117], the interacting boson
model (IBM) [109], and energy density functional (EDF)
theory [118–120]. The strengths and weaknesses of each
calculation are discussed in detail later in this Section.

Some of these methods can be used to compute single-
� and 2⌫�� decay lifetimes. It is disconcerting to find
that predicted lifetimes for these processes are almost
always shorter than measured lifetimes, i.e. computed
single Gamow-Teller and 2⌫�� matrix elements are too
large [121–123]. The problems are usually “cured” by
reducing the strength of the spin-isospin Gamow-Teller
operator �⌧ , which is equivalent to using an e↵ective
value of the axial coupling constant that multiplies this
operator in place of its “bare” value of gA ' 1.27. This
phenomenological modification is sometimes referred to
as the “quenching” or “renormalization” of gA. In Sec. IV
we review possible sources of the renormalization, none
of which has yet been shown to fully explain the e↵ect,
and their consequences for 0⌫�� matrix elements.

A. Shell Model

The nuclear shell model is a well-established many-
body method, routinely used to describe the properties
of medium-mass and heavy nuclei [121, 124, 125], includ-
ing candidates for ��-decay experiments. The model,
also called the “configuration interaction method” (par-
ticularly in quantum chemistry [126, 127]), is based on
the idea that the nucleons near the Fermi level are the
most important for low-energy nuclear properties, and
that all the correlations between these nucleons are rele-
vant. Thus, instead of solving the Schrödinger equation
for the full nuclear interaction in the complete many-
body Hilbert space, one restricts the dynamics to a lim-
ited configuration space (sometimes called the valence
space) containing only a subset of the system’s nucleons.
In the configuration space one uses an e↵ective nuclear
interaction He↵, defined (ideally) so that the observables
of the full-space calculation are reproduced, e.g.

H |�ii = Ei |�ii ! He↵ |�̄ii = Ei |�̄ii . (17)

The states |�ii and |�̄ii are defined in the full space and
the configuration space, respectively, and have associated
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FIG. 5. Top panel: Nuclear matrix elements (M0⌫) for 0⌫��
decay candidates as a function of mass number A. All the
plotted results are obtained with the assumption that the ax-
ial coupling constant gA is unquenched and are from di↵erent
nuclear models: the shell model (SM) from the Strasbourg-
Madrid (black circles) [113], Tokyo (black circle in 48Ca) [114],
and Michigan (black bars) [82] groups; the interacting bo-
son model (IBM-2, green squares) [109]; di↵erent versions
of the quasiparticle random-phase approximation (QRPA)
from the Tübingen (red bars) [115, 116], Jyväskylä (orange
times signs) [81], and Chapel Hill (magenta crosses) [117]
groups; and energy density functional theory (EDF), relativis-
tic (downside cyan triangles) [118, 119] and non-relativistic
(blue triangles) [120]. QRPA error bars result from the use of
two realistic nuclear interactions, while shell model error bars
result from the use of several di↵erent treatments of short
range correlations. Bottom panel: Associated 0⌫�� decay
half-lives, scaled by the square of the unknown parameter
m�� .

energy Ei.

The configuration space usually comprises only a rela-
tively small number of “active” nucleons outside a core of
nucleons that are frozen in the lowest-energy orbitals and
not included in the calculation. The active nucleons can
occupy only a limited set of single-particle levels around
the Fermi surface. Many-body states are linear combi-
nations of orthogonal Slater determinants | ii (usually
from a harmonic-oscillator basis) for nucleons in those
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energy Ei.

The configuration space usually comprises only a rela-
tively small number of “active” nucleons outside a core of
nucleons that are frozen in the lowest-energy orbitals and
not included in the calculation. The active nucleons can
occupy only a limited set of single-particle levels around
the Fermi surface. Many-body states are linear combi-
nations of orthogonal Slater determinants | ii (usually
from a harmonic-oscillator basis) for nucleons in those

REDUCE THE UNCERTAINTIES: 
- EFFECTIVE OPERATOR 
- NUCLEAR MANY-BODY METHOD (CORRELATIONS)
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We want to study the role of


- Deformation and shape mixing.

- Pairing pp/nn/pn correlations.

- Shell effects.

- Isospin conservation.

- Pair breaking (seniority).

- Occupation numbers.

- Size of the valence space.


in the nuclear matrix elements using a standard prescription for the 
transition operator.

NME: Nuclear structure aspects
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LARGE SCALE SHELL MODEL

• Exact diagonalizations within a valence space. 

• Effective interactions adapted to the valence 

space and adjusted to reproduce the evolution of 

single particle energies (monopoles).    

• Very precise description of spectroscopy and 

transitions of nuclei. 

• Limited by the combinatorial increase of the 

number of configurations.

SELF-CONSISTENT MEAN-FIELD AND 
BEYOND-MEAN-FIELD

• Variational approach with simple trial wave 

functions (HFB) using ‘universal’ functionals.  

• Parameters of the functional fitted to bulk 

properties and masses and radii of finite nuclei.    

• Applicable to the whole nuclear chart  

(0νββ, r-process nucleosynthesis, ...). 

• Very precise description of ground state properties 

and collective phenomena.    

• Spectroscopy and nuclear response with beyond 

mean-field techniques (GCM, QRPA, ...)

Many-body methods in nuclear structure
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• Exact diagonalizations within a valence space. 

• Effective interactions adapted to the valence 

space and adjusted to reproduce the evolution of 

single particle energies (monopoles).    

• Very precise description of spectroscopy and 

transitions of nuclei. 

• Limited by the combinatorial increase of the 

number of configurations.

SELF-CONSISTENT MEAN-FIELD AND 
BEYOND-MEAN-FIELD

• Variational approach with simple trial wave 

functions (HFB) using ‘universal’ functionals.  

• Parameters of the functional fitted to bulk 

properties and masses and radii of finite nuclei.    

• Applicable to the whole nuclear chart  

(0νββ, r-process nucleosynthesis, ...). 

• Very precise description of ground state properties 

and collective phenomena.    

• Spectroscopy and nuclear response with beyond 

mean-field techniques (GCM, QRPA, ...)

Many-body methods in nuclear structure

see Philipp Klos’ talk on 

Thursday!
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1. Angular momentum

2. Axial quadrupole deformations

3. Axial+triaxial quadrupole deformations

3. Quadrupole and pairing  pp/nn correlations 

4. Quadrupole and pn correlations

5. Quadrupole and octupole deformations

Transitions
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FIG. 2: (Color online) Low-energy spectra of 150Nd and
150Sm. The numbers on arrows are E2 (solid line) and E3
(dashed line) transition strengths, in Weisskopf units. Data
are from Ref. [64].

FIG. 3: (Color online) Excitation energies of parity doublet
states in 150Nd (a) and 150Sm (b). The available data (!)
are compared with the GCM results (") and the results pro-
duced by the single-configuration of J = 0 energy minimum
(△) and by the configuration with deformation parameters de-
termined by measured transition strengths B(E2 : 0+1 → 2+1 )
and B(E3 : 0+1 → 3−1 ) (▽) [64].

and 150Sm. The octupole degree of freedom reduces the
E2 transition strengths between positive-parity states
significantly in both nuclei. It worsens the agreement in
150Nd but improves it in 150Sm. Our GCM describes the
negative-parity band built on the 1− state rather well, de-
spite overestimating the transition strengthB(E3 : 0+1 →
3−1 ) in

150Nd and underestimating it in 150Sm.
Figure 3 compares the GCM excitation energies with

those of two single-configuration calculations, one based
on the J = 0 energy minimum and the other on a state

FIG. 4: (Color online) Normalized nuclear matrix elements
M̃0ν(qI , qF ) for the neutrinoless double-beta decay of 150Nd,
where {q} ≡ {β2,β3}. Panel (a) plots M̃0ν versus the initial
and final octupole deformation parameters, with the quadru-
ple deformation parameters βI

2 and βF
2 fixed at 0.2 Panel (b)

plots the same quantity with the restriction βI
3 = βF

3 .

with deformation parameters determined by the experi-
mental B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values
[64]. The GCM results are in much better agreement with
the data than are the single-configuration results. As spin
increases, however, the GCM increasingly over-predicts
the data, indicating that some important correlations
are missing. Time-reversal-symmetry-breaking reference
states, produced in a cranking calculation, would likely
lower the energies of high-spin states [65].
Figure 4 displays the normalized 0νββ matrix el-

ement between reference states, which we denote by
M̃0ν(qI , qF ):

M̃0ν(qI , qF )

≡
⟨qF |Ô0ν P̂ J=0P̂NI P̂ZIP π=+|qI⟩

√

N
0+
qI ,qIN

0+
qF ,qF

, (14)

with the norms N for each nucleus defined in Eq. (9).
The function M̃0ν(qI , qF ) represents the contribution of
particular initial and final configurations to the full ma-
trix element. Panel (a) of Fig. 4 plots the function in
the βI

3 ,β
F
3 plane, with βI

2 and βF
2 fixed at 0.2, the value

that minimizes the energy in both nuclei. The figure
shows that unequal octupole deformation in the two nu-
clei causes a rapid drop in the 0νββ matrix element.
Panel (b) of Fig. 4 extracts the behavior of M̃0ν from
the diagonal of panel (a), where the octupole deforma-
tion is the same size in both nuclei. Increasing deforma-
tion causes even this diagonal contribution to drop, from

J. M. Yao and J. Engel, PRC 94, 014306 (2016) 3

C. Nuclear matrix element for 0νββ decay

The 0νββ decay nuclear matrix element is

M0ν =
4πR

g2A(0)

∫ ∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

⟨0+F |J
†
µ (x1)|m⟩⟨m|J µ†(x2)|0

+
I ⟩

q + Em − (EI + EF )/2
, (10)

where J †
µ is the charge-changing nuclear current operator

[61] and q is the momentum transferred from leptons to
nucleons. The nuclear radius R = 1.2A1/3 makes the ma-
trix element dimensionless. In the closure approximation
and with the GCM state vectors from Eq. (7) as ground
states |0+I/F ⟩ of the initial and final nuclei, we obtain

M0ν =
∑

qI ,qF

f
0+
I

qI f
0+
F

qF ⟨qF |Ô
0ν P̂ J=0

00 P̂N P̂ZP̂ π=+|qI⟩ ,

(11)
with the transition operator given by

Ô0ν =
4πR

g2A(0)

∫

d3q

(2π)3

∫ ∫

d3x1d
3x2

eiq·(x1−x2)

q(q + Ed)

× [J †
µ (x1)J

µ†(x2)] , (12)

and Ed set to 1.12A1/2 ≃ 13.72 Mev [62].
The operator [J †

µ (x1)J µ†(x2)], when Fourier trans-
formed, contains the terms [46],

V V : g2V (q
2)

(

ψ̄γµτ−ψ
)(1) (

ψ̄γµτ−ψ
)(2)

(13)

AA : g2A(q
2)
(

ψ̄γµγ5τ−ψ
)(1) (

ψ̄γµγ5τ−ψ
)(2)

AP : 2gA(q
2)gP (q

2)
(

ψ̄γγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

PP : g2P (q
2)
(

ψ̄qγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

MM : g2M (q2)

(

ψ̄
σµi
2mN

qiτ−ψ

)(1) (

ψ̄
σµj

2mN
qjτ−ψ

)(2)

,

where τ− is the isospin lowering operator that changes
neutrons into protons, σµν = i

2 [γµ, γν ], and V,A, P,M
denote the vector, axial vector, pseudoscalar, and mag-
netic pieces of the one-nucleon current. Following Ref.
[63], we take the form factors gV (q2), gA(q2), gM (q2),

and gP (q2) to be V (q2) =
gV (0)

(1 + q2/Λ2
V )

2
, gA(q2) =

gA(0)

(1 + q2/Λ2
A)

2
, gP (q2) = gA(q2)

2mN

q2 +m2
π
(1 −

m2
π

Λ2
A

), and

gM (q2) = (µp − µn)gV (q2), with gV (0) = 1.0, gA(0) =
1.254, µp − µn = 3.70, Λ2

V = 0.710 (GeV)2, ΛA = 1.09
GeV, mN = 0.93827 GeV and mπ = 0.13957 GeV. For
the sake of simplicity, we neglect short-range correlations.
We include, alongside the generator coordinates from

Ref. [46], the octupole deformation parameter β3. The
parity breaking (and subsequent projection) and the
larger number of reference states caused by the inclu-
sion of octupole deformation increase computing time but

FIG. 1: (Color online) Mean-field energy surfaces for 150Nd
(a) and 150Sm (b), projected energy surfaces for 150Nd (c)
and 150Sm (d), and the square of the collective ground-state
wave function for 150Nd (e) and 150Sm (f), all in the β2-β3

plane.

otherwise cause no problems in our calculation. We ini-
tially include 50 reference states with β3 > 0. From this
set, 29 natural states turn out to sufficient to include
essentially all the contributions of the original 50 states
to both structure properties and 0νββ decay matrix ele-
ments.

III. RESULTS AND DISCUSSION

Figure 1 shows the mean-field and quantum-number-
projected energy surfaces, as well as the collective
wave functions |gJα(q)|

2, for the ground states of 150Nd
and 150Sm. The collective wave functions, defined

as gJπα (q) ≡
∑

q′
[

N Jπ
q,q′

]1/2
fJπα
q′ , provide information

about the importance of deformation with parameters q
in the state |Jπ

α ⟩. The mean-field energy surfaces in both
nuclei around the quadrupole-deformed minima with β2
around 0.2 are almost flat in the octupole direction. This
kind of surface often signifies a critical point symmetry
[5, 7, 11]. Our surface, however, is flat only before pro-
jection of the states that determine it onto the subspace
with Jπ = 0+ and well-defined N and Z; after projec-
tion it shows pronounced minima around β3 ∼ 0.1. In
addition, valleys connects the prolate and oblate min-
ima through octupole shapes in both nuclei, leading to
a reduction of quadrupole collectivity and large octupole
shape fluctuations.
Figure 2 shows the low-lying energy spectra in 150Nd

Axial quadrupole and octupole 
deformation and mixing
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FIG. 2: (Color online) Low-energy spectra of 150Nd and
150Sm. The numbers on arrows are E2 (solid line) and E3
(dashed line) transition strengths, in Weisskopf units. Data
are from Ref. [64].

FIG. 3: (Color online) Excitation energies of parity doublet
states in 150Nd (a) and 150Sm (b). The available data (!)
are compared with the GCM results (") and the results pro-
duced by the single-configuration of J = 0 energy minimum
(△) and by the configuration with deformation parameters de-
termined by measured transition strengths B(E2 : 0+1 → 2+1 )
and B(E3 : 0+1 → 3−1 ) (▽) [64].
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negative-parity band built on the 1− state rather well, de-
spite overestimating the transition strengthB(E3 : 0+1 →
3−1 ) in

150Nd and underestimating it in 150Sm.
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where {q} ≡ {β2,β3}. Panel (a) plots M̃0ν versus the initial
and final octupole deformation parameters, with the quadru-
ple deformation parameters βI

2 and βF
2 fixed at 0.2 Panel (b)

plots the same quantity with the restriction βI
3 = βF

3 .

with deformation parameters determined by the experi-
mental B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values
[64]. The GCM results are in much better agreement with
the data than are the single-configuration results. As spin
increases, however, the GCM increasingly over-predicts
the data, indicating that some important correlations
are missing. Time-reversal-symmetry-breaking reference
states, produced in a cranking calculation, would likely
lower the energies of high-spin states [65].
Figure 4 displays the normalized 0νββ matrix el-

ement between reference states, which we denote by
M̃0ν(qI , qF ):

M̃0ν(qI , qF )

≡
⟨qF |Ô0ν P̂ J=0P̂NI P̂ZIP π=+|qI⟩

√

N
0+
qI ,qIN

0+
qF ,qF

, (14)

with the norms N for each nucleus defined in Eq. (9).
The function M̃0ν(qI , qF ) represents the contribution of
particular initial and final configurations to the full ma-
trix element. Panel (a) of Fig. 4 plots the function in
the βI

3 ,β
F
3 plane, with βI

2 and βF
2 fixed at 0.2, the value

that minimizes the energy in both nuclei. The figure
shows that unequal octupole deformation in the two nu-
clei causes a rapid drop in the 0νββ matrix element.
Panel (b) of Fig. 4 extracts the behavior of M̃0ν from
the diagonal of panel (a), where the octupole deforma-
tion is the same size in both nuclei. Increasing deforma-
tion causes even this diagonal contribution to drop, from

J. M. Yao and J. Engel, PRC 94, 014306 (2016) 
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FIG. 5: (Color online) The final matrix element M0ν from
the GCM calculation with and without [46] octupole shape
fluctuations (REDF) and those of the QRPA (“QRPA F” [66],
“QRPA M” [45], “QRPA T” [47]), the IMB-2 [67], and the
non-relativistic GCM, based on the Gogny D1S interaction,
with [68] and without [44] pairing fluctuations.

