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Keypoints and outline

Summary

@ Presentation of the 't Hooft model [tH74, BG78, Li86]:
Wilson lattice formulation, Coulomb gauge, transfer matrix.

@ From canonical Bogoliubov formalism [Bar88, KN02]
to quasiparticle functional representation [CLP07, CPV09].

o Effective action for colourless mesons.

Main results

| A\

@ Full lattice formulation of a mesonic effective theory,
from quarks and gluons to complete bosonization.

@ Natural interpretation of the hypothesis of boson dominance
as a projection on colourless mesonic states.

Strategy

Adopt tools and intuition from many-body theories in a relativistic setting.
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QCD; on the lattice (T = 0, 1 = 0): motivation

QCD in 2 space-time dimensions and SU(N,) gauge symmetry.

Toy model for strong interaction

@ Quite easy (gauge fixing).
@ Solvable for N. — oo (planar limit, 't Hooft '74).

@ Non trivial phase space (confinement, chiral symmetry breaking).

Why on the lattice?

@ Usual reasons: regularized from the start, . . .
non perturbative. ao

@ The particles space of states can be built o T
explicitly, via the formalism of second
quantization and transfer matrix. . . .

— It's an ideal benchmark for our method!



Fermionic action

Dirac-Wilson action

SF = agay Z {(m + o + ;—1) IZ_J(XW(X)
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V.

e 1, 9 fermionic fields (2-component spinors in SU(N,) fundamental
representation);

@ 7-matrices terms: lattice discrete derivatives;

@ terms with r, Wilson parameter: avoid fermion doubling.



Pure gauge action and weak coupling expansion

U,, parallel transporter in direction p. Exponential map:

UM(X) — eigaAu(X)

Wilson action

1 1

with Up plaquette variable. Coulomb gauge in 2 dimensions:

Ul(X) =1 <— Al(X) =0

't Hooft limit: large N. <= weak coupling

|

N, — oo, g — 0, g% N, fixed

Free gluon propagator at lowest order in g: (— see Zwanziger talk!)

S.0.0 [T/a dp efP(leyl)
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Two equivalent representation for the partition function?

Functional representation
Z = / DU Dy D e SV

with S[U, 1, ] = Sg[U] + SF[U, 1, 1] classical action.

—  correlation functions.

v

Statistical /canonical representation

Z = lim /DUe SclUl TF e=5Fr —/DUe SG[U]TrFH’EtH

with Hf fermions Hamiltonian, /¢ +11 transfer matrix.

—> thermodynamics.

A

Which connection?



Building up the fermionc space of states: Fock space

Defined at each time-slice.
Canonical creation and annihilation operators:

{'Ajj’f’K} - {\“/j, VK} = 0JK; {EIJ,I?IK} = {OJ, \“/K} =...=0

with J, K multi-indices: internal (colour, flavour), Dirac and spatial.
Vacuum state:

:®‘O>K aK’())K:O? ‘A/K‘O>K:0
K
Basis of coherent states:

lp, o) —eXP< > ki — ZO'KVK> |0)

with pk, ok anticommuting symbols (Grassmann).



Operatorial <= functional representation of Zg

Resolution of unity:
f= /H dp dedO' dok e YOI WL lp, o) (p, o]
In the partition function:
Ze=Tr" Hﬁ,ﬂrl
t
=TF Hﬁt,ﬁ,t-i-l
=T H/ dpldpedo] dUt] e Pipoio (pe, ot Tees1lpeer, oeq)

= /H dptdptdaida] —Srleol
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A theory of quasiparticles? Bogoliubov transformations

Unitary transformations of the algebra of canonical operators

Quasiparticle operators
3 =Ry (ok — Flovf)  by= (e + [ Fl) R
aE = (uK — V/.T"[K) RK/J bJ —Rl/z (VK—F.FK/U/)

with ) )
R=(1+FF) R=(1+FF")"

