Lattice QCD₂ effective action with Bogoliubov transformations

Mauro Pastore

joint work with Prof. Sergio Caracciolo (in preparation)

INFN - National Institute for Nuclear Physics Università degli Studi di Milano

August 05, 2018

XIIIth Quark Confinement and the Hadron Spectrum

Keypoints and outline

Summary

- Presentation of the 't Hooft model [tH74, BG78, Li86]:
 Wilson lattice formulation, Coulomb gauge, transfer matrix.
- From canonical Bogoliubov formalism [Bar88, KN02] to quasiparticle functional representation [CLP07, CPV09].
- Effective action for colourless mesons.

Main results

- Full lattice formulation of a mesonic effective theory, from quarks and gluons to complete bosonization.
- Natural interpretation of the hypothesis of boson dominance as a projection on colourless mesonic states.

Strategy

Adopt tools and intuition from many-body theories in a relativistic setting.

QCD₂ on the lattice (T=0, $\mu=0$): motivation

QCD in 2 space-time dimensions and $SU(N_c)$ gauge symmetry.

Toy model for strong interaction

- Quite easy (gauge fixing).
- Solvable for $N_c \to \infty$ (planar limit, 't Hooft '74).
- Non trivial phase space (confinement, chiral symmetry breaking).

Why on the lattice?

- Usual reasons: regularized from the start, non perturbative.
- The particles space of states can be built explicitly, via the formalism of second quantization and transfer matrix.

 a_0 \downarrow a_1

⇒ It's an ideal benchmark for our method!

Fermionic action

Dirac-Wilson action

$$S_{F} = a_{0}a_{1} \sum_{x \in (a_{0}\mathbb{Z}) \times (a_{1}\mathbb{Z})} \left\{ \left(m + \frac{r_{0}}{a_{0}} + \frac{r_{1}}{a_{1}} \right) \bar{\psi}(x) \psi(x) - \left[\bar{\psi}(x) \frac{r_{1} - \gamma^{1}}{2a_{1}} U_{1}(x) \psi(x + a_{1}\hat{1}) + \bar{\psi}(x + a_{1}\hat{1}) \frac{r_{1} + \gamma^{1}}{2a_{1}} U_{1}^{\dagger}(x) \psi(x) \right] - \left[\bar{\psi}(x) \frac{r_{0} - \gamma^{0}}{2a_{0}} U_{0}(x) \psi(x + a_{0}\hat{0}) + \bar{\psi}(x + a_{0}\hat{0}) \frac{r_{0} + \gamma^{0}}{2a_{0}} U_{0}^{\dagger}(x) \psi(x) \right] \right\}$$

- ψ , $\bar{\psi}$ fermionic fields (2-component spinors in SU(N_c) fundamental representation);
- γ -matrices terms: lattice discrete derivatives;
- terms with r, Wilson parameter: avoid fermion doubling.

Pure gauge action and weak coupling expansion

 U_{μ} parallel transporter in direction μ . Exponential map:

$$U_{\mu}(x) = e^{igaA_{\mu}(x)}$$

Wilson action

$$S_G = rac{1}{a_0 a_1} \sum_P rac{1}{g^2} \left[2N_c - \operatorname{Tr} \left(U_P + U_P^\dagger
ight)
ight]$$

with U_P plaquette variable. Coulomb gauge in 2 dimensions:

$$U_1(x) = 1 \iff A_1(x) = 0$$

't Hooft limit: large $N_c \iff$ weak coupling

$$N_c \to \infty, \qquad g \to 0, \qquad g^2 N_c \text{ fixed}$$

Free gluon propagator at lowest order in $g: (\rightarrow see Zwanziger talk!)$

$$\langle A_0^I(x)A_0^m(y)\rangle = \delta_{Im} \frac{\delta_{x^0,y^0}}{a_0} \int_{-\pi/a_1}^{\pi/a_1} \frac{\mathrm{d}p}{2\pi} \frac{e^{ip(x^1-y^1)}}{\hat{p}^2}$$

Two equivalent representation for the partition function?

Functional representation

$$\mathcal{Z} = \int \! \mathcal{D} \mathit{U} \, \mathcal{D} \psi \, \mathcal{D} ar{\psi} \, \mathrm{e}^{-\mathit{S}[\mathit{U},\psi,ar{\psi}]}$$

with
$$S[U, \psi, \bar{\psi}] = S_G[U] + S_F[U, \psi, \bar{\psi}]$$
 classical action.

 \implies correlation functions.