6.4 to 2.2 as β3 increases to 0.3 At the configurations
that minimize the projected energies, with both values
of β2 about 0.2 and both values of β3 about 0.1, M̃0ν is
4.76. At the configuration that best fits the experimental
B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values, corre-
sponding to deformation parameters βI

2 = 0.285,βI
3 =

0.113,βF
2 = 0.193,βF

3 = 0.145, M̃0ν is only 1.38.
As already discussed in Refs. [46, 48], M̃0ν near spher-

ical shapes is much larger than predicted by the Gogny
D1S interaction [44]. The difference arises at least in part
from a difference in average pairing gaps, which for the
neutrons in 150Nd and 150Sm are about 30% larger here
than in Ref. [44] (even though the gaps are similar at the
mean-field minima).
When all configurations are appropriately combined,

we obtain a final value for the matrix element M0ν(0+1 →
0+1 ) of 5.2, which is just 7% smaller than the result 5.6
obtained without octupole deformation [46]. (The con-
tributions from the V V,AA,AP, PP , and MM terms are
1.03, 4.87,−1.65, 0.70, and 0.21, respectively). The small
reduction, significantly less than what would result from
the use of the single configuration in each nucleus that
minimizes the energy (4.76) shows that shape fluctua-
tions wash out the effects of octupole deformation. For
the 0νββ decay to the excited 0+ state in 150Sm, we find

M0ν(0+1 → 0+2 ) = 0.72.

Figure 5 compares the ground-state to ground-state
matrix elements M0ν(0+1 → 0+1 ) from several models.
Our relativistic EDF-based GCM result is still about
twice those of the deformed quasiparticle random phase
approximation (QRPA) and the interacting boson model
(IBM), and about three times that of the non-relativistic
Gogny-based GCM. A more careful study of shell struc-
ture and pairing will help resolve the last discrepancy.
And we can expect both GCM matrix elements to shrink
once the isoscalar pairing amplitude is included as a gen-
erator coordinate [69, 70].

IV. SUMMARY

We have used covariant multi-reference density func-
tional theory to treat low-lying positive- and negative-
parity states in 150Nd and 150Sm. The GCM mixes
symmetry-projected states with different amounts of
quadrupole and octupole deformation. The results indi-
cate that octupole shape fluctuations significantly reduce
quadrupole collectivity in the low-lying states of both nu-
clei. Both static quadrupole and octupole deformation
quench the nuclear matrix element for 0νββ decay, but
shape fluctuations moderate the effect, so that adding
octupole degrees of freedom ends up reducing the matrix
element by only 7%.
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FIG. 1. GCM results for the Gamow-Teller part of 0νββ matrix
elements of 48Ca, 54Ti, and 54Cr, compared with the results of exact
diagonalization.

eigenvectors to construct a set of “natural states.” Finally,
we diagonalize the Hamiltonian in the space of these natural
states to obtain the GCM states |#J

NZσ ⟩ (for details, see
Refs. [24,25]). We carry out this entire procedure in both the
initial and final nucleus, using the lowest J = 0 states in each
as the ground states between which we sandwich the 0νββ
operator to obtain the matrix element M0ν from Eq. (1).

III. TESTS IN A SINGLE SHELL

Before undertaking a two-major-shell calculation, we need
to test our GCM with a realistic interaction in a model space
small enough to allow exact diagonalization. We begin by
performing GCM calculations in the pf shell, comprising
the 0f7/2, 0f5/2, 1p3/2, and 1p1/2 orbits. Using use the
KB3G interaction [26], which accounts successfully for the
spectroscopy, electromagnetic and Gamow-Teller transitions,
and deformation of pf -shell nuclei [27], we compute the 0νββ
matrix elements of 48Ca, 54Ti, and 54Cr. Although the last
two nuclei are not candidates for an experiment, they offer
opportunities to test the GCM. Because these nuclei show
no evidence of triaxial deformation, we need only use the
axial quadrupole moment q1 ≡ ⟨Q20⟩ and isoscalar-pairing
amplitude φ ≡ q3 = 1/2 ⟨P0 + P

†
0 ⟩ as generator coordinates

for the computation of M0ν
GT.

Figure 1 shows the GT matrix elements that result from this
procedure, alongside those coming from exact diagonalization.
To highlight the effects of isoscalar pairing in the GCM,
we present the results of two separate GCM calculations.
In the first, as in Ref. [16], we set all the two-body matrix
elements of the Hamiltonian with angular momentum J =
1 and isospin T = 0 to zero, because those are the ones
through which isoscalar pairing acts. The resulting GT matrix
elements overestimate the exact one substantially. In the
second calculation, we use the full KB3G interaction, with the
result that the matrix element decreases, coming quite close
to the exact one. The sensitivity to isoscalar pairing, pointed

out long ago for the QRPA in Refs. [28,29] and more recently
for the GCM and shell model in Refs. [14,16], shows that the
neutron-proton mixing in our HFB states is essential. The good
agreement with exact diagonalization suggests that once it is
included, we are not omitting anything of importance.

We turn now to one of the nuclei in which we are really
interested, 76Ge, used or to be used in many ββ experiments
[30–33]. Shell-model calculations of the 0νββ decay of this
nucleus [5,6,34,35] have usually been set in the so-called
f 5pg9 space, comprising the 0f5/2, 1p3/2, 1p1/2, and 0g9/2
orbits, and have employed either the JUN45 [36] or GCN2850
[37] Hamiltonian. The f 5pg9 model space is not a complete
major shell; it includes levels from two different major shells
and is missing, in particular, the spin-orbit partners of the 0f5/2
and 0g9/2 orbits. We discuss the effects of including these and
other orbits later.

As we already mentioned, both theory [38,39] and ex-
periment [18,40] indicate triaxial deformation in low-lying
states of even-even Ge and Se isotopes near A = 76. Our
calculations predict it as well. Figure 2 displays the 76Ge
and 76Se quantum-number-projected potential-energy surfaces
(PESs), at isoscalar-pairing amplitude φ = 0, produced by
the GCM with the GCN2850 interaction. The minimum is

FIG. 2. Projected potential-energy surfaces produced by the
GCN2850 interaction, with the isoscalar-pairing amplitude φ = 0,
in the (β,γ ) plane for 76Ge and 76Se.
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FIG. 3. Low-lying excitation spectra of 76Ge and 76Se produced
in one shell by the GCM with the GCN2850 interaction, with and
without triaxial deformation (labeled by the parameter γ ). The results
from the exact diagonalization of the shell-model Hamiltonian appear
for comparison [41].

at β2 = 0.24, γ = 30◦ in 76Ge, a result that agrees well
with those of EDF-based GCM calculations [38], and at
β2 = 0.30, γ = 51◦ in 76Se. In addition to this “static”
triaxial deformation (the deformation that would obtain in a
pure mean-field calculation), dynamical triaxial deformation,
produced by fluctuations around the dominant mean field, arise
from the γ -soft PESs in both isotopes. The GCM, which mixes
states with a range of γ values, incorporates these dynamical
effects.

Our complete calculations include as generator coordinates
both deformation parameters q1 and q2 (or equivalently β and
γ ) as well as one of the proton-neutron-pairing parameters
q3 and q4. We can assess the effects of triaxial shape
fluctuations by including or excluding triaxially deformed
configurations from the set of GCM basis states. Including
them has clear effects on spectroscopy. Figure 3 shows the
spectra of low-lying 0+ and 2+ states in the two important
A = 76 isotopes with GCN2850; triaxial shapes improve the
excited-state energies significantly in both nuclei. The values
for the strength B(E2; 0+ → 2+) are affected in a similar way.
With triaxial deformation (and with the usual effective charges
eeff
p = 1.5e and eeff

n = 0.5e) the values in e2b2 are 0.169 in 76Ge
(vs the exact-diagonalization value of 0.158) and 0.251 in 76Se
(vs the exact value of 0.209). Without triaxial deformation the
numbers are smaller: 0.159 in 76Ge, and 0.236 in 76Se.

Triaxial deformation has a non-negligible effect on the
0νββ matrix element as well. As Table I shows, our full
GCM calculation gives values for the matrix elements M0ν

that are about 10% smaller than the results obtained without
triaxially deformed configurations. The full matrix elements,
though slightly suppressed, are in good agreement with those
of exact diagonalization (in this calculation only, we neglected
the very small matrix element M0ν

T ). The GCM approach
with neutron-proton pairing indeed captures most of the
correlations around the Fermi surface that are important for
0νββ decay. The small discrepancy may be due to fluctuations
in like-particle pairing, which we do not treat here but which,
according to the EDF-based work of Ref. [12], increase 0νββ

TABLE I. Matrix elements M0ν produced in the GCM by
GCN2850 and JUN45 for the decay of 76Ge, with and without triaxial
deformation as a generator coordinate, and by those same interactions
with exact diagonalization.

GCN2850 JUN45

Axial GCM 2.93 3.51
Triaxial GCM 2.56 3.16
Exact 2.81 [6] 3.37 [35]

matrix elements slightly. We could include those fluctuations,
but at the cost of a considerable increase in computing time.

IV. RESULTS IN TWO SHELLS

The promise of the Hamiltonian-based GCM is an eventual
ab initio calculation. Here we take a step in that direction by
working in the full fp-sdg two-shell space. The number of
states for A = 76 nuclei in this space is still too large for exact
diagonalization.

Before considering Ge and Se, we make one more test, for
48Ca, the one experimental candidate in which an exact two-
shell calculation is almost possible at present. Reference [4]
uses the SDPFMU-DB interaction, with the omission of some
cross-shell excitations, to compute the 0νββ matrix element
nearly exactly. Our GCM result, 1.082, is close to 1.073, the
result of Ref. [4], and suggests in addition that the cross-shell
excitations neglected in that paper really are unimportant. With
some confidence in the performance of the GCM in two shells,
we turn to the decay of 76Ge.

The first issue we must grapple with in this midshell nucleus
is what to use for the valence-space Hamiltonian. In Ref. [14]
the authors used a multiseparable collective Hamiltonian that
we wish to improve on here. The size of the two-shell space,
however, makes the usual procedure, in which shell-model
Hamiltonians are tuned to data, difficult to follow; furthermore,
there are no well-tested Hamiltonians for this space on the
market. The first step in the usual approach is to produce an
initial valence-space Hamiltonian, traditionally in many-body
perturbation theory. Deficiencies in the many-body method
are then remedied by tuning single-particle energies and
interaction matrix elements to experimental data. Here we must
settle for adjusting only single-particle energies. The tuning of
interaction matrix elements requires repeated calculations that
are simply too time consuming.

Although nonperturbative methods such as the in-medium
similarity renormalization group can produce shell-model
Hamiltonians [42,43], they have not been tested systematically
for valence spaces larger than one major harmonic-oscillator
shell. We therefore use the extended Krenciglowa-Kuo (EKK)
variant [17] of many-body perturbation theory, suitable for
nondegenerate valence spaces, to construct an effective Hamil-
tonian from a third-order Q-box in the pf -sdg shell. (The orig-
inal Krenciglowa-Kuo method was first presented in Ref. [44]).
We begin from the 1.8/2.0 two- plus three-nucleon (3N)
chiral interaction of Refs. [45,46]; the interaction reproduces
ground-state energies across the light- and medium-mass
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•  Slight reduction of the NMEs in 76Ge decay. 

•  It could depend on the interaction. 

•  It will depend on the decaying isotope  

⇒ a more systematic study is still needed.
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FIG. 3: (color online) Correlation between half-lives in 76Ge
and 136Xe calculated with (�2) -red dotted line- and (�2, �)
-blue continuous line- and the lower experimental limits (90%
CL) from HdM [2], IGEX [40], GERDA [5], KamLAND-
Zen [4] and EXO-200 [3].

already reported in previous works within the EDF and
LSSM frameworks [28–31]. On the other hand, we study
the dependence of the NME on the pairing degree of free-
dom fixing the deformations of the initial and final states
at the values where the maximum of the 136Ba collective
wave function is found (�

2

= 0.1) and leaving free the
values for (�, �0) -see Fig. 2(b).

Vanishing matrix elements are obtained for � < 2 and
�0 < 2. However, for �(�0) values larger than 2 the matrix
element grows rapidly with increasing �(�0) in the band
region �0 ⇡ � � 3 and �0 ⇡ � + 3. A correlation between
pairing and NME has been also previously reported in-
directly [21, 28, 30] but it is explicitly shown for the first
time in this work. Furthermore, the distribution is quite
wide meaning that pairing mixing plays an important
role.

The final step in the calculation of the NME is to con-
sider the shape and pairing fluctuations present in the
initial and final wave functions (Fig. 1(c)-(d)). Taking
into account the wave function shapes and looking at
Fig. 2(b) we find that the relevant part is the square de-
fined by the intersection of the horizontal and vertical
lines. Here we see that the pairing fluctuations allow
a large richness of values of the nuclear matrix element
(from zero up to approximately 5) which definitively con-
tribute to the final value.

The results for the most probable candidates to detect
0⌫�� decays are summarized in Table I. We find in the
136Xe decay discussed above a 14% larger NME when
the pairing degree of freedom is explicitly included which
leads to a reduction of the half-life in a factor 0.77. This
result is consistent with exploring regions with larger val-
ues of the NME in the pairing degree of freedom thanks
to the fluctuations in � included in the collective wave
functions. The same e↵ect happens for the rest of can-
didates where the NME obtained including both defor-

mation and pairing fluctuations are increased from 10%
to 40% with respect to the values found by considering
only shape mixings. The 48Ca is the only particular case
where, due to its double magic character, the initial wave
function is significantly moved towards less pairing cor-
relations, thus giving a slightly smaller NME. Except for
this decay, the updated NMEs lead to a reduction of the
predicted half-lives up to factors from 0.81 (82Se) to 0.52
(128Te). Furthermore, a shorter 76Ge half-life as a func-
tion of the 136Xe one is predicted in the region allowed
by HdM, IGEX [40], GERDA, EXO-200 and KamLAND-
Zen experiments, as it is represented in Fig. 3. However,
the HdM claim is incompatible both with the previous
and these new values of the NMEs.
Recently the large values of the Fermi part obtained

within QRPA, IBM and EDF methods compared to the
LSSM ones has been discussed in terms of isospin sym-
metry violation. Hence, spurious contributions to Fermi
-and possibly GT- matrix elements exist in those cases
where the initial and final states are not isospin eigen-
states. In Ref. [41] is shown in the QRPA framework
that correcting the parameters to have the Fermi part of
the 2⌫�� decay equal to zero, the M0⌫

F is reduced but
M0⌫

GT is barely a↵ected. In Table I we show separately
the GT and F components of the NME and we see that
the gain including pairing fluctuations is similar in both
channels. This fact could indicate that the observed in-
crease is not produced by a stronger isospin symmetry
violation. Nevertheless, the e↵ect on the NMEs of the
restoration of the isospin symmetry within this frame-
work is beyond the scope of the present paper but some
work is in progress along this line.
In summary, we have presented calculations for 0⌫��

matrix elements within the EDF framework, including for

Isotope �Q(�2) �Q(�2, �) M0⌫
(�2) M0⌫

(�2, �) Var (%)

T1/2(�2,�)

T1/2(�2)

48
Ca 0.265 0.131 2.3701.9140.456 2.2291.7970.431 -6 1.13

76
Ge 0.271 0.190 4.6013.7150.886 5.5514.4701.082 21 0.69

82
Se -0.366 -0.246 4.2183.3810.837 4.6743.7430.931 11 0.81

96
Zr 2.580 2.628 5.6504.6181.032 6.4985.2961.202 15 0.76

100
Mo 1.879 1.757 5.0844.1490.935 6.5885.3611.227 30 0.60

116
Cd 1.365 1.337 4.7953.9310.864 5.3484.3720.976 12 0.80

124
Sn -0.830 -0.687 4.8083.8930.916 5.7874.6801.107 20 0.69

128
Te -0.564 -0.594 4.1073.0791.027 5.6874.2551.432 38 0.52

130
Te -0.348 -0.628 5.1304.1410.989 6.4055.1611.244 25 0.64

136
Xe -1.027 -0.787 4.1993.6730.526 4.7734.1700.604 14 0.77

150
Nd -0.380 -0.282 1.7071.2780.429 2.1901.6390.551 29 0.61

TABLE I: Di↵erence between theoretical and experimental
Q values and nuclear matrix elements for the most probable
0⌫�� emitters considering shape fluctuations (�2) and both
shape and pairing fluctuations (�2, �) explicitly. Superscript
(underscript) values correspond to the Gamow-Teller (Fermi)
components. The last two columns are the variation of the
NME and half-lives when the additional pairing degree of free-
dom is included.

N. López-Vaquero, T.R.R., J.L. Egido, PRL 111, 142501 (2013)
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nuclear radius, inserted by convention to make the ma-
trix element dimensionless. The form factors hF(q) and
hGT(q) contain the vector and axial vector coupling con-
stants, forbidden corrections to the weak current, nucleon
form factors, and the “Argonne” short-range correlation
function [13]. See, e.g., Ref. [14] for details; note that
we absorb the inverse square of the axial-vector coupling
constant into our definition of hF .

To compute the matrix element in Eq. (1) we need
good representations of the initial and final ground states
|Ii and |F i. In this first application to A = 76 nuclei,
we construct the states in a Hilbert space consisting of
36 particles moving freely in the oscillator fp and sdg
shells. Our Hamiltonian has the form

H = h0 �
1X

µ=�1

gT=1
µ S†

µSµ � �

2

2X

K=�2

Q†
2KQ2K

� gT=0
1X

⌫=�1

P †
⌫P⌫ + gph

1X

µ,⌫=�1

Fµ†
⌫ Fµ

⌫ , (2)

where h0 contains spherical single particle energies, Q2K

are the components of a quadrupole operator defined in
Ref. [15], and

S†
µ =

1p
2

X

l

l̂[c†l c
†
l ]
001
00µ , P †

µ =
1p
2

X

l

l̂[c†l c
†
l ]
010
0µ0 ,

Fµ
⌫ =

1

2

X

i

�µ
i ⌧

⌫
i =

X

l

l̂[c†l c̄l]
011
0µ⌫ . (3)

In this last equation, c†l is a creation operator, l labels
single-particle multiplets with good orbital angular mo-
mentum, l̂ ⌘

p
2l + 1, S†

µ creates a correlated isovector
pair with orbital angular momentum L = 0 and spin
S = 0 (and with µ labeling the isospin component Tz),
P †
µ creates an isoscalar pn pair with L = 0 and S = 1

(Sz = µ), and the Fµ
⌫ are the components of the Gamow-

Teller operator. Although the Hamiltonian is not fully
realistic, it combines and extends both the SO(8) model
[16, 17] and the pairing-plus-quadrupole model [15, 18],
and contains the most important (collective) parts of
shell-model interaction [19]. We discuss the values of the
couplings in Eq. (2) shortly.

A direct diagonalization in a space this large is not
possible, even with our simple Hamiltonian, and we have
already discussed the drawbacks of the QRPA. We there-
fore turn to the GCM, which has been reviewed in many
places (see, e.g., Ref. [4]) and is useful in very-large-scale
shell-model problems. The procedure is variational, with
an ansatz for the ground state of the form

| i =
X

a1a2...an

f(a1, a2, . . . , an)P |a1, a2, . . . , ani . (4)

Here the kets |a1, a2, . . . , ani are mean-field states —
Slater determinants or, in our case, quasiparticle vacua
— with n expectation values ai specified, P is an operator

that projects onto states with well-defined values for an-
gular momentum and neutron and proton particle num-
bers, and f is a weight function. The starting point, if
we want to include the e↵ects of pn pairing, is a Hartree-
Fock-Bogoliubov (HFB) code that mixes neutrons and
protons in the quasiparticles, i.e. (schematically):

↵† ⇠ upc
†
p + vpcp + unc

†
n + vncn . (5)

The actual equations contain sums over single particle
states as well, so that each of the u’s and v’s above are
replaced by matrices as described, e.g., in Ref. [20].
We use the generalized HFB (neglecting the Fock terms

in this step) without any symmetry restriction to con-
struct a set of quasiparticle vacua that are constrained
to have a particular deformation � (defined here as
0.438 fm2 MeV�1 � hQ20i) and isoscalar-pairing ampli-
tude � = hP0 + P †

0 i /2 (these are the ai in Eq. (4)), that
is, we solve the HFB equations for the Hamiltonian with
linear constraints

H 0 = H��ZNZ��NNN��QQ20�
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2
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⌘
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where the NZ and NN are the proton and neutron num-
ber operators — they are part of the usual HFB min-
imization — and the other �’s are Lagrange multipli-
ers to fix the deformation and isoscalar pairing ampli-
tude. (When computing the Fermi part of the 0⌫��
matrix element we substitute the isovector pn operators
(S0 � S†

0)/2i for (P0 + P †
0 )/2 in Eq. (6).) As already

noted, without the last multiplier the isoscalar pairing
amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
(gT=1

1 and gT=1
�1 ) to get the same pairing gaps as the

original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers
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amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
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ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
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original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers
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TABLE II. The 0⌫�� matrix element M0⌫ for the decay of
76Ge in a simplified calculation that neglects deformation, at
various levels of approximation. The first column contains the
source of the couplings in Eq. (2), the second the matrix ele-
ment when the spin-isospin and isoscalar pairing interactions
are absent, the third the matrix element with only isoscalar
pairing missing, the fourth the full GCM result, and the last
the result of the QRPA with the same Hamiltonian (except
for a slightly modified gT=0). The matrix elements in paren-
theses are obtained by quenching our B(GT+).

Skyrme no gph, g
T=0 no gT=0 full QRPA

SkO0 14.0 9.5 5.4 (5.4) 5.6 (5.0)

SkM* 11.8 9.4 4.1 (2.8) 3.5 (2.5)

called gpp when divided by ḡT=1) in exactly the same
way. The values we obtain are only slightly di↵erent.
The last column of Table II contains the QRPA 0⌫��
matrix elements. They are fairly close to those of the
GCM calculation, but much more sensitive to gT=0.

To clarify this last statement, we show the GCM and
QRPA matrix elements as functions of gT=0/ḡT=1 in Fig.
2. The QRPA curves lie slightly above their GCM coun-
terparts until gT=0/ḡT=1 reaches a critical value slightly
larger than 1.5; at that point a mean-field phase tran-
sition from an isovector pair condensate to an isoscalar
condensate causes the famous QRPA “collapse.” The col-
lapse is spurious, as the GCM results show. Its presence
in mean-field theory makes the QRPA unreliable near the
critical point. It is actually a bit of a coincidence that
the QRPA matrix elements in the table are as close as
they are to those of the GCM; a small change in gT=0

would a↵ect them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather
than 1.0 does not have a huge e↵ect on the 0⌫�� matrix
element). The GCM result is not only better behaved
near the critical point but also, we believe, quite accu-
rate. In the SO(8) model used to test many-body meth-
ods in �� decay many times, the GCM result is nearly
exact for all gT=0. That is not the case for extensions of
the QRPA that attempt to ameliorate its shortcomings
[32, 33], though some of those work better around the
phase transition than others.

To show why the GCM behaves well, we display
in the bottom right part of Fig. 3 the quantity
N�IN�F h�F | PF M̂0⌫PI |�Ii, where |�Ii is a quasiparti-
cle vacuum in 76Ge constrained to have isoscalar pairing
amplitude �I , �F is an analogous state in 76Se, PI , PF

project onto states with angular momentum zero and the
appropriate values of Z and N , and N�I ,N�F normalize
the projected states. This quantity is the contribution to
the 0⌫�� matrix element from states with particular val-
ues of the initial and final isoscalar pairing amplitudes.
The contribution is positive around zero condensation in
the two nuclei and negative when the final pairing ampli-
tude is large. Thus the GCM states must contain compo-
nents with significant pn pairing when gT=0 is near its fit
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FIG. 2. (Color online.) Dependence of the GCM (solid) and
QRPA (dashed) 0⌫�� matrix elements on the strength gT=0

of the isoscalar pairing interaction. The red (upper) and blue
(lower) lines of each type correspond to the interaction pa-
rameters extracted from SkO0 and SkM*. The divergence in
the QRPA near gT=0/ḡT=1 = 1.5 is discussed in the text.

value. The appearance of this plot is di↵erent from those
in which the matrix element is plotted versus initial and
final deformation [6–8]. Here the matrix element is small
or negative even if the initial and final pairing ampli-
tudes have the same value, as long as that value is large.
The behavior reflects the qualitatively di↵erent e↵ects of
isovector and isoscalar pairs on the matrix element [3],
e↵ects that have no analog in the realm of deformation.
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nuclear radius, inserted by convention to make the ma-
trix element dimensionless. The form factors hF(q) and
hGT(q) contain the vector and axial vector coupling con-
stants, forbidden corrections to the weak current, nucleon
form factors, and the “Argonne” short-range correlation
function [13]. See, e.g., Ref. [14] for details; note that
we absorb the inverse square of the axial-vector coupling
constant into our definition of hF .

To compute the matrix element in Eq. (1) we need
good representations of the initial and final ground states
|Ii and |F i. In this first application to A = 76 nuclei,
we construct the states in a Hilbert space consisting of
36 particles moving freely in the oscillator fp and sdg
shells. Our Hamiltonian has the form

H = h0 �
1X

µ=�1

gT=1
µ S†
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2
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where h0 contains spherical single particle energies, Q2K

are the components of a quadrupole operator defined in
Ref. [15], and
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In this last equation, c†l is a creation operator, l labels
single-particle multiplets with good orbital angular mo-
mentum, l̂ ⌘

p
2l + 1, S†

µ creates a correlated isovector
pair with orbital angular momentum L = 0 and spin
S = 0 (and with µ labeling the isospin component Tz),
P †
µ creates an isoscalar pn pair with L = 0 and S = 1

(Sz = µ), and the Fµ
⌫ are the components of the Gamow-

Teller operator. Although the Hamiltonian is not fully
realistic, it combines and extends both the SO(8) model
[16, 17] and the pairing-plus-quadrupole model [15, 18],
and contains the most important (collective) parts of
shell-model interaction [19]. We discuss the values of the
couplings in Eq. (2) shortly.

A direct diagonalization in a space this large is not
possible, even with our simple Hamiltonian, and we have
already discussed the drawbacks of the QRPA. We there-
fore turn to the GCM, which has been reviewed in many
places (see, e.g., Ref. [4]) and is useful in very-large-scale
shell-model problems. The procedure is variational, with
an ansatz for the ground state of the form

| i =
X

a1a2...an

f(a1, a2, . . . , an)P |a1, a2, . . . , ani . (4)

Here the kets |a1, a2, . . . , ani are mean-field states —
Slater determinants or, in our case, quasiparticle vacua
— with n expectation values ai specified, P is an operator

that projects onto states with well-defined values for an-
gular momentum and neutron and proton particle num-
bers, and f is a weight function. The starting point, if
we want to include the e↵ects of pn pairing, is a Hartree-
Fock-Bogoliubov (HFB) code that mixes neutrons and
protons in the quasiparticles, i.e. (schematically):

↵† ⇠ upc
†
p + vpcp + unc

†
n + vncn . (5)

The actual equations contain sums over single particle
states as well, so that each of the u’s and v’s above are
replaced by matrices as described, e.g., in Ref. [20].
We use the generalized HFB (neglecting the Fock terms

in this step) without any symmetry restriction to con-
struct a set of quasiparticle vacua that are constrained
to have a particular deformation � (defined here as
0.438 fm2 MeV�1 � hQ20i) and isoscalar-pairing ampli-
tude � = hP0 + P †

0 i /2 (these are the ai in Eq. (4)), that
is, we solve the HFB equations for the Hamiltonian with
linear constraints

H 0 = H��ZNZ��NNN��QQ20�
�P

2

⇣
P0 + P †

0

⌘
, (6)

where the NZ and NN are the proton and neutron num-
ber operators — they are part of the usual HFB min-
imization — and the other �’s are Lagrange multipli-
ers to fix the deformation and isoscalar pairing ampli-
tude. (When computing the Fermi part of the 0⌫��
matrix element we substitute the isovector pn operators
(S0 � S†

0)/2i for (P0 + P †
0 )/2 in Eq. (6).) As already

noted, without the last multiplier the isoscalar pairing
amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
(gT=1

1 and gT=1
�1 ) to get the same pairing gaps as the

original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers
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[16, 17] and the pairing-plus-quadrupole model [15, 18],
and contains the most important (collective) parts of
shell-model interaction [19]. We discuss the values of the
couplings in Eq. (2) shortly.

A direct diagonalization in a space this large is not
possible, even with our simple Hamiltonian, and we have
already discussed the drawbacks of the QRPA. We there-
fore turn to the GCM, which has been reviewed in many
places (see, e.g., Ref. [4]) and is useful in very-large-scale
shell-model problems. The procedure is variational, with
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Slater determinants or, in our case, quasiparticle vacua
— with n expectation values ai specified, P is an operator

that projects onto states with well-defined values for an-
gular momentum and neutron and proton particle num-
bers, and f is a weight function. The starting point, if
we want to include the e↵ects of pn pairing, is a Hartree-
Fock-Bogoliubov (HFB) code that mixes neutrons and
protons in the quasiparticles, i.e. (schematically):
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The actual equations contain sums over single particle
states as well, so that each of the u’s and v’s above are
replaced by matrices as described, e.g., in Ref. [20].
We use the generalized HFB (neglecting the Fock terms
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to have a particular deformation � (defined here as
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where the NZ and NN are the proton and neutron num-
ber operators — they are part of the usual HFB min-
imization — and the other �’s are Lagrange multipli-
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tude. (When computing the Fermi part of the 0⌫��
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amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
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original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers

4

TABLE II. The 0⌫�� matrix element M0⌫ for the decay of
76Ge in a simplified calculation that neglects deformation, at
various levels of approximation. The first column contains the
source of the couplings in Eq. (2), the second the matrix ele-
ment when the spin-isospin and isoscalar pairing interactions
are absent, the third the matrix element with only isoscalar
pairing missing, the fourth the full GCM result, and the last
the result of the QRPA with the same Hamiltonian (except
for a slightly modified gT=0). The matrix elements in paren-
theses are obtained by quenching our B(GT+).

Skyrme no gph, g
T=0 no gT=0 full QRPA

SkO0 14.0 9.5 5.4 (5.4) 5.6 (5.0)

SkM* 11.8 9.4 4.1 (2.8) 3.5 (2.5)

called gpp when divided by ḡT=1) in exactly the same
way. The values we obtain are only slightly di↵erent.
The last column of Table II contains the QRPA 0⌫��
matrix elements. They are fairly close to those of the
GCM calculation, but much more sensitive to gT=0.

To clarify this last statement, we show the GCM and
QRPA matrix elements as functions of gT=0/ḡT=1 in Fig.
2. The QRPA curves lie slightly above their GCM coun-
terparts until gT=0/ḡT=1 reaches a critical value slightly
larger than 1.5; at that point a mean-field phase tran-
sition from an isovector pair condensate to an isoscalar
condensate causes the famous QRPA “collapse.” The col-
lapse is spurious, as the GCM results show. Its presence
in mean-field theory makes the QRPA unreliable near the
critical point. It is actually a bit of a coincidence that
the QRPA matrix elements in the table are as close as
they are to those of the GCM; a small change in gT=0

would a↵ect them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather
than 1.0 does not have a huge e↵ect on the 0⌫�� matrix
element). The GCM result is not only better behaved
near the critical point but also, we believe, quite accu-
rate. In the SO(8) model used to test many-body meth-
ods in �� decay many times, the GCM result is nearly
exact for all gT=0. That is not the case for extensions of
the QRPA that attempt to ameliorate its shortcomings
[32, 33], though some of those work better around the
phase transition than others.