Statistical/canonical representation

$$\mathcal{Z} = \lim_{\beta \to \infty} \int \! \mathcal{D} \mathit{U} \, \operatorname{e}^{-S_G[\mathit{U}]} \operatorname{Tr}^F \operatorname{e}^{-\beta \hat{H}_F} = \int \! \mathcal{D} \mathit{U} \operatorname{e}^{-S_G[\mathit{U}]} \operatorname{Tr}^F \prod_t \hat{\mathcal{T}}_{t,t+1}$$

with \hat{H}_F fermions Hamiltonian, $\hat{\mathcal{T}}_{t,t+1}$ transfer matrix.

⇒ thermodynamics.

Which connection?

Building up the fermionc space of states: Fock space

Defined at each time-slice.

Canonical creation and annihilation operators:

$$\left\{\hat{u}_J^\dagger,\hat{u}_K\right\} = \left\{\hat{v}_J^\dagger,\hat{v}_K\right\} = \delta_{JK}, \quad \left\{\hat{u}_J,\hat{u}_K\right\} = \left\{\hat{v}_J,\hat{v}_K\right\} = \cdots = 0$$

with J, K multi-indices: internal (colour, flavour), Dirac and spatial. Vacuum state:

$$|0\rangle = \bigotimes_{\kappa} |0\rangle_{\kappa}$$
 $\hat{u}_{\kappa} |0\rangle_{\kappa} = 0$, $\hat{v}_{\kappa} |0\rangle_{\kappa} = 0$

Basis of coherent states:

$$|\rho,\sigma\rangle = \exp\left(-\sum_{K}\rho_{K}\hat{u}_{K}^{\dagger} - \sum_{K}\sigma_{K}\hat{v}_{K}^{\dagger}\right)|0\rangle$$

with ρ_K , σ_K anticommuting symbols (Grassmann).

Operatorial \iff functional representation of \mathcal{Z}_{F}

Resolution of unity:

$$\hat{\mathbb{I}} = \int\!\prod_{\mathcal{K}} \mathrm{d}\rho_{\mathcal{K}}^{\dagger} \mathrm{d}\rho_{\mathcal{K}} \mathrm{d}\sigma_{\mathcal{K}}^{\dagger} \mathrm{d}\sigma_{\mathcal{K}} \, \mathrm{e}^{-\sum_{J} \rho_{J}^{\dagger} \rho_{J} - \sum_{J} \sigma_{J}^{\dagger} \sigma_{J}} \, |\rho,\sigma\rangle\langle\rho,\sigma|$$

In the partition function:

$$\begin{split} \mathcal{Z}_F &= \mathsf{Tr}^F \prod_t \hat{\mathcal{T}}_{t,t+1} \\ &= \mathsf{Tr}^F \prod_t \hat{\mathbb{I}}_t \hat{\mathcal{T}}_{t,t+1} \\ &= \mathsf{Tr}^F \prod_t \int \left[\mathrm{d}\rho_t^\dagger \mathrm{d}\rho_t \mathrm{d}\sigma_t^\dagger \mathrm{d}\sigma_t \right] \, e^{-\rho_t^\dagger \rho_t - \sigma_t^\dagger \sigma_t} \, \langle \rho_t, \sigma_t | \hat{\mathcal{T}}_{t,t+1} | \rho_{t+1}, \sigma_{t+1} \rangle \\ &= \int \prod_t \left[\mathrm{d}\rho_t^\dagger \mathrm{d}\rho_t \mathrm{d}\sigma_t^\dagger \mathrm{d}\sigma_t \right] \, e^{-S_F[\rho,\sigma]} \end{split}$$

A theory of quasiparticles? Bogoliubov transformations

Unitary transformations of the algebra of canonical operators

Quasiparticle operators

$$\hat{a}_{J} = \mathcal{R}_{JK}^{1/2} \left(\hat{u}_{K} - \mathcal{F}_{KI}^{\dagger} \hat{v}_{I}^{\dagger} \right) \qquad \hat{b}_{J} = \left(\hat{v}_{K} + \hat{u}_{I}^{\dagger} \mathcal{F}_{IK}^{\dagger} \right) \mathcal{R}_{KJ}^{1/2}$$

$$\hat{a}_{J}^{\dagger} = \left(\hat{u}_{K}^{\dagger} - \hat{v}_{I} \mathcal{F}_{IK} \right) \mathcal{R}_{KJ}^{1/2} \qquad \hat{b}_{J}^{\dagger} = \mathcal{R}_{JK}^{1/2} \left(\hat{v}_{K}^{\dagger} + \mathcal{F}_{KI} \hat{u}_{I} \right)$$

with

$$\mathcal{R} = \left(1 + \mathcal{F}^{\dagger} \mathcal{F}\right)^{-1} \qquad \mathring{\mathcal{R}} = \left(1 + \mathcal{F} \mathcal{F}^{\dagger}\right)^{-1}$$

Mixing of creation and annihilation operators \implies new vacuum state:

$$|\mathcal{F}_t
angle = \exp\left(\hat{u}^\dagger \mathcal{F}_t^\dagger \hat{v}^\dagger
ight)|0
angle$$

 $(\rightarrow \mathsf{see}\ \mathsf{Reinhardt}\ \mathsf{and}\ \mathsf{Campagnari}\ \mathsf{talks!})$

New coherent states:

$$|\alpha, \beta; \mathcal{F}_t \rangle = \exp\left(-\alpha \hat{\mathbf{a}}^\dagger - \beta \hat{b}^\dagger\right) |\mathcal{F}_t \rangle$$

Quasiparticles in functional representation

Original theory $\stackrel{Bogoliubov}{\Longrightarrow}$ Quasiparticles theory unitarly equivalent:

$$\mathcal{Z} = \int \mathcal{D} U \, \mathrm{e}^{-S_G[U]} \mathrm{e}^{-S_0[\mathcal{F}]} \int \prod_t \left[\mathrm{d} \alpha_t^\dagger \mathrm{d} \alpha_t \mathrm{d} \beta_t^\dagger \mathrm{d} \beta_t \right] \, \mathrm{e}^{-S_Q[\alpha,\beta;\mathcal{F}]}$$

Quasiparticles action

$$S_{Q}[\alpha, \beta; \mathcal{F}] = -\sum_{t} \left[\beta_{t} \mathcal{I}_{t}^{(2,1)} \alpha_{t} + \alpha_{t}^{\dagger} \mathcal{I}_{t}^{(1,2)} \beta_{t}^{\dagger} + \alpha_{t}^{\dagger} (\nabla_{t} - \mathcal{H}_{t}) \alpha_{t+1} - \beta_{t+1} (\mathring{\nabla}_{t} - \mathring{\mathcal{H}}_{t}) \beta_{t}^{\dagger} \right]$$

- $\mathcal{I}^{(2,1)}$, $\mathcal{I}^{(1,2)}$ mixing terms;
- \mathcal{H} , $\mathring{\mathcal{H}}$ quasiparticles energies;
- ∇ , $\mathring{\nabla}$ covariant derivatives.

Vacuum contribution: variational principle

Vacuum action

$S_0[\mathcal{F}]$:

- does not contains quasiparticles excitations;
- ullet depends on the parameters \mathcal{F} ;
- ullet depends on the gauge fields $U_{\mu}.$
- ⇒ it is a "vacuum contribution".

The physical vacuum must be the state of minimal energy

- $\implies \mathcal{F}$ can be fixed via a variational principle
- \implies saddle point equations for \mathcal{F} , \mathcal{F}^{\dagger} .

But the equations depend on the gauge fields configuration!

In weak coupling, can be solved after averaging over gauge fields:

- expand to second order in A_0 ,
- use $\langle A_0 \rangle = 0$ and substitute $\langle A_0 A_0 \rangle$ with the free gluon propagator.

Vacuum contribution in continuum limit

Bogoliubov-Valatin angle: $\mathcal{F}(q) = \tan \frac{\theta_q}{2}$.

Vacuum contribution

In continuum limit, we get

$$S_0[\theta] = -\frac{VN_c}{2\pi} \left[\int dq \left(m\cos\theta_q + q\sin\theta_q \right) - \frac{g^2 \left(N_c^2 - 1 \right)}{4\pi N_c} \int dq \int dk \frac{1}{(q-k)^2} \sin^2\frac{\theta_q - \theta_k}{2} \right]$$

$$\omega_q^0 = m\cos\theta_q + q\sin\theta_q - \gamma \int dk \frac{1}{(q-k)^2} \sin^2\frac{\theta_q - \theta_k}{2}$$