To show why the GCM behaves well, we display
in the bottom right part of Fig. 3 the quantity
N�IN�F h�F | PF M̂0⌫PI |�Ii, where |�Ii is a quasiparti-
cle vacuum in 76Ge constrained to have isoscalar pairing
amplitude �I , �F is an analogous state in 76Se, PI , PF

project onto states with angular momentum zero and the
appropriate values of Z and N , and N�I ,N�F normalize
the projected states. This quantity is the contribution to
the 0⌫�� matrix element from states with particular val-
ues of the initial and final isoscalar pairing amplitudes.
The contribution is positive around zero condensation in
the two nuclei and negative when the final pairing ampli-
tude is large. Thus the GCM states must contain compo-
nents with significant pn pairing when gT=0 is near its fit
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FIG. 2. (Color online.) Dependence of the GCM (solid) and
QRPA (dashed) 0⌫�� matrix elements on the strength gT=0

of the isoscalar pairing interaction. The red (upper) and blue
(lower) lines of each type correspond to the interaction pa-
rameters extracted from SkO0 and SkM*. The divergence in
the QRPA near gT=0/ḡT=1 = 1.5 is discussed in the text.

value. The appearance of this plot is di↵erent from those
in which the matrix element is plotted versus initial and
final deformation [6–8]. Here the matrix element is small
or negative even if the initial and final pairing ampli-
tudes have the same value, as long as that value is large.
The behavior reflects the qualitatively di↵erent e↵ects of
isovector and isoscalar pairs on the matrix element [3],
e↵ects that have no analog in the realm of deformation.
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vacua with di↵erent values of the initial and final isoscalar
pairing amplitudes �I and �F , from the SkO0-based interac-
tion (see text). Top and bottom left: Square of collective
wave functions in 76Ge and 76Se.

N. Hinohara and J. Engel, PRC 031031(R) (2014)
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shell. This Hamiltonian employs a monopole interaction and
collective pieces: isovector J = 0 and isoscalar J = 1 pairing
terms, a quadrupole-quadrupole term, and a spin-isospin
term. We compare the 0νββ decay matrix elements that this
interaction produces with those produced by the full shell
model interaction in the Ca, Ti, and Cr isotopic chains (heavier
elements are computationally more demanding, as well as
more sensitive to orbitals beyond the pf shell), and identify the
most relevant collective correlations for ββ decay. Second, we
use the collective interaction within a GCM calculation that
includes the isoscalar pairing amplitude and the quadrupole
moment as generator coordinates, and compare the resulting
0νββ decay matrix elements to those of the shell model.
Finally, we try to assess the degree to which our conclusions
hold for the heavier nuclei in which ββ decay could be detected
in next-generation experiments.

The rest of this paper is structured as follows. Section II
describes the extraction of the separable collective interaction
and discusses each of its components. Section III briefly
presents the 0νββ decay operator and compares the matrix
elements, calculated in the shell model with both the full and
collective Hamiltonians, for isotopes of Ca, Ti, and Cr. It also
shows GCM matrix elements for the same nuclei, calculated
with the same collective interaction, and finally discusses the
matrix elements for heavier nuclei that are of real interest for
0νββ decay experiments. Section IV is a conclusion.

II. SEPARABLE COLLECTIVE INTERACTION

We work in the pf -shell configuration space, comprising
the 0f7/2, 1p3/2, 1p1/2, and 0f5/2 orbitals. As a reference
Hamiltonian we use the shell model interaction KB3G [19],
which has been extensively tested throughout the pf shell.
This interaction provides a very good description of nu-
clear structure, including spectroscopy, electromagnetic and
Gamow-Teller transitions, and deformation [15]. Then, follow-
ing the work of Dufour and Zuker [18], we build the separable
collective Hamiltonian that best approximates KB3G. Roughly
speaking, Ref. [18] determines the structure of the lowest-lying
collective states in the particle-hole and pairing representations
with a given angular momentum J , isospin T , and parity π , and
then constructs a series of separable terms, with appropriate
strengths, that reproduce those states. Dufour and Zuker find
that the most important terms in the particle-hole channel are
the isoscalar quadrupole and spin-isospin (στστ ) interactions,
and in the pairing channel the isovector J π = 0+ and isoscalar
J π = 1+ interactions.

The separable collective Hamiltonian, Hcoll, that includes
the full monopole piece of the KB3G interaction and the
dominant collective terms found by Dufour and Zuker has
the form

Hcoll = HM + gT =1
1∑

n=−1

S†
nSn + gT =0

1∑

m=−1

P †
mPm

+ gph

1∑

m,n=−1

: F†
mnFmn : +χ

2∑

µ=−2

: Q†
µQµ : , (1)

TABLE I. Strengths (in MeV) of the isovector pairing (gT =1),
isoscalar paring (gT =0), spin-isospin (gph), and quadrupole (χ )
interactions in the separable collective Hamiltonian Hcoll [Eq. (1)].
The values are taken from Ref. [18] and scaled to nucleon number A =
42. For heavier isotopes the strengths are multiplied by (42/A)1/3.

gT =1 gT =0 gph χ

−0.377 −0.587 0.057 −0.141

where the colons indicate normal ordering. The monopole
Hamiltonian HM includes two-body terms and one-body
(single-particle) energies, both taken from KB3G. In addition

S†
n = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,0,1

0,0,n,

P †
m = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,1,0

0,m,0,

(2)
Fmn = 2

∑

α

√
2lα + 1(a†

α ãα)0,1,1
0,m,n,

Qµ = 1√
5

∑

α,β

⟨nαlα||r2Y2/b
2||nβ lβ⟩(a†

α ãβ)2,0,0
µ,0,0,

where Fmn, written in first quantization, is just
∑

i σm(i)τn(i),
b is the usual oscillator parameter, a†

α creates a nucleon in
a single-particle orbital with principal quantum number nα

and orbital angular momentum lα , and ãa destroys a nucleon
in the time-reversed orbital [more precisely, ãlα ,mα ,sα ,τα

≡
(−1)lα+1−mα−sα−ταalα ,−mα ,sα ,−τα

, where mα is the z component
of the orbital angular momentum, sα is the z component of the
spin, and τα is the z component of the isospin]. The superscripts
following the parentheses stand for the two-particle orbital
angular momentum, spin, and isospin, and the subscripts for
their z components. The strengths of the various terms, gT =1,
gT =0, gph, and χ , are taken from Ref. [18] and appear in Table I
for mass A = 42 (they scale with A−1/3). Note that the pairing
and quadrupole-quadrupole terms are attractive, as expected.
Reference [20] uses a similar collective Hamiltonian, also
based on the decomposition in Ref. [18], but without the
spin-isospin term, to study the competition between isovector
and isoscalar pairing in pf -shell nuclei.

The significance of the various terms in Hcoll is as follows:
The monopole Hamiltonian HM adds effective neutron- and
proton-number-dependent effective single-particle energies
to the bare energies. The remaining terms are collective—
an isovector spin-0 pairing interaction, an isoscalar spin-1
pairing interaction, a quadrupole-quadrupole interaction, and
a Landau-Migdal-style spin-isospin interaction. Many studies
of nuclear collectivity (e.g., [21–23]) include only isovec-
tor pairing (usually without the proton-neutron part) and
quadrupole-quadrupole terms. And isoscalar pairing is fre-
quently downplayed. Among the models studying 0νββ decay
matrix elements, the EDF-based GCM and the IBM have not
yet included isoscalar pairing explicitly.

According to Ref. [18], the terms included in Hcoll are
the most important for pf -shell nuclei (we could also have
included, for example, an isovector quadrupole-quadrupole
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FIG. 2. Gamow-Teller part of the 0νββ decay matrix elements
MGT

0ν , for the decay of Ca isotopes into Ti as a function of the neutron
number Nparent in the parent nucleus. Results are shown for the KB3G
interaction (black circles, solid line), the full collective interaction
Hcoll (red circles, dashed line), Hcoll with the quadrupole-quadrupole
term removed (purple squares, dotted line), Hcoll with the isoscalar
pairing term removed (blue squares, short-dashed line), and Hcoll with
both the isoscalar-pairing and spin-isospin pieces removed (orange
squares, dot-dashed line).

15%–20%. That result is consistent with those of previous
studies [9,34–36] that note a small matrix element when the
parent and daughter have different quadrupole properties.

Perhaps the most striking feature of Fig. 2 is the suppression
of the matrix elements by isoscalar pairing. Removing that
term from the Hamiltonian increases the matrix elements by
more than a factor of two (closer to three in many isotopes),
or between 1 and 2 units. When, in addition, the spin-isospin
term is removed, the matrix elements grow even further. As
Fig. 3 shows, the large effect of isoscalar pairing is common to
the matrix elements of all the Ca, Ti, and Cr isotopes we study,
from those with N ∼ Z to very neutron-rich nuclei. For the
matrix elements of the most isospin-asymmetric nuclei ( 58Ca
and 60Ca) the effect of isoscalar pairing is somewhat milder
but still important. The sensitivity to isoscalar (proton-neutron)
pairing is familiar from QRPA [37,38] and GCM studies [14]
and makes it clear that a good description of proton-neutron
correlations is crucial to obtain accurate 0νββ decay nuclear
matrix elements.

The significance of isoscalar pairing is not quite as straight-
forward as it first appears, however. The matrix elements
vary just about 10% when only the spin-isospin interaction
is omitted from Hcoll. As Fig. 2 shows, when the spin-isospin
term is included in the separable collective Hamiltonian, the
impact of omitting isoscalar pairing, though still significant, is
smaller than with the spin-isospin term excluded. This result
suggests that the missing isoscalar-pairing correlations can
to some extent be compensated for, or captured, by other
collective interactions. In that sense, we can consider the
dramatic changes in the matrix elements shown in Figs. 2

FIG. 3. Gamow-Teller part of the 0νββ decay matrix elements,
MGT

0ν , for the decay of Ti isotopes into Cr (top panel), and Cr isotopes
into Fe (bottom), as a function of the neutron number Nparent of the
parent nucleus. Results are shown for the KB3G interaction (black,
solid line), the collective interaction Hcoll (red, dashed line), and Hcoll

without the isoscalar pairing term (blue, short-dashed line).

and 3 to be an upper bound for the effects of isoscalar
pairing. Pieces of the nuclear Hamiltonian, both collective
and noncollective, that are not included in Hcoll might soften
the impact of omitting isoscalar-pairing, in the same way that
the spin-isospin interaction does.

The impact of isoscalar pairing correlations in 0νββ decay
is undeniable. One way to understand it is through spin-
isospin SU(4) symmetry. The GT operator, if we neglect the
neutrino potential, is invariant under SU(4) transformations,
implying that only states belonging to the same irreducible
representations (irreps) of SU(4) can be connected by the
operator; the matrix elements between states in different irreps
vanish. Furthermore, in the absence of spin-orbit splitting in
the HM piece, the collective Hamiltonian Hcoll is invariant
under SU(4) if the isovector and isoscalar pairing terms have
the same strength, gT =1 = gT =0. The situation resembles
that associated with the ββ decay Fermi operator, which
because of isospin symmetry has vanishing matrix elements
between states belonging to different isospin-SU(2) irreps, i.e.,
having different total isospin [39]. In 0νββ decay the neutrino
potential breaks the SU(2) invariance of the operator and the
matrix elements, MF

0ν , do not vanish, but they are nevertheless
suppressed [6,8,10,17].

In pf -shell nuclei the spin-orbit splitting is sizable, and
nuclear states are in general a combination of several different
SU(4) irreps [40]. However, since gT =0 is only slightly larger
than gT =1, and the spin-isospin interaction, which conserves
the SU(4) symmetry, effectively increases the energy separa-
tion among SU(4) irreps, the fraction of irreps shared between
the parent and daughter nuclei is small. This fact is illustrated in
the top part of Fig. 4, which shows the percentage of the ground
state in each Ti isotope (daughter nucleus) belonging in irreps
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Erratum: Large-Scale Shell-Model Analysis of the Neutrinoless ββ Decay of 48Ca
[Phys. Rev. Lett. 116, 112502 (2016)]

Y. Iwata, N. Shimizu, T. Otsuka, Y. Utsuno, J. Menéndez, M. Honma, and T. Abe
(Received 4 October 2016; published 21 October 2016)

DOI: 10.1103/PhysRevLett.117.179902

We make a correction to Fig. 2 in the Letter. The two SM (sdpf) bars in that figure inadvertently did not include the
results obtained with CD-Bonn–type short-range correlations that are shown in Table I. The SM (sdpf) bars are corrected
in the present Fig. 2 here (see the dark blue bars at the far right-hand side of the figure). In the caption of the present
Fig. 2, the nature of the short-range correlations in all nuclear matrix element (NME) values shown is further clarified.
Since the correct results are those in Table I of the Letter, this correction does not affect any of the conclusions of the Letter.

FIG. 2. Comparison of NME values for the 48Ca 0νββ decay. The present shell-model results in the sdpf space (SM sdpf: left
SDPFMU-DB, right SDPFMU) are compared to pf-shell results (SM pf: left [17], right [15]), pf-shell result plus a perturbative
calculation of the effect of orbitals outside the pf shell (SM MBPT) [50], QRPA [22], IBM [25], and EDF (left: nonrelativistic [26],
right: relativistic [27]) calculations. The range between double horizontal bars covers results including a different type of short-range
correlations (Argonne, CD-Bonn, UCOM [51]) and without them, while the IBM result uses Argonne-type, the nonrelativistic EDF
one uses UCOM-type, and the SM (MBPT) and relativistic EDF results do not use any prescription for short-range correlations.
The reference numbers stand for those in the Letter.
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FIG. 6. Calculated low-lying excitation spectra of 76Ge and 76Se
produced by the Hamiltonian pf sdg alongside the exact result with
GCN2850 in one shell and experimental data [54].

the renormalization required to correct the one-shell transition
rates.

We turn finally to the 0νββ matrix elements, which appear
in Table II. The total matrix element, once triaxial deformation
is included, is only slightly smaller than that from GCN2850 in
a single shell (the second entry in the first column of Table I).

Though our interaction is clearly not perfect, the result
suggests that enlarging the space further may not dramatically
change the matrix element, though gradual but continual
changes with the addition of successive shells cannot be ruled
out. It also shows the importance of including triaxial shapes
in larger spaces.

Figure 7 summarizes our ββ results. For the decay of 48Ca,
as noted, we reproduce the exact-shell-model results nearly
perfectly in both one and two shells. For the decay of 76Ge (and
82Se) in a single shell, the GCM reproduces the exact result
well enough, with two different effective interactions. And in
two shells, with a brand new effective interaction, it obtains a
result that is only slightly different from the GCN2850 result
in one shell.

An important caveat, in addition to those already men-
tioned: We really ought to be using an effective 0νββ operator
to accompany our effective interaction, as in Refs. [55] and
[56]. Those papers lead us to suspect a change of 20% or less
from an effective decay operator in two shells. In any event,
because we made significant phenomenological adjustments to
the single-particle energies in the prototype calculation here,

TABLE II. GCM results for the Gamow-Teller (M0ν
GT), Fermi

(M0ν
F ), and tensor (M0ν

T ) 0νββ matrix elements for the decay of 76Ge
in two shells, without and with triaxial deformation.

Axial Triaxial

M0ν
GT 3.18 1.99

− g2
V

g2
A

M0ν
F 0.55 0.38

M0ν
T −0.01 −0.02

Total M0ν 3.72 2.35

FIG. 7. GCM matrix elements M0ν compared with those of the
shell-model (SM), with either the JUN45 [35], CN2850 [6] KB3G
[16], or SDPFMU-DB [4] interactions. The term pf sdg denotes the
two-shell interaction used here for A ≈ 80 nuclei.

we cannot systematically construct the decay operator that
should accompany the effective interaction.

V. SUMMARY

The perfect many-body method will include all possible
correlations in an infinitely large space. One step on the way
to that ideal is to enlarge the single-particle space for the
shell model, a method that includes all correlations within
that space. Here we have approximately diagonalized a shell-
model Hamiltonian and computed the 0νββ transition matrix
elements for the decay of 76Ge and 82Se in two major shells,
a space well beyond what is typically used. Tests in a single
shell, and in two shells for the light pf -shell isotope 48Ca, show
that the our approximation method includes the most important
correlations. Our first-of-its-kind two-shell calculation in 76Ge
suggests a small effect from the extra single-particle orbitals
and represents a significant step on the road to accurate ββ
matrix elements.