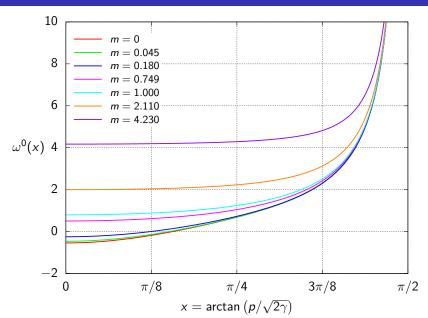
Saddle point equation

$$-m\sin\theta_q + q\cos\theta_q - \frac{\gamma}{2}\int dk \frac{\sin(\theta_q - \theta_k)}{(q - k)^2} = 0$$

heta and chiral symmetry breaking $^{ extsf{[LWB87, JLLX17]}}$



Vacuum dispersion relation



Quasiparticles on the saddle point

Mixing term

$$\int \frac{\mathrm{d}\boldsymbol{q}}{2\pi} \, \mathcal{I}_{\boldsymbol{q}} \left[\beta(\boldsymbol{q}) \alpha(-\boldsymbol{q}) + \alpha^{\dagger}(\boldsymbol{q}) \beta(-\boldsymbol{q}) \right]$$

$$\mathcal{I}_{q} = -m\sin\theta_{q} + q\cos\theta_{q} - \gamma \int dk \frac{1}{(q-k)^{2}} \cos\frac{\theta_{q} - \theta_{k}}{2} \sin\frac{\theta_{q} - \theta_{k}}{2}$$

 \implies null on the saddle point!

Energy term

$$\int rac{\mathrm{d}oldsymbol{q}}{2\pi} \left[\omega_{oldsymbol{q}}^{lpha} lpha^{\dagger}(oldsymbol{q}) lpha(-oldsymbol{q}) + \omega_{oldsymbol{q}}^{eta} eta(oldsymbol{q}) eta^{\dagger}(-oldsymbol{q})
ight]$$

$$\omega_q^{\alpha,\beta} = m\cos\theta_q + q\sin\theta_q + \frac{\gamma}{2}\int\frac{\mathrm{d}k}{2\pi}\frac{\cos(\theta_q - \theta_k)}{(q - k)^2}$$

IR divergent on the saddle point \implies quasiparticles confinement.

How to build a theory of mesons?

The average over gauge fields produces a quartic fermionic theory:

$$S_Q \simeq S_Q^{(0)} + gS_Q^{(1)} + g^2 S_Q^{(2)}$$

$$\implies \exp(-S_Q) \simeq \exp\left(-S_Q^{(0)} - g^2 S_Q^{(2)}\right) \left[1 - gS_Q^{(1)} + \frac{1}{2}g^2 \left(S_Q^{(1)}\right)^2\right]$$

Possible interpretation as a quadratic theory for the composite fields

$$\Gamma_{n} = \sum_{J,K} \Phi_{n;JK} \beta_{J} \alpha_{K} \qquad \Gamma_{n}^{\dagger} = \sum_{J,K} \Phi_{n;JK}^{\dagger} \alpha_{J}^{\dagger} \beta_{K}^{\dagger}$$

Not so easy!

• Bilinears in Grassmann fields are not proper complex fields:

$$(\alpha_J)^2 = 0 \implies (\Gamma_n)^{\Omega} = 0$$
 for a certain $\Omega \in \mathbb{N}$

 \implies functional measure $\mathcal{D}\Gamma \mathcal{D}\Gamma^{\dagger}$ not well defined.

• Energy terms still quadratic, and not quartic, in fermion fields.

Mesons as two-particle states in the Fock space

In canonical formalism: mesons as quasiparticles condensates

$$|\Phi_t; \mathcal{F}_t
angle = \exp \left(\hat{a}^\dagger \Phi_t^\dagger \hat{b}^\dagger \right) |\mathcal{F}_t
angle$$

Physical assumption: **boson dominance** \implies the partition function is "well approximated" by its **projection on composites subspace**:

$$egin{aligned} \mathcal{Z}_{ extit{ extit{F}}} &= \mathsf{Tr}^{ extit{ extit{F}}} \prod_{t} \hat{\mathcal{T}}_{t,t+1} \ &\simeq \mathsf{Tr}^{ extit{ extit{F}}} \prod_{t} \hat{\mathcal{P}}_{t} \hat{\mathcal{T}}_{t,t+1} := \mathcal{Z}_{ extit{ extit{C}}} \end{aligned}$$

Projection operator:

$$\hat{\mathcal{P}}_t[\mathcal{F}_t] = \int \frac{\left[\mathrm{d}\Phi_t^\dagger\,\mathrm{d}\Phi_t\right]}{\langle\Phi_t;\mathcal{F}_t|\Phi_t;\mathcal{F}_t\rangle} \left|\Phi_t;\mathcal{F}_t\rangle\langle\mathcal{F}_t;\Phi_t\right|$$

A lattice theory of mesons

After projection

$$\mathcal{Z}_c = \int \mathcal{D}\Phi^{\dagger} \, \mathcal{D}\Phi \, e^{-S_0[U;\mathcal{F}] - S_M[\Phi,\Phi^{\dagger},U;\mathcal{F}]}$$

Meson effective action

$$S_{M}[\Phi,\Phi^{\dagger},\textit{U};\mathcal{F}] = \sum_{t} \mathsf{Tr} \left\{ \log \left(1 + \Phi_{t}^{\dagger} \Phi_{t} \right) - \log \left(\mathcal{D}_{t,t+1}[\Phi,\Phi^{\dagger}] \right) \right\}$$

 $\mathcal{D}_{t,t+1}$ is a term linear and quartic in the Φ fields.