There are at least two ways forward from here. We should
use a better effective Hamiltonian, either by normal-ordering
with respect to an ensemble reference [51] that better includes
bulk effects of three-nucleon forces far from closed shells,
or by careful tuning of the interaction. The second option,
besides being very difficult, would make it impossible to
develop a consistent effective operator, but the first should
be pursued. One can also use our GCM wave functions as a
starting point for refinement by the “multireference” version
of the In-Medium Similarity Renormalization Group. Work in
that direction is in progress.
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(overall scale?)

Where do the differences between GCM and Interacting Shell Model come from?
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FIG. 1. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b) and Cr→Fe (c) 0νββ decays,

calculated with shell model (SM) and energy density functional (EDF) methods. The D1S EDF interaction is used (circles). In the SM case,
the KB3G (squares) and GXPF1A (lozenges) effective interactions are employed.

Refs. [31,50]. Maxima are more marked in SM calculations,
where the initial and final states share the same isospin
quantum number, T . In the SM case the two states are exactly
isospin-symmetric, because Coulomb and isospin-symmetry-
breaking terms in the nuclear interaction are neglected, but the
overlap between mirror initial and final states is also maximal
in the EDF approach, which includes the Coulomb term. For
EDF calculations, however, T is not a good quantum number.

The configuration space and nuclear correlations included
in SM and EDF calculations are very different, with the SM
being able to take into account more general correlations but
in a rather limited valence space. Regarding the size of the
configuration space it is important to note that in the pf shell
the SM includes all orbitals with their corresponding spin-
orbit partner. This is relevant because in the 0νββ decay of
heavier nuclei, some spin-orbit partners are not included in
SM calculations, and this has been pointed out as a possible
cause of the relatively small SM NMEs. The SM calculations
analyzed in this work are thus free from this shortcoming.

We can get more insight in the comparison of SM and
EDF NMEs by simplifying the nuclear structure correlations
present in the initial and final states of the 0νββ decay. Figure 2
shows M0ν

GT calculated with the same transition operator as
Fig. 1, but with simplified nuclear states. For the EDF, spherical
symmetry is assumed. In the SM case, only configurations
with zero seniority (s = 0) are permitted, this is, protons and
neutrons are coupled in J = 0 pairs; no proton-neutron J =
0 pairs are included. We observe that the GT parts of the
NMEs calculated in these simplified schemes are significantly
larger than in the full calculation for both approaches, with a

striking agreement between SM and EDF NMEs. Indeed SM
GXPF1A calculations lie within 10% of EDF values, while
SM KB3G calculations are about 25% larger. The difference
between the two SM results stems from the different J = 0,
T = 1 pairing. As shown in Fig. 1, this difference between
effective interactions is washed out when full calculations are
performed. The agreement between SM and EDF NMEs is in
strong contrast with the full NME calculations shown in Fig. 1,
where SM NMEs were half of the EDF values.

This implies that the spherical EDF and seniority-zero
SM calculations, while conceptually very different, capture
approximately the same physics, leaving out the nuclear
structure correlations that reduce the 0νββ decay NMEs.
Some of these have been identified in Refs. [15,17,31] as the
correlations associated with high-seniority components in the
SM, and collective deformation effects in EDF calculations.
High seniority components have been also studied within the
QRPA in Ref. [21].

Figure 2 also shows that the trends followed by the NMEs
calculated in both approaches are very similar, and indeed
they follow to a good approximation the generalized seniority
scheme in a single shell [51]:

M0ν
GT ≃ απαν

√
Nπ + 1

√
%π − Nπ

√
Nν

√
%ν − Nν + 1,

(6)

where Nπ(ν) is the number of proton (neutron) pairs in the shell,
%π(ν) the pair degeneracy and απ(ν) coefficients characteristic
of a major shell. Deviations from Eq. (6) are due to nonperfect
shell closures and the A dependence in the neutrino potentials.
The “inverted parabola” from initial number of neutrons
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FIG. 2. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b), and Cr→Fe (c) 0νββ decays,

with seniority-zero shell model (SM) and spherical energy density functional (EDF) states. Interactions are as in Fig. 1.
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quantum number, T . In the SM case the two states are exactly
isospin-symmetric, because Coulomb and isospin-symmetry-
breaking terms in the nuclear interaction are neglected, but the
overlap between mirror initial and final states is also maximal
in the EDF approach, which includes the Coulomb term. For
EDF calculations, however, T is not a good quantum number.

The configuration space and nuclear correlations included
in SM and EDF calculations are very different, with the SM
being able to take into account more general correlations but
in a rather limited valence space. Regarding the size of the
configuration space it is important to note that in the pf shell
the SM includes all orbitals with their corresponding spin-
orbit partner. This is relevant because in the 0νββ decay of
heavier nuclei, some spin-orbit partners are not included in
SM calculations, and this has been pointed out as a possible
cause of the relatively small SM NMEs. The SM calculations
analyzed in this work are thus free from this shortcoming.

We can get more insight in the comparison of SM and
EDF NMEs by simplifying the nuclear structure correlations
present in the initial and final states of the 0νββ decay. Figure 2
shows M0ν

GT calculated with the same transition operator as
Fig. 1, but with simplified nuclear states. For the EDF, spherical
symmetry is assumed. In the SM case, only configurations
with zero seniority (s = 0) are permitted, this is, protons and
neutrons are coupled in J = 0 pairs; no proton-neutron J =
0 pairs are included. We observe that the GT parts of the
NMEs calculated in these simplified schemes are significantly
larger than in the full calculation for both approaches, with a

striking agreement between SM and EDF NMEs. Indeed SM
GXPF1A calculations lie within 10% of EDF values, while
SM KB3G calculations are about 25% larger. The difference
between the two SM results stems from the different J = 0,
T = 1 pairing. As shown in Fig. 1, this difference between
effective interactions is washed out when full calculations are
performed. The agreement between SM and EDF NMEs is in
strong contrast with the full NME calculations shown in Fig. 1,
where SM NMEs were half of the EDF values.

This implies that the spherical EDF and seniority-zero
SM calculations, while conceptually very different, capture
approximately the same physics, leaving out the nuclear
structure correlations that reduce the 0νββ decay NMEs.
Some of these have been identified in Refs. [15,17,31] as the
correlations associated with high-seniority components in the
SM, and collective deformation effects in EDF calculations.
High seniority components have been also studied within the
QRPA in Ref. [21].

Figure 2 also shows that the trends followed by the NMEs
calculated in both approaches are very similar, and indeed
they follow to a good approximation the generalized seniority
scheme in a single shell [51]:
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shell closures and the A dependence in the neutrino potentials.
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- NMEs are reduced with respect to the 
spherical value when correlations are included.


- The biggest reduction is produced by angular 
momentum restoration and configuration 
mixing produces an increase of the NME.

J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).
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Interacting Shell Model
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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- The biggest reduction (in Shell model 
calculations) is produced by including 
higher seniority components in the 
nuclear wave functions.


- Isospin projection is relevant for the 
Fermi part of the NME and less 
important for the Gamow-Teller part.


- Isospin projection tends to reduce the 
NME.


- EDF does not include properly those 
higher seniority components, specially 
in spherical nuclei.

J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).
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Interacting Shell Model
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Summary

๏ NMEs differ a factor of three between the different methods but we 
need to understand which are the pros/cons of each method to 
provide reliable numbers (precision vs. accuracy). 

๏ Nuclear physics aspects like deformation, pairing, shell effects, etc., 
are understood similarly within different approaches.  

๏ Systematic comparisons between ISM/GCM methods have been 
performed and they tend to agree when appropriate deformation and 
pairing correlations are taken into account in GCM approaches. 

๏ Other effects like using consistent operators and/or two-body 
currents (“ga quenching”) are important (A. Nicholson’s talk) 

๏ We hope that more constrained and reliable NMEs will be provided in 
the near future.
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Transition operator

3

tivistic formalism. (3) The finite nucleon size correction
is taken care of by the momentum dependent form fac-
tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.

II. THEORETICAL FRAMEWORK

A. Decay operator

Crucial steps of the derivation of the decay operator
can be found in many papers [6, 10, 12]. However, all
these authors end up with the non-relativistic reduced
operator. Therefore, in order to have a consistent rela-
tivistic description, it becomes necessary to briefly repeat
the derivation and to show the form of the relativistic op-
erator used in our calculations and to be specific about
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is taken care of by the momentum dependent form fac-
tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.
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one: Em → Ē, the intermediate states can be eliminated
by making use of the closure approximation. Then the
operator becomes

4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

J †
µ (x1)J µ†(x2)

q + Ed
,

(10)
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0ν |0+I ⟩, (8)

where |0+I/F ⟩ is the wave function of the initial(I)/final(F)
state, and the decay operator reads

Ô0ν =
4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

J †
µ (x1)|m⟩⟨m|J µ†(x2)

q + Em − (EI + EF )/2
, (9)

where R = r0A1/3 with r0 = 1.2 fm is introduced to
make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average
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where Ed ≡ Ē − (EI + EF )/2, is the average excitation
energy. There are claims that the closure approxima-
tion is reliable in the calculation of M0ν , since differ-
ent values of the parameter Ē or the energy denomina-
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0ν |0+I ⟩, (8)

where |0+I/F ⟩ is the wave function of the initial(I)/final(F)
state, and the decay operator reads
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where Ed ≡ Ē − (EI + EF )/2, is the average excitation
energy. There are claims that the closure approxima-
tion is reliable in the calculation of M0ν , since differ-
ent values of the parameter Ē or the energy denomina-
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tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.
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where Ed ≡ Ē − (EI + EF )/2, is the average excitation
energy. There are claims that the closure approxima-
tion is reliable in the calculation of M0ν , since differ-
ent values of the parameter Ē or the energy denomina-
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• Relativistic form
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Fully relativistic treatment:
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tivistic formalism. (3) The finite nucleon size correction
is taken care of by the momentum dependent form fac-
tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.

II. THEORETICAL FRAMEWORK

A. Decay operator

Crucial steps of the derivation of the decay operator
can be found in many papers [6, 10, 12]. However, all
these authors end up with the non-relativistic reduced
operator. Therefore, in order to have a consistent rela-
tivistic description, it becomes necessary to briefly repeat
the derivation and to show the form of the relativistic op-
erator used in our calculations and to be specific about
the parameters and approximations involved in it.
The starting point is the standard semi-leptonic weak

charged-current Hamiltonian [50],

Hweak(x) =
GF cos θC√

2
jµ(x)J †

µ (x) + h.c., (5)

where GF is the Fermi constant, θC is the Cabbibo angle,
and the standard leptonic current adopts (V −A) form

jµ(x) = ē(x)γµ(1− γ5)νe(x). (6)

The hadronic current is expressed in terms of nucleon
field ψ,

J †
µ (x) = ψ̄(x)

[

gV (q
2)γµ + igM (q2)

σµν
2mp

qν

− gA(q
2)γµγ5 − gP (q

2)qµγ5
]

τ−ψ(x), (7)

wheremp is the nucleon mass, qµ is the momentum trans-
ferred from leptons to hadrons, τ− is the isospin lowing
operator, and σµν = i

2 [γµ, γν ]. The form factors gV (q2),
gA(q2), gM (q2), and gP (q2), in which the effects of the fi-
nite nucleon size are incorporated, represent, in the zero-
momentum transfer limit, the vector, the axial-vector,
the weak-magnetism, and the induced pseudoscalar cou-
pling constants. We adopt here the same expressions for
the form factors as in Ref. [10].
By using the long-wave approximation for the outgo-

ing electrons and neglecting the small energy transfer

between nucleons, the NME of the 0νββ decay can be
obtained after a few steps [8]:

M0ν(0+I → 0+F ) ≡ ⟨0+F |Ô
0ν |0+I ⟩, (8)

where |0+I/F ⟩ is the wave function of the initial(I)/final(F)
state, and the decay operator reads
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m
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q + Em − (EI + EF )/2
, (9)

where R = r0A1/3 with r0 = 1.2 fm is introduced to
make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average

one: Em → Ē, the intermediate states can be eliminated
by making use of the closure approximation. Then the
operator becomes
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where Ed ≡ Ē − (EI + EF )/2, is the average excitation
energy. There are claims that the closure approxima-
tion is reliable in the calculation of M0ν , since differ-
ent values of the parameter Ē or the energy denomina-
tor Ed within a certain range will not lead to dramatic
changes of M0ν [22, 46–48]. The sensitivity of the NME
to changes of Ed will be discussed further later.
Considering the four terms in Eq. (7), the operator
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Ô0ν =
∑

i
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one: Em → Ē, the intermediate states can be eliminated
by making use of the closure approximation. Then the
operator becomes

4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

J †
µ (x1)J µ†(x2)

q + Ed
,

(10)
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• Non-relativistic reduction

F. Simkovic et. al, PRC 60, 055502 (1999)

10

versions of the 5D-collective Bohr Hamiltonian provide a
very successful alternative which can be applied even in
heavy nuclei [67]. It remains to be investigated in the fu-
ture, whether these methods can be used also successfully
for investigations of 0νββ decay matrix elements.

3. Validity of non-relativistic reduced calculations and
contribution of the tensor term

One advantage of our method is that it is fully rela-
tivistic and therefore it allows us to investigate the non-
relativistic approximation in most calculations. In this
case the hadronic current J †

µ (x) in Eq. (10) is expanded
in terms of |q|/mp. If terms are kept up to the first order,
the fully relativistic operator in Eq. (10) is reduced to the
non-relativistic operator used in previous studies [12, 68].
The non-relativistic “two-current” operator

[

J †
µJ µ†

]

NR
can be decomposed, as in other non-relativistic calcula-
tions, into the Fermi, the Gamow-Teller, and the tensor
parts:

[

−hF(q
2) + hGT(q

2)σ12 + hT(q
2)Sq

12

]

τ (1)− τ (2)− , (34)

with the tensor operator Sq
12 = 3(σ(1) · q̂)(σ(2) · q̂)− σ12

and σ12 = σ(1) · σ(2). Each channel (K: F, GT, T)
of Eq. (34) can be labeled by the terms of the hadronic
current from which it originates, as

hK(q2) =
∑

i

hK−i(q
2), (i = V V,AA,AP, PP,MM)

with

hF−V V (q
2) = −g2V (q

2), (35a)

hGT−AA(q
2) = −g2A(q

2), (35b)

hGT−AP (q
2) =

2

3
gA(q

2)gP (q
2)

q2

2mp
, (35c)

hGT−PP (q
2) = −1

3
g2P (q

2)
q4

4m2
p

, (35d)

hGT−MM (q2) = −2

3
g2M (q2)

q2

4m2
p
, (35e)

hT−AP (q
2) = hGT−AP (q

2), (35f)

hT−PP (q
2) = hGT−PP (q

2), (35g)

hT−MM (q2) = −1

2
hGT−MM (q2). (35h)

In Fig. 9 we compare results calculated with the first
order operator with those of the full operator, for the
NME in each coupling channel and for both the 0+1 → 0+1
and 0+1 → 0+2 transitions. For comparison we also dis-
play the results obtained by the operator with zeroth
order of |q|/mp in the hadronic current. In all circum-
stances the dominant contributions come from the AA
coupling channel. In zeroth order of the non-relativistic
reduction it represents the Gamow-Teller channel. In this
comparison, considerable differences could only be found

in the AP and PP coupling channels due to the counter-
diagonal structure of the gamma matrices involved. How-
ever, the deviations cancel out (< 1%) in the total NMEs
for the first order operator, while the results of the ze-
roth order operator deviate by roughly 16%. Thus the
first order operator utilized by other authors is a very
good approximation to the full operator retaining most
of the relativistic effects.

FIG. 9: (Color online) Contribution from each coupling chan-
nel to the total NMEs of 0νββ decay from 150Nd to 150Sm, for
both the (a) 0+1 → 0+1 and (b) 0+1 → 0+2 transitions. Values
of M0ν evaluated using the full relativistic operator Ô0ν are
compared with that obtained with the operators in the non-
relativistic approximations. The results are calculated with
the GCM+AMP method.

In Table III we present results for the 0+1 → 0+1 transi-
tion obtained with the first order operator. They are
compared with IBM-2 calculations [20]. Considering
χT = MT/MGT, the ratio of the tensor part to the dom-
inant Gamow-Teller part, one clearly recognizes the im-
portance of the tensor term. In the literature one finds
rarely discussions about the tensor effect for the nucleus
150Nd. However, analysing the results for other isotopes,
two different conclusions can be drawn. On the one
hand, the tensor effect is considered as negligible with
χT < 1% according to the calculations in the ISM [17],
in the QRPA studies of the Jyvaskyla group [11] and in
PHFB [22], and it is totally neglected in the NREDF cal-
culations of Refs. [23, 26]. On the other hand, it is proven
to be important with a contribution of 5% to 10% in the
QRPA calculations of the Tübingen group [10] and in
the IBM calculations [20]. Our result seems to be con-
sistent with the later opinion. As we can see from the
table, while the absolute value for the tensor term in our
calculation is very close to that given by the IBM-2, χT

is smaller due to the larger Gamow-Teller contribution.
This implies that we predict a relatively small tensor ef-
fect, but in the same order of magnitude as the IBM-2
calculations [20]. This conclusion needs to be confirmed
by further systematic investigations.

Transition operator

L. S. Song et al.,  Phys. Rev. C 90, 054309 (2014).
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ferred from leptons to hadrons, τ− is the isospin lowing
operator, and σµν = i

2 [γµ, γν ]. The form factors gV (q2),
gA(q2), gM (q2), and gP (q2), in which the effects of the fi-
nite nucleon size are incorporated, represent, in the zero-
momentum transfer limit, the vector, the axial-vector,
the weak-magnetism, and the induced pseudoscalar cou-
pling constants. We adopt here the same expressions for
the form factors as in Ref. [10].
By using the long-wave approximation for the outgo-

ing electrons and neglecting the small energy transfer

between nucleons, the NME of the 0νββ decay can be
obtained after a few steps [8]:

M0ν(0+I → 0+F ) ≡ ⟨0+F |Ô
0ν |0+I ⟩, (8)

where |0+I/F ⟩ is the wave function of the initial(I)/final(F)
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Ô0ν =
4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

J †
µ (x1)|m⟩⟨m|J µ†(x2)

q + Em − (EI + EF )/2
, (9)

where R = r0A1/3 with r0 = 1.2 fm is introduced to
make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average

one: Em → Ē, the intermediate states can be eliminated
by making use of the closure approximation. Then the
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where Ed ≡ Ē − (EI + EF )/2, is the average excitation
energy. There are claims that the closure approxima-
tion is reliable in the calculation of M0ν , since differ-
ent values of the parameter Ē or the energy denomina-
tor Ed within a certain range will not lead to dramatic
changes of M0ν [22, 46–48]. The sensitivity of the NME
to changes of Ed will be discussed further later.
Considering the four terms in Eq. (7), the operator

can be decomposed into the vector coupling (VV), axial-
vector coupling (AA), axial-vector and pseudoscalar
coupling (AP), pseudoscalar coupling (PP), and weak-
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tivistic formalism. (3) The finite nucleon size correction
is taken care of by the momentum dependent form fac-
tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.

II. THEORETICAL FRAMEWORK

A. Decay operator
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can be found in many papers [6, 10, 12]. However, all
these authors end up with the non-relativistic reduced
operator. Therefore, in order to have a consistent rela-
tivistic description, it becomes necessary to briefly repeat
the derivation and to show the form of the relativistic op-
erator used in our calculations and to be specific about
the parameters and approximations involved in it.
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Ô0ν
i =

4πR

g2A

∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q(q + Ed)

[

J †
µJ µ†

]

i
,

(12)

and the “two-current” operators
[

J †J †
]

i
being

g2V (q
2)
(

ψ̄γµτ−ψ
)(1) (

ψ̄γµτ−ψ
)(2)

, (13a)

g2A(q
2)
(

ψ̄γµγ5τ−ψ
)(1) (

ψ̄γµγ5τ−ψ
)(2)

, (13b)

2gA(q
2)gP (q

2)
(

ψ̄γγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

, (13c)

g2P (q
2)
(

ψ̄qγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

, (13d)

g2M (q2)

(

ψ̄
σµi
2mp

qiτ−ψ

)(1)(

ψ̄
σµj

2mp
qjτ−ψ

)(2)

. (13e)

3

tivistic formalism. (3) The finite nucleon size correction
is taken care of by the momentum dependent form fac-
tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.

II. THEORETICAL FRAMEWORK

A. Decay operator

Crucial steps of the derivation of the decay operator
can be found in many papers [6, 10, 12]. However, all
these authors end up with the non-relativistic reduced
operator. Therefore, in order to have a consistent rela-
tivistic description, it becomes necessary to briefly repeat
the derivation and to show the form of the relativistic op-
erator used in our calculations and to be specific about
the parameters and approximations involved in it.
The starting point is the standard semi-leptonic weak

charged-current Hamiltonian [50],

Hweak(x) =
GF cos θC√

2
jµ(x)J †

µ (x) + h.c., (5)

where GF is the Fermi constant, θC is the Cabbibo angle,
and the standard leptonic current adopts (V −A) form
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• Non-relativistic reduction

F. Simkovic et. al, PRC 60, 055502 (1999)
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versions of the 5D-collective Bohr Hamiltonian provide a
very successful alternative which can be applied even in
heavy nuclei [67]. It remains to be investigated in the fu-
ture, whether these methods can be used also successfully
for investigations of 0νββ decay matrix elements.

3. Validity of non-relativistic reduced calculations and
contribution of the tensor term

One advantage of our method is that it is fully rela-
tivistic and therefore it allows us to investigate the non-
relativistic approximation in most calculations. In this
case the hadronic current J †

µ (x) in Eq. (10) is expanded
in terms of |q|/mp. If terms are kept up to the first order,
the fully relativistic operator in Eq. (10) is reduced to the
non-relativistic operator used in previous studies [12, 68].
The non-relativistic “two-current” operator

[

J †
µJ µ†

]

NR
can be decomposed, as in other non-relativistic calcula-
tions, into the Fermi, the Gamow-Teller, and the tensor
parts:

[

−hF(q
2) + hGT(q

2)σ12 + hT(q
2)Sq

12

]

τ (1)− τ (2)− , (34)

with the tensor operator Sq
12 = 3(σ(1) · q̂)(σ(2) · q̂)− σ12

and σ12 = σ(1) · σ(2). Each channel (K: F, GT, T)
of Eq. (34) can be labeled by the terms of the hadronic
current from which it originates, as

hK(q2) =
∑

i

hK−i(q
2), (i = V V,AA,AP, PP,MM)

with

hF−V V (q
2) = −g2V (q

2), (35a)

hGT−AA(q
2) = −g2A(q

2), (35b)

hGT−AP (q
2) =

2

3
gA(q

2)gP (q
2)

q2

2mp
, (35c)

hGT−PP (q
2) = −1

3
g2P (q

2)
q4

4m2
p

, (35d)

hGT−MM (q2) = −2

3
g2M (q2)

q2

4m2
p
, (35e)

hT−AP (q
2) = hGT−AP (q

2), (35f)

hT−PP (q
2) = hGT−PP (q

2), (35g)

hT−MM (q2) = −1

2
hGT−MM (q2). (35h)

In Fig. 9 we compare results calculated with the first
order operator with those of the full operator, for the
NME in each coupling channel and for both the 0+1 → 0+1
and 0+1 → 0+2 transitions. For comparison we also dis-
play the results obtained by the operator with zeroth
order of |q|/mp in the hadronic current. In all circum-
stances the dominant contributions come from the AA
coupling channel. In zeroth order of the non-relativistic
reduction it represents the Gamow-Teller channel. In this
comparison, considerable differences could only be found

in the AP and PP coupling channels due to the counter-
diagonal structure of the gamma matrices involved. How-
ever, the deviations cancel out (< 1%) in the total NMEs
for the first order operator, while the results of the ze-
roth order operator deviate by roughly 16%. Thus the
first order operator utilized by other authors is a very
good approximation to the full operator retaining most
of the relativistic effects.

FIG. 9: (Color online) Contribution from each coupling chan-
nel to the total NMEs of 0νββ decay from 150Nd to 150Sm, for
both the (a) 0+1 → 0+1 and (b) 0+1 → 0+2 transitions. Values
of M0ν evaluated using the full relativistic operator Ô0ν are
compared with that obtained with the operators in the non-
relativistic approximations. The results are calculated with
the GCM+AMP method.

In Table III we present results for the 0+1 → 0+1 transi-
tion obtained with the first order operator. They are
compared with IBM-2 calculations [20]. Considering
χT = MT/MGT, the ratio of the tensor part to the dom-
inant Gamow-Teller part, one clearly recognizes the im-
portance of the tensor term. In the literature one finds
rarely discussions about the tensor effect for the nucleus
150Nd. However, analysing the results for other isotopes,
two different conclusions can be drawn. On the one
hand, the tensor effect is considered as negligible with
χT < 1% according to the calculations in the ISM [17],
in the QRPA studies of the Jyvaskyla group [11] and in
PHFB [22], and it is totally neglected in the NREDF cal-
culations of Refs. [23, 26]. On the other hand, it is proven
to be important with a contribution of 5% to 10% in the
QRPA calculations of the Tübingen group [10] and in
the IBM calculations [20]. Our result seems to be con-
sistent with the later opinion. As we can see from the
table, while the absolute value for the tensor term in our
calculation is very close to that given by the IBM-2, χT

is smaller due to the larger Gamow-Teller contribution.
This implies that we predict a relatively small tensor ef-
fect, but in the same order of magnitude as the IBM-2
calculations [20]. This conclusion needs to be confirmed
by further systematic investigations.

Transition operator

J. M. Yao et al., Phys. Rev. C 90, 054309 (2014)

Table 1: The normalized NME M̃0ν for the 0νββ-decay obtained with the
particle number projected spherical mean-field configuration (βI = βF = 0)
by the PC-PK1 force using both the relativistic and non-relativistic reduced
(first-order of q/mp in the one-body current) transition operators. The ratio
of the AA term to the total NME, RAA ≡ M̃0ν

AA/M̃
0ν , the relativistic effect

∆Rel. ≡ (M̃0ν − M̃0ν
NR)/M̃

0ν and the ratio of the tensor part to the total NME,
RT ≡ M̃0ν

NR,T/M̃
0ν
NR, are also presented.

Sph+PNP (PC-PK1) M̃0ν RAA M̃0ν
NR ∆Rel. RT

48Ca→48Ti 3.66 81% 3.74 −2.1% −2.4%
76Ge→76Se 7.59 94% 7.71 −1.6% 3.5%
82Se→82Kr 7.58 93% 7.68 −1.4% 2.9%
96Zr→96Mo 5.64 95% 5.63 0.2% 3.6%
100Mo→100Ru 10.92 95% 10.91 0.1% 3.5%
116Cd→116Sn 6.18 94% 6.13 0.7% 1.9%
124Sn→124Te 6.66 94% 6.78 −1.8% 4.9%
130Te→130Xe 9.50 94% 9.64 −1.4% 4.3%
136Xe→136Ba 6.59 94% 6.70 −1.7% 4.1%
150Nd→150Sm 13.25 95% 13.08 1.3% 2.5%

tions of the mother and daughter nuclei differ considerably from
each other, such as 76Ge-Se and 150Nd-Sm. Moreover, shape
fluctuation is shown to be significant in the light 0νββ candi-
date nuclei, the description of which is impossible with the ap-
proaches based on single-reference state [33, 28, 29]. This dy-
namic deformation effect (or shape mixing effect) could mod-
erate the quenching effect from the static deformation on the
NMEs [37], which is fully taken into account in the present
multi-reference BMF-CDFT approach.
Nuclear matrix elements for the 0νββ decay.− In order

to show the deformation-dependence of the NME, Table 1
presents the normalized NME M̃0ν(βI , βF) at spherical shape
(βI = βF = 0) for the 0νββ-decay obtained with both the rela-
tivistic and non-relativistic reduced transition operators, where
M̃0ν is defined as

M̃0ν(βI , βF) = NFNI ⟨βF |Ô
0νP̂J=0P̂NI P̂ZI |βI⟩, (6)

with N−2a = ⟨βa|P̂J=000 P̂Na P̂Za |βa⟩ for a = I, F. It is seen that
the error arisen from the first-order non-relativistic reduction is
marginal, which can either increase or decrease the total NME
by a factor within 2%. This value is modified only slightly
in the full GCM calculation, for instance becoming ∼ 5% for
150Nd [37]. The one-body charge-changing nucleon current,
Eq. (4), generates not only the Fermi and Gamow-Teller (GT)
terms but also tensor terms that have been neglected in the non-
relativistic study [34]. With the help of non-relativistic approx-
imation of the transition operator, one can isolate the contribu-
tion of the tensor part [26, 37], which is obtained by subtracting
the contributions of Fermi and GT terms from the total NME.
It is shown in Table 1 that the contribution of tensor terms is
within 5% of the total NME.
Figure 4 displays the normalized NME M̃0ν as a function of

the intrinsic quadrupole deformation βI and βF of the mother
and daughter nuclei, respectively. Similar to the behavior of the
GT part shown in the MR-DFT (D1S) calculation [34], the nor-
malized NME M̃0ν is concentrated rather symmetrically along
the diagonal line βI = βF , implying that the decay between

Figure 4: (Color online) Normalized NME M̃0ν as a function of the intrinsic
deformation parameter β of the initial AZ and final A(Z + 2) nuclei.

nuclei with different deformation is strongly hindered. More-
over, the M̃0ν has the largest value at the spherical configura-
tion for most candidate nuclei except for 48Ca-Ti, 96Zr-Mo, and
136Xe-Ba. It implies that generally the 0νββ-decay is favored if
both nuclei are spherical. The largest M̃0ν in 136Xe-Ba is found
around the deformation region with βI = βF ≃ 0.5, at which
deformed configuration, pairing energy is peaked in both nu-
clei due to the very high single-particle level density. However,
this configuration (β ≃ 0.5) has a negligible contribution to the
final NME of 136Xe-Ba because its weight is almost zero in the
ground-state wave function, cf. Fig. 3.
Figure 5(a) displays the contribution of each coupling term

(AA,VV, PP,MM, AP) in Eq.(4) to the total NMEs. It is shown
that the weak-magnetism (MM) term is negligible (∼ 4%).
The interference term of the axial-vector (AA) and pseudoscalar
coupling (AP) has an opposite contribution (∼ 30%), which
almost cancels out the sum of VV , PP, and MM terms. Of
particular interest is that the total NME has a very similar
behavior as that of the predominated AA term with the ratio
RAA ≃ 95%. Actually, we have found that the deformation-
dependent NMEs shown in Fig. 4 are also very similar even
if we include only the AA term. It indicates that the AA term
provides a good approximation for the total NME, Eq. (3).
In the non-relativistic approximation, the two-current opera-
tor with only the axial-vector coupling term is simplified as
J†L,µ(x1)J

µ†

L (x2) = −g
2
A(q

2)σ(1) · σ(2)τ(1)− τ
(2)
− , the calculation of

which is much cheaper than computing the full terms, cf. (4).
Similar conclusion can also be made based on the results of
QRPA calculation [26] using the non-relativistic reduced op-
erators. Figure 5(b) displays the NMEs calculated either with
pure spherical configuration or with full configurations in the
GCM+PNAMP (PC-PK1), in comparison with those of the
non-relativistic results [34]. Before comparing the two results,
we should point out that in the non-relativistic calculation [34],
the SRC effect was taken into account with the UCOM, while
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Neutrino potentials
Starting from the weak Lagrangian that describes the process some 
approximations are made:    


1. Non-relativistic approach in the hadronic part.


2. Closure approximation in the virtual intermediate state.


3. Nucleon form factors taken in the dipolar approximation.


4. Tensor contribution is neglected.


5. High order currents are included (HOC).


6. Short range correlations are included with an UCOM correlator.

- Find the initial and final 0+ (and, in the no closure approximation, the intermediate) states

- Evaluate the transition operators between these states

Transition operator
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Transition operator

• The ‘bare’ operator should be 
transformed into an ‘effective’ 
operator defined in the valence space 

J.D. Holt, J. Engel, Phys. Rev. C 87, 064315 (2013)
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discussion. No matter the two-body operator of interest, how-
ever, the starting point is always the construction of projection
operators P̂ and Q̂ that divide the full many-body Hilbert space
into a model space, in which subsequent exact diagonalization
is carried out, and everything else. In our calculations in nuclei
with mass near A = 80, the model space consists of the 0f5/2,
1p3/2, 1p1/2, and 0g9/2 single-particle orbits, for both protons
and neutrons, above a 56Ni core in a harmonic-oscillator basis
of 13 major shells with h̄ω = 10.0 MeV.