The action is still not a polynomial in Φ , Φ^{\dagger} !

A way out:

- choose Φ to describe colourless mesons;
- take the large N_c limit;
- average over gauge and evaluate the result on the saddle point.

Colourless mesons in the large N_c limit

Structure of a colourless meson

- specialize multi-index J = (p, i): space, colour;
- define a suitable creator operator: $\hat{\Gamma}^{\dagger}(p,q) = \sum_{i=1}^{N_c} \frac{\hat{a}_i^{\dagger}(p)\hat{b}_i^{\dagger}(q)}{\sqrt{N_c}}$
- define suitable structure matrices: $\Phi_t^\dagger(p,q) = \mathbb{I}_{N_c} \frac{\phi_t^\dagger(p,q)}{\sqrt{N_c}}$

Quadratic mesonic action:

$$\begin{split} S_{M} &\underset{N_{c} \rightarrow \infty}{\longrightarrow} \sum_{t} \underset{\text{space}}{\text{tr}} \Big\{ -\phi_{t} \left(\phi_{t+1}^{\dagger} - \phi_{t}^{\dagger} \right) + \left(\mathring{\mathcal{H}}_{t}^{\prime} \phi_{t} \phi_{t+1}^{\dagger} + \mathcal{H}_{t}^{\prime} \phi_{t+1}^{\dagger} \phi_{t} \right) \\ &+ \frac{1}{2} \left(-2 \phi_{t+1}^{\dagger} \mathring{\mathcal{H}}_{t}^{\prime} \phi_{t} \mathcal{H}_{t}^{\prime} + \phi_{t} \mathcal{I}_{t}^{(1,2)} \phi_{t} \mathcal{I}_{t}^{(1,2)} + \phi_{t}^{\dagger} \mathcal{I}_{t}^{(2,1)} \phi_{t}^{\dagger} \mathcal{I}_{t}^{(2,1)} \right) \Big\} \end{split}$$

To put it in an usual form of the type $\phi^{\dagger}\phi$, diagonalize it with respect to the doublets $(\phi^{\dagger},\phi) \implies$ Bars-Green equations for colourless mesons [BG78, KN02].

Conclusions and outlooks

Results

Starting from the fundamental theory of quarks and gluons (QCD_2) , we obtained

- an effective theory for mesons on the lattice which reproduces, in the continuum limit, results well known from Hamiltonian canonical approach;
- a remarkable physical insight about boson dominance, interpreted as a projection on composite states.

Future perspectives

- application to more realistic models of strong interaction;
- study of models at finite temperature and chemical potential (projection on diquarks states? colour superconductivity? deconfinement?).

References

- W. A. Bardeen, Schrödinger Approach to Ground State Wave Functionals, Variational Calculation in Quantum Field Theory. Proceedings, International Workshop, Wangerooge, F.R. Germany, September 1-4, 1987, 1988.
- ▶ I. Bars and M. B. Green, *Poincare and Gauge Invariant Two-Dimensional QCD*, Phys. Rev. **D17** (1978), 537.
- S. Caracciolo, V. Laliena, and F. Palumbo, Composite boson dominance in relativistic field theories, JHEP 02 (2007), 034.
- S. Caracciolo, F. Palumbo, and G. Viola, Bogoliubov transformations and fermion condensates in lattice field theories, Annals Phys. 324 (2009), 584–599.
- Y. Jia, S. Liang, L. Li, and X. Xiong, Solving the Bars-Green equation for moving mesons in two-dimensional QCD, JHEP 11 (2017), 151.
- Yu. S. Kalashnikova and A. V. Nefediev, Two-dimensional QCD in the Coulomb gauge, Phys. Usp. 45 (2002), 347–368, [Usp. Fiz. Nauk172,378(2002)].
- M. Li, Large N Two-dimensional QCD and Chiral Symmetry, Phys. Rev. D34 (1986), 3888–3893.
- M. Li, L. Wilets, and M. C. Birse, QCD in Two-dimensions in the Axial Gauge, J. Phys. G13 (1987), 915–923.
- ► G. 't Hooft, A Two-Dimensional Model for Mesons, Nucl. Phys. **B75** (1974), 461–470.

Thank you for your attention.