After specifying the model space, one must define a
mapping between eigenstates of the full Hamiltonian and pro-
jections of those eigenstates onto the model space. In MBPT
this is done perturbatively. The result is a set of diagrams with
two incoming legs and two outgoing legs, with each diagram
representing a contribution to the two-body matrix elements
of the effective Hamiltonian or effective (two-body) transition
operator. The usual Feynman rules are used to evaluate the
diagrams, but to the set of familiar-looking diagrams one must
add “folded” diagrams, which eliminate the energy depen-
dence of the effective operator [15,16]. One way to organize
the sum of all diagrams is by grouping all those without
folds into a “Q̂ box” (for the Hamiltonian) or an “X̂ box”
(for the transition operator) and then writing the complete sum,
including folded diagrams, in terms of the Q̂ and X̂ boxes and
their derivatives with respect to unperturbed energies. The first
few terms in the Q̂ and X̂ boxes appear in Figs. 1 and 2.

Folding is significantly more complicated for a two-body
transition operator, which combines X̂ and Q̂ boxes, than for
the Hamiltonian, where only Q̂ boxes are needed. Effective
model-space operators in the basis of energy eigenstates are
always defined (for a bare operator M) via

⟨feff|Meff |ieff⟩
⟨feff|feff⟩

1
2 ⟨ieff|ieff⟩

1
2

= ⟨f |M |i⟩ , (6)

where the states that lie in the model space, |ieff⟩ ≡ P̂ |i⟩
and |feff⟩ ≡ P̂ |f ⟩, are not in general normalized. If M is
the Hamiltonian, then only diagonal matrix elements are
nonzero, and the denominator is canceled by a similar factor
in the numerator. For two-body transition operators, that is
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FIG. 1. The Q̂ box to second order in Vlow k (ellipses indicate
higher-order terms). The first line contains one-body contributions
and the others contain two-body contributions. Exchange diagrams,
though not shown, are included in our calculations.
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FIG. 2. (Color online) The X̂ box to first order in Vlow k . Solid
(red online) up- or down-going lines indicate neutrons and dotted
(blue online) lines indicate protons. The wavy horizontal lines, as in
Fig. 1, represent Vlow k , and the dashed horizontal lines represent the
0νββ-decay operator in Eq. (1).

not the case, and state norms must be explicitly computed.
Prior authors have approached the issue of norms in several
ways. References [2,29], for instance, choose to expand the
denominators and fold them into the numerators, thus com-
pletely eliminating all disconnected diagrams. The resulting
expressions, however, become complicated as the number of
folds increases, and the approach requires the construction
of a special basis as an intermediate step. For these reasons
Ref. [28] advocates keeping the denominator and numerator
separate, at the price of introducing disconnected diagrams
that only cancel when the sum is carried out completely. Here,
though we evaluate the Q̂ box to third order and the X̂ box
to second order in the interaction, we include only one fold in
each of the three factors on the left-hand side of Eq. (6), and so
opt to follow Refs. [2,28] in expanding the denominator and
folding with the numerator. The resulting expression for the
matrix elements of an operator Meff is approximately1

⟨cd|Meff |ab⟩

=
([

1 + 1
2

dQ̂(ε)
dε

+ 1
2

d2Q̂(ε)
d2ε

Q̂(ε) + 3
8

(
dQ̂(ε)

dε

)2

. . .

]

×
[
X̂(ε) + Q̂(ε)

∂X̂(εf , ε)
∂εf

∣∣∣∣
εf =ε

+ ∂X̂(ε, εi)
∂εi

∣∣∣∣
εi=ε

Q̂(ε) . . .

]

×
[

1 + 1
2

dQ̂(ε)
dε

+ 1
2

d2Q̂(ε)
d2ε

Q̂(ε)

+ 3
8

(
dQ̂(ε)

dε

)2

. . .

])

cd,ab

, (7)

where ε is the unperturbed energy of both the initial and final
states (we take the energies to be the same). Both Q̂ and X̂ are
matrices, with indices corresponding to the possible two-body

1Because of the need for a special basis, this expression is only
strictly correct when the terms in square brackets are diagonal. They
are close to diagonal in the calculations presented here.

064315-3
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discussion. No matter the two-body operator of interest, how-
ever, the starting point is always the construction of projection
operators P̂ and Q̂ that divide the full many-body Hilbert space
into a model space, in which subsequent exact diagonalization
is carried out, and everything else. In our calculations in nuclei
with mass near A = 80, the model space consists of the 0f5/2,
1p3/2, 1p1/2, and 0g9/2 single-particle orbits, for both protons
and neutrons, above a 56Ni core in a harmonic-oscillator basis
of 13 major shells with h̄ω = 10.0 MeV.

After specifying the model space, one must define a
mapping between eigenstates of the full Hamiltonian and pro-
jections of those eigenstates onto the model space. In MBPT
this is done perturbatively. The result is a set of diagrams with
two incoming legs and two outgoing legs, with each diagram
representing a contribution to the two-body matrix elements
of the effective Hamiltonian or effective (two-body) transition
operator. The usual Feynman rules are used to evaluate the
diagrams, but to the set of familiar-looking diagrams one must
add “folded” diagrams, which eliminate the energy depen-
dence of the effective operator [15,16]. One way to organize
the sum of all diagrams is by grouping all those without
folds into a “Q̂ box” (for the Hamiltonian) or an “X̂ box”
(for the transition operator) and then writing the complete sum,
including folded diagrams, in terms of the Q̂ and X̂ boxes and
their derivatives with respect to unperturbed energies. The first
few terms in the Q̂ and X̂ boxes appear in Figs. 1 and 2.

Folding is significantly more complicated for a two-body
transition operator, which combines X̂ and Q̂ boxes, than for
the Hamiltonian, where only Q̂ boxes are needed. Effective
model-space operators in the basis of energy eigenstates are
always defined (for a bare operator M) via

⟨feff|Meff |ieff⟩
⟨feff|feff⟩

1
2 ⟨ieff|ieff⟩

1
2

= ⟨f |M |i⟩ , (6)

where the states that lie in the model space, |ieff⟩ ≡ P̂ |i⟩
and |feff⟩ ≡ P̂ |f ⟩, are not in general normalized. If M is
the Hamiltonian, then only diagonal matrix elements are
nonzero, and the denominator is canceled by a similar factor
in the numerator. For two-body transition operators, that is
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FIG. 1. The Q̂ box to second order in Vlow k (ellipses indicate
higher-order terms). The first line contains one-body contributions
and the others contain two-body contributions. Exchange diagrams,
though not shown, are included in our calculations.
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FIG. 2. (Color online) The X̂ box to first order in Vlow k . Solid
(red online) up- or down-going lines indicate neutrons and dotted
(blue online) lines indicate protons. The wavy horizontal lines, as in
Fig. 1, represent Vlow k , and the dashed horizontal lines represent the
0νββ-decay operator in Eq. (1).

not the case, and state norms must be explicitly computed.
Prior authors have approached the issue of norms in several
ways. References [2,29], for instance, choose to expand the
denominators and fold them into the numerators, thus com-
pletely eliminating all disconnected diagrams. The resulting
expressions, however, become complicated as the number of
folds increases, and the approach requires the construction
of a special basis as an intermediate step. For these reasons
Ref. [28] advocates keeping the denominator and numerator
separate, at the price of introducing disconnected diagrams
that only cancel when the sum is carried out completely. Here,
though we evaluate the Q̂ box to third order and the X̂ box
to second order in the interaction, we include only one fold in
each of the three factors on the left-hand side of Eq. (6), and so
opt to follow Refs. [2,28] in expanding the denominator and
folding with the numerator. The resulting expression for the
matrix elements of an operator Meff is approximately1
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where ε is the unperturbed energy of both the initial and final
states (we take the energies to be the same). Both Q̂ and X̂ are
matrices, with indices corresponding to the possible two-body

1Because of the need for a special basis, this expression is only
strictly correct when the terms in square brackets are diagonal. They
are close to diagonal in the calculations presented here.
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where E ¼ Ei " E0
i, p ¼ pi " p0

i, and P ¼ pi þ p0
i,

and vector (V), axial (A), pseudoscalar (P), and magnetic
(M) couplings, gVðp2Þ, gAðp2Þ, gPðp2Þ, and gMðp2Þ [9].
In chiral EFT, the p dependence is due to loop

corrections and pion propagators, to order Q2: gV;Aðp2Þ ¼
gV;Að1" 2 p2

!2
V;A
Þ, with gV ¼ 1, !V ¼ 850 MeV, !A ¼

2
ffiffiffi
3

p
=rA ¼ 1040 MeV; gPðp2Þ ¼ 2g!pnF!

m2
!þp2 " 4gAðp2Þ m

!2
A

and gM ¼ "p ""n ¼ 3:70, with pion decay constant
F!¼92:4MeV,m!¼138:04MeV, and g!pn¼13:05 [11].

At leading order Q0, only the momentum-independent
gA and gV terms contribute. They give rise to p & 1 MeV
GTand Fermi (#") single-$ and 2%$$ decay. On the other
hand, when studying processes that probe larger momen-
tum transfers, terms of order Q2 need to be included.
For 0%$$ decay with p& 100 MeV, the Q0 terms are
still most important and the axial term dominates. In SM
calculations [12], one has M0%$$

Q0;axial
=M0%$$ ' 1:20,

M0%$$
Q0;vector

=M0%$$ ' 0:15 compared to the final M0%$$.

Among the Q2 terms, form-factor-type (FF) contribu-
tions and the gP part of Ji;1b dominate. The pseudoscalar
term is important, because pgPðp2Þ ' 7:9 for p&
100 MeV in 0%$$ decay. They reduce the NMEs:
M0%$$

FF =M0%$$ ' "0:20 and M0%$$
gP =M0%$$ ' "0:20

[12]. The remaining Q2 terms are odd under parity, so
they require either a P-wave electron (whose phase space
is suppressed [10] by ' 0:03–0:06 for 0%$$ decay

candidates) or another odd-parity term to connect 0þ

states. Therefore, the P and E terms in Eqs. (1) and (2)
can be neglected, and only the term with the large
gM þ gV ¼ 4:70 is kept, leading to a small ' 5%
contribution [12].
At order Q3, 2b currents enter in chiral EFT [5]. These

include vector spatial, axial temporal, and axial spatial
parts [13]. The first two are odd under parity, and therefore
can be neglected. Consequently, for the cases studied here,
the dominant weak 2b currents only have an axial spatial
component, Jaxial2b ¼ PA

i<j Jij, with [5]

J12¼" gA
F2
!
½2d1ð!1#

"
1 þ!2#

"
2 Þþd2!)#

"
)*

" gA
2F2

!

1

m2
!þk2

"#
c4þ

1

4m

$
k)ð!))kÞ#")

þ4c3k + ð!1#
"
1 þ!2#

"
2 Þk" i

2m
k + ð!1"!2Þq#")

%
;

(3)

where #") ¼ ð#1 ) #2Þ" and the same for !), k ¼ 1
2 ðp0

2 "
p2 " p0

1 þ p1Þ and q¼ 1
4ðp1þp0

1"p2"p0
2Þ. Equation (3)

includes contributions from the one-pion-exchange c3, c4
parts and from the short-range couplings d1, d2, where due
to the Pauli principle only the combination d1 þ 2d2 ¼
cD=ðgA!&Þ enters (with !& ¼ 700 MeV).
We study the impact of chiral 2b currents in nuclei at the

normal-ordered 1b level by summing the second nucleon
over occupied states in a spin and isospin symmetric
reference state or core: Jeffi;2b ¼

P
jð1" PijÞJij, where Pij

is the exchange operator. The normal-ordered 1b level is
expected to be a very good approximation in medium-mass
and heavy nuclei, because of phase space arguments [14].
This has also been explored for chiral 2b currents in
nuclear matter [15], but limited to long wavelengths and
without connecting 2b currents and nuclear forces. Taking
a Fermi-gas approximation for the core and neglecting
tensorlike terms ðk + !k" 1

3 k
2!Þ#", we obtain the

normal-ordered 1b current:

Jeffi;2b ¼ "gA!i#
"
i

'

F2
!

"
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1

6m

$%
; (4)

where ' ¼ 2k3F=ð3!2Þ is the density of the reference state,
kF the corresponding Fermi momentum, and Ið'; PÞ is due
to the summation in the exchange term,

Ið';PÞ¼1"3m2
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FIG. 2 (color online). Nuclear matrix elements M0%$$ for
0%$$ decay. At order Q0, the NMEs include only the leading
p ¼ 0 axial and vector 1b currents. At the next order, all Q2

1b-current contributions not suppressed by parity are taken into
account. At order Q3, the thick bars are predicted from the long-
range parts of 2b currents (cD ¼ 0). The thin bars estimate the
theoretical uncertainty from the short-range coupling cD by
taking an extreme range for the quenching (see text). For
comparison, we show the SM results of Ref. [12] based on
phenomenological 1b currents only. The inset (representative

for 136Xe) shows that the GT part, M0%$$
GT ¼ R

dpCGTðpÞ, is
dominated by p& 100 MeV.
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TABLE II. The same as Table I, but for the CD-Bonn interaction instead of the Argonne V18 interaction.

Nucleus M ′0ν M ′0ν 2bc ⟨M ′0ν⟩ ε (%)
1bc Parameters of Ref. [7] Parameters of Ref. [8] with

a b c d a b c d
quenching

48Ca 0.649 0.615 0.605 0.561 0.542 0.606 0.606 0.570 0.569 0.58(0.03) 10
76Ge 5.849 5.086 4.904 4.356 4.082 4.990 4.858 4.371 4.175 4.60(0.40) 21
82Se 5.255 4.538 4.366 3.848 3.577 4.453 4.327 3.867 3.669 4.08(0.38) 22
96Zr 3.144 2.953 2.872 2.608 2.485 2.883 2.835 2.603 2.532 2.72(0.18) 12
100Mo 6.164 5.469 5.295 4.747 4.469 5.326 5.208 4.726 4.542 4.97(0.39) 19
110Pd 6.532 5.772 5.589 5.029 4.758 5.629 5.497 4.998 4.806 5.26(0.40) 19
116Cd 4.474 3.888 3.749 3.338 3.125 3.796 3.685 3.317 3.149 3.51(0.31) 22
124Sn 4.024 3.646 3.556 3.273 3.158 3.553 3.494 3.239 3.170 3.29(0.20) 16
130Te 4.642 4.063 3.921 3.473 3.242 3.958 3.861 3.468 3.313 3.66(0.32) 21
136Xe 2.602 2.276 2.196 1.943 1.812 2.206 2.149 1.926 1.837 2.04(0.18) 21

and still contribute non-negligibly at several hundred MeV. In
addition, the 0νββ matrix element contains a Fermi part, for
which we have assumed no quenching. While this assumption
may not be completely accurate, it is implied at low momentum
transfer by conservation of the vector current (CVC). The
overall quenching of the vector current is certain to be less
than that of the axial-vector current. (In the results listed in
Tables I and II the Fermi matrix elements are smaller than in
some other calculations because the isovector particle-particle
interaction was adjusted as explained in Ref. [15] to reflect
isospin symmetry).

Why is the QRPA 0νββ quenching less than that in the shell
model? Part of the reason, as we noted in the introduction,
is that in the QRPA the strength of the isoscalar pairing
interaction, which we call gT =0

pp , is adjusted to reproduce
the measured 2νββ rate. The suppression of 2νββ decay by
two-body currents implies that the value of gT =0

pp is smaller
than it would be without those currents. The smaller gT =0

pp in
turn implies less quenching for the 0νββ matrix element.
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FIG. 1. (Color online) Nuclear matrix elements M ′0ν for all the
nuclei considered here. The empty circles and squares represent the
results with the one-body current only, and the solid circles and
squares the average of the results with two-body currents included.
The error bars represent the dispersion in those values (see text).

Figure 2 illustrates this idea. The upper panel shows the
2νββ matrix element, with (solid red) and without (dashed
blue) two-body currents. The two vertical lines indicate the
values of gT =0

pp needed to reproduce the “measured” matrix
element [16], defined as that which gives the lifetime under
the assumption that gA is unquenched. The value of gT =0

pp that
works with the two-body currents is smaller. The lower panel
shows the consequences for 0νββ decay. The longer (purple)
arrow represents the quenching that would obtain if gT =0

pp were
not adjusted for the presence of the two-body currents (as is the
case in the shell model, where the interaction is fixed ahead
of time). The shorter arrow represents the same quenching
after adjusting gT =0

pp . The requirement that we reproduce 2νββ
decay thus means that the 0νββ matrix element is quenched
noticeably less than it would otherwise be.
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FIG. 2. (Color online) The quenching of 2νββ and 0νββ decay
by two-body currents in χEFT. Top: M ′2ν vs gT =0

pp , the strength
of isoscalar pairing. The solid (red) line is the unquenched matrix
element and the dashed (blue) line the matrix element with quenching
caused by two-body currents, with the parametrization EGM+δci

from Ref. [7]. The dotted black line is the measured matrix element
[16] under the assumption that gA is unquenched. The vertical lines
are the values of gT =0

pp that reproduce the measurement with and
without two-body currents. Bottom: The same, for M ′0ν (without a
measured value). The long (purple) arrow represents the quenching
when gT =0

pp is not readjusted to reproduce 2νββ decay. The short
(cyan) arrow is the quenching when gT =0

pp is readjusted.
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discussion. No matter the two-body operator of interest, how-
ever, the starting point is always the construction of projection
operators P̂ and Q̂ that divide the full many-body Hilbert space
into a model space, in which subsequent exact diagonalization
is carried out, and everything else. In our calculations in nuclei
with mass near A = 80, the model space consists of the 0f5/2,
1p3/2, 1p1/2, and 0g9/2 single-particle orbits, for both protons
and neutrons, above a 56Ni core in a harmonic-oscillator basis
of 13 major shells with h̄ω = 10.0 MeV.

After specifying the model space, one must define a
mapping between eigenstates of the full Hamiltonian and pro-
jections of those eigenstates onto the model space. In MBPT
this is done perturbatively. The result is a set of diagrams with
two incoming legs and two outgoing legs, with each diagram
representing a contribution to the two-body matrix elements
of the effective Hamiltonian or effective (two-body) transition
operator. The usual Feynman rules are used to evaluate the
diagrams, but to the set of familiar-looking diagrams one must
add “folded” diagrams, which eliminate the energy depen-
dence of the effective operator [15,16]. One way to organize
the sum of all diagrams is by grouping all those without
folds into a “Q̂ box” (for the Hamiltonian) or an “X̂ box”
(for the transition operator) and then writing the complete sum,
including folded diagrams, in terms of the Q̂ and X̂ boxes and
their derivatives with respect to unperturbed energies. The first
few terms in the Q̂ and X̂ boxes appear in Figs. 1 and 2.

Folding is significantly more complicated for a two-body
transition operator, which combines X̂ and Q̂ boxes, than for
the Hamiltonian, where only Q̂ boxes are needed. Effective
model-space operators in the basis of energy eigenstates are
always defined (for a bare operator M) via

⟨feff|Meff |ieff⟩
⟨feff|feff⟩

1
2 ⟨ieff|ieff⟩

1
2

= ⟨f |M |i⟩ , (6)

where the states that lie in the model space, |ieff⟩ ≡ P̂ |i⟩
and |feff⟩ ≡ P̂ |f ⟩, are not in general normalized. If M is
the Hamiltonian, then only diagonal matrix elements are
nonzero, and the denominator is canceled by a similar factor
in the numerator. For two-body transition operators, that is
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FIG. 1. The Q̂ box to second order in Vlow k (ellipses indicate
higher-order terms). The first line contains one-body contributions
and the others contain two-body contributions. Exchange diagrams,
though not shown, are included in our calculations.
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FIG. 2. (Color online) The X̂ box to first order in Vlow k . Solid
(red online) up- or down-going lines indicate neutrons and dotted
(blue online) lines indicate protons. The wavy horizontal lines, as in
Fig. 1, represent Vlow k , and the dashed horizontal lines represent the
0νββ-decay operator in Eq. (1).

not the case, and state norms must be explicitly computed.
Prior authors have approached the issue of norms in several
ways. References [2,29], for instance, choose to expand the
denominators and fold them into the numerators, thus com-
pletely eliminating all disconnected diagrams. The resulting
expressions, however, become complicated as the number of
folds increases, and the approach requires the construction
of a special basis as an intermediate step. For these reasons
Ref. [28] advocates keeping the denominator and numerator
separate, at the price of introducing disconnected diagrams
that only cancel when the sum is carried out completely. Here,
though we evaluate the Q̂ box to third order and the X̂ box
to second order in the interaction, we include only one fold in
each of the three factors on the left-hand side of Eq. (6), and so
opt to follow Refs. [2,28] in expanding the denominator and
folding with the numerator. The resulting expression for the
matrix elements of an operator Meff is approximately1

⟨cd|Meff |ab⟩

=
([

1 + 1
2

dQ̂(ε)
dε

+ 1
2

d2Q̂(ε)
d2ε

Q̂(ε) + 3
8

(
dQ̂(ε)

dε

)2

. . .

]

×
[
X̂(ε) + Q̂(ε)

∂X̂(εf , ε)
∂εf

∣∣∣∣
εf =ε

+ ∂X̂(ε, εi)
∂εi

∣∣∣∣
εi=ε

Q̂(ε) . . .

]

×
[

1 + 1
2

dQ̂(ε)
dε

+ 1
2

d2Q̂(ε)
d2ε

Q̂(ε)

+ 3
8

(
dQ̂(ε)

dε

)2

. . .

])

cd,ab

, (7)

where ε is the unperturbed energy of both the initial and final
states (we take the energies to be the same). Both Q̂ and X̂ are
matrices, with indices corresponding to the possible two-body

1Because of the need for a special basis, this expression is only
strictly correct when the terms in square brackets are diagonal. They
are close to diagonal in the calculations presented here.
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MBPT

where E ¼ Ei " E0
i, p ¼ pi " p0

i, and P ¼ pi þ p0
i,

and vector (V), axial (A), pseudoscalar (P), and magnetic
(M) couplings, gVðp2Þ, gAðp2Þ, gPðp2Þ, and gMðp2Þ [9].
In chiral EFT, the p dependence is due to loop

corrections and pion propagators, to order Q2: gV;Aðp2Þ ¼
gV;Að1" 2 p2

!2
V;A
Þ, with gV ¼ 1, !V ¼ 850 MeV, !A ¼

2
ffiffiffi
3

p
=rA ¼ 1040 MeV; gPðp2Þ ¼ 2g!pnF!

m2
!þp2 " 4gAðp2Þ m

!2
A

and gM ¼ "p ""n ¼ 3:70, with pion decay constant
F!¼92:4MeV,m!¼138:04MeV, and g!pn¼13:05 [11].

At leading order Q0, only the momentum-independent
gA and gV terms contribute. They give rise to p & 1 MeV
GTand Fermi (#") single-$ and 2%$$ decay. On the other
hand, when studying processes that probe larger momen-
tum transfers, terms of order Q2 need to be included.
For 0%$$ decay with p& 100 MeV, the Q0 terms are
still most important and the axial term dominates. In SM
calculations [12], one has M0%$$

Q0;axial
=M0%$$ ' 1:20,

M0%$$
Q0;vector

=M0%$$ ' 0:15 compared to the final M0%$$.

Among the Q2 terms, form-factor-type (FF) contribu-
tions and the gP part of Ji;1b dominate. The pseudoscalar
term is important, because pgPðp2Þ ' 7:9 for p&
100 MeV in 0%$$ decay. They reduce the NMEs:
M0%$$

FF =M0%$$ ' "0:20 and M0%$$
gP =M0%$$ ' "0:20

[12]. The remaining Q2 terms are odd under parity, so
they require either a P-wave electron (whose phase space
is suppressed [10] by ' 0:03–0:06 for 0%$$ decay

candidates) or another odd-parity term to connect 0þ

states. Therefore, the P and E terms in Eqs. (1) and (2)
can be neglected, and only the term with the large
gM þ gV ¼ 4:70 is kept, leading to a small ' 5%
contribution [12].
At order Q3, 2b currents enter in chiral EFT [5]. These

include vector spatial, axial temporal, and axial spatial
parts [13]. The first two are odd under parity, and therefore
can be neglected. Consequently, for the cases studied here,
the dominant weak 2b currents only have an axial spatial
component, Jaxial2b ¼ PA

i<j Jij, with [5]

J12¼" gA
F2
!
½2d1ð!1#

"
1 þ!2#

"
2 Þþd2!)#

"
)*

" gA
2F2

!

1

m2
!þk2

"#
c4þ

1

4m

$
k)ð!))kÞ#")

þ4c3k + ð!1#
"
1 þ!2#

"
2 Þk" i

2m
k + ð!1"!2Þq#")

%
;

(3)

where #") ¼ ð#1 ) #2Þ" and the same for !), k ¼ 1
2 ðp0

2 "
p2 " p0

1 þ p1Þ and q¼ 1
4ðp1þp0

1"p2"p0
2Þ. Equation (3)

includes contributions from the one-pion-exchange c3, c4
parts and from the short-range couplings d1, d2, where due
to the Pauli principle only the combination d1 þ 2d2 ¼
cD=ðgA!&Þ enters (with !& ¼ 700 MeV).
We study the impact of chiral 2b currents in nuclei at the

normal-ordered 1b level by summing the second nucleon
over occupied states in a spin and isospin symmetric
reference state or core: Jeffi;2b ¼

P
jð1" PijÞJij, where Pij

is the exchange operator. The normal-ordered 1b level is
expected to be a very good approximation in medium-mass
and heavy nuclei, because of phase space arguments [14].
This has also been explored for chiral 2b currents in
nuclear matter [15], but limited to long wavelengths and
without connecting 2b currents and nuclear forces. Taking
a Fermi-gas approximation for the core and neglecting
tensorlike terms ðk + !k" 1

3 k
2!Þ#", we obtain the

normal-ordered 1b current:

Jeffi;2b ¼ "gA!i#
"
i

'

F2
!

"
cD

gA!&
þ 2

3
c3

p2

4m2
! þ p2

þ Ið'; PÞ
#
1

3
ð2c4 " c3Þ þ

1

6m

$%
; (4)

where ' ¼ 2k3F=ð3!2Þ is the density of the reference state,
kF the corresponding Fermi momentum, and Ið'; PÞ is due
to the summation in the exchange term,

Ið';PÞ¼1"3m2
!

2k2F
þ3m3

!

2k3F
arccot

"
m2

!þP2=4"k2F
2m!kF

%

þ 3m2
!

4k3FP

#
k2Fþm2

!"
P2

4

$
log

"
m2

!þðkF"P=2Þ2
m2

!þðkFþP=2Þ2
%
:

(5)
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FIG. 2 (color online). Nuclear matrix elements M0%$$ for
0%$$ decay. At order Q0, the NMEs include only the leading
p ¼ 0 axial and vector 1b currents. At the next order, all Q2

1b-current contributions not suppressed by parity are taken into
account. At order Q3, the thick bars are predicted from the long-
range parts of 2b currents (cD ¼ 0). The thin bars estimate the
theoretical uncertainty from the short-range coupling cD by
taking an extreme range for the quenching (see text). For
comparison, we show the SM results of Ref. [12] based on
phenomenological 1b currents only. The inset (representative

for 136Xe) shows that the GT part, M0%$$
GT ¼ R

dpCGTðpÞ, is
dominated by p& 100 MeV.

PRL 107, 062501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

5 AUGUST 2011

062501-2

J. Menéndez, D. Gazit, A. Schwenk, 
Phys. Rev. Lett. 107, 062501 (2011)
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TABLE II. The same as Table I, but for the CD-Bonn interaction instead of the Argonne V18 interaction.

Nucleus M ′0ν M ′0ν 2bc ⟨M ′0ν⟩ ε (%)
1bc Parameters of Ref. [7] Parameters of Ref. [8] with

a b c d a b c d
quenching

48Ca 0.649 0.615 0.605 0.561 0.542 0.606 0.606 0.570 0.569 0.58(0.03) 10
76Ge 5.849 5.086 4.904 4.356 4.082 4.990 4.858 4.371 4.175 4.60(0.40) 21
82Se 5.255 4.538 4.366 3.848 3.577 4.453 4.327 3.867 3.669 4.08(0.38) 22
96Zr 3.144 2.953 2.872 2.608 2.485 2.883 2.835 2.603 2.532 2.72(0.18) 12
100Mo 6.164 5.469 5.295 4.747 4.469 5.326 5.208 4.726 4.542 4.97(0.39) 19
110Pd 6.532 5.772 5.589 5.029 4.758 5.629 5.497 4.998 4.806 5.26(0.40) 19
116Cd 4.474 3.888 3.749 3.338 3.125 3.796 3.685 3.317 3.149 3.51(0.31) 22
124Sn 4.024 3.646 3.556 3.273 3.158 3.553 3.494 3.239 3.170 3.29(0.20) 16
130Te 4.642 4.063 3.921 3.473 3.242 3.958 3.861 3.468 3.313 3.66(0.32) 21
136Xe 2.602 2.276 2.196 1.943 1.812 2.206 2.149 1.926 1.837 2.04(0.18) 21

and still contribute non-negligibly at several hundred MeV. In
addition, the 0νββ matrix element contains a Fermi part, for
which we have assumed no quenching. While this assumption
may not be completely accurate, it is implied at low momentum
transfer by conservation of the vector current (CVC). The
overall quenching of the vector current is certain to be less
than that of the axial-vector current. (In the results listed in
Tables I and II the Fermi matrix elements are smaller than in
some other calculations because the isovector particle-particle
interaction was adjusted as explained in Ref. [15] to reflect
isospin symmetry).

Why is the QRPA 0νββ quenching less than that in the shell
model? Part of the reason, as we noted in the introduction,
is that in the QRPA the strength of the isoscalar pairing
interaction, which we call gT =0

pp , is adjusted to reproduce
the measured 2νββ rate. The suppression of 2νββ decay by
two-body currents implies that the value of gT =0

pp is smaller
than it would be without those currents. The smaller gT =0

pp in
turn implies less quenching for the 0νββ matrix element.
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FIG. 1. (Color online) Nuclear matrix elements M ′0ν for all the
nuclei considered here. The empty circles and squares represent the
results with the one-body current only, and the solid circles and
squares the average of the results with two-body currents included.
The error bars represent the dispersion in those values (see text).

Figure 2 illustrates this idea. The upper panel shows the
2νββ matrix element, with (solid red) and without (dashed
blue) two-body currents. The two vertical lines indicate the
values of gT =0

pp needed to reproduce the “measured” matrix
element [16], defined as that which gives the lifetime under
the assumption that gA is unquenched. The value of gT =0

pp that
works with the two-body currents is smaller. The lower panel
shows the consequences for 0νββ decay. The longer (purple)
arrow represents the quenching that would obtain if gT =0

pp were
not adjusted for the presence of the two-body currents (as is the
case in the shell model, where the interaction is fixed ahead
of time). The shorter arrow represents the same quenching
after adjusting gT =0

pp . The requirement that we reproduce 2νββ
decay thus means that the 0νββ matrix element is quenched
noticeably less than it would otherwise be.
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FIG. 2. (Color online) The quenching of 2νββ and 0νββ decay
by two-body currents in χEFT. Top: M ′2ν vs gT =0

pp , the strength
of isoscalar pairing. The solid (red) line is the unquenched matrix
element and the dashed (blue) line the matrix element with quenching
caused by two-body currents, with the parametrization EGM+δci

from Ref. [7]. The dotted black line is the measured matrix element
[16] under the assumption that gA is unquenched. The vertical lines
are the values of gT =0

pp that reproduce the measurement with and
without two-body currents. Bottom: The same, for M ′0ν (without a
measured value). The long (purple) arrow represents the quenching
when gT =0

pp is not readjusted to reproduce 2νββ decay. The short
(cyan) arrow is the quenching when gT =0

pp is readjusted.
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Open questions

๏ Isospin mixing and restoration have to be done in the future. Why 
is it so difficult (perhaps impossible) with the current Gogny 
EDFs? 

๏ Triaxiality has to be taken into account in A=76 and A=100 decays 
(at least). 

๏ How relevant is the proper description of the spectra in 0νββ 
NMEs? 

๏ Occupation numbers with EDF to define physically sound 
valence spaces. 

๏ Odd-odd nuclei is still a major challenge for GCM calculations. 

๏ Computational time?!?