Mixing of creation and annihilation operators = new vacuum state:
[Fe) = exp (0T F{ 1) |0)

(— see Reinhardt and Campagnari talks!)
New coherent states:

|, B; Ft) = exp (—angf — ﬁ[,’f) | Fe)



Quasiparticles in functional representation

.. Bogoliub . . . .
Original theory e Quasiparticles theory unitarly equivalent:

Z= / DU e~ 5clVlg=0l7] / [1 [dafdacdpias,] eseleoi7
t

Quasiparticles action

Salo, 8; Fl = = 3 [BZ Ve + ol P ]

t

+ aI(Vt — Hi)aryr — 51:—&—1(?15 = ﬁt)ﬁﬂ

o 7(21) 7(12) mixing terms;

o H, H quasiparticles energies;

@ V, V covariant derivatives.




Vacuum contribution: variational principle

SolF]:
@ does not contains quasiparticles excitations;

@ depends on the parameters F;
@ depends on the gauge fields U,,.

— jtis a “vacuum contribution”.

The physical vacuum must be the state of minimal energy
= F can be fixed via a variational principle
— saddle point equations for F, F1.

But the equations depend on the gauge fields configuration!

In weak coupling, can be solved after averaging over gauge fields:
@ expand to second order in Ag,

@ use (Ap) = 0 and substitute (AgAp) with the free gluon propagator.
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Vacuum contribution in continuum limit

0
Bogoliubov-Valatin angle: F(q) = tan Eq'

Vacuum contribution

In continuum limit, we get

Solb] = — VNe {/dq (mcosé?q + gsinfg)

47rN /d /dk —k)2 2 }

1 0, —0
w2:mcos€ + gsind —7/dk PE sin > K

Q
Q
—~
QO
|
N
Q
\

Saddle point equation
sin (0q — 6k)

(g —k)? =0

—msin9q+qc050q—%/dk
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0 and chiral symmetry breaking!-/B87. JLLX17]

m=—o0
—— m=20.045
— m=20.180
37/8 ' =0.749 %

m = 1.000

m=2.110

m = 4.230
6(x) /4

/

/ () = —Nc/g—::cosep

0 /8 /4 37/8 /2
x = arctan (p/+/27)
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Vacuum dispersion relation

10 \
om0 /
—— m=0.045 |

8 F—— m=0.180 |
— m=0749
m = 1.000
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— m=4230 //
wo(x) 4

2 /”///
0 e
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Quasiparticles on the saddle point

249 7 [B(a)a(~q) + o (g)5(~a)]

1 _ _
Iq:—msinaq—l—qcoqu—'y/dk(q k)chseq ‘9k5in9q Hk}

=—>  null on the saddle point!

Energy term

&
—+
|
|
\

[ 52 [wgal (@a(=a) +w36(a)5' (~a)

dk cos(é? —6k)
(g — k)2
IR divergent on the saddle point =  quasiparticles confinement.

’B—mcose + gsinfyg +7/

\
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How to build a theory of mesons?

The average over gauge fields produces a quartic fermionic theory:
Sq =53 +g5Y) + %5y
— exp(~Sq) =~ exp (58— g25) [1 59 + g7 (s3]
Possible interpretation as a quadratic theory for the composite fields

Fh=> ®nkBiok = > ¢Z;JKOZB/5;T<
JK JK

Not so easy!

@ Bilinears in Grassmann fields are not proper complex fields:
())?=0 = (I,)%*=0 foracertain QeN

— functional measure DI DI T not well defined.

@ Energy terms still quadratic, and not quartic, in fermion fields.
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Mesons as two-particle states in the Fock space

In canonical formalism: mesons as quasiparticles condensates
|be; Fr) = exp(aTo1b) |74

Physical assumption: boson dominance = the partition function is
“well approximated” by its projection on composites subspace:

Ze =T [[ Teena
t
~ T [[PeTeers = 2¢
t
Projection operator:

[do] do,]

ﬁt[}—t] - / <¢t;]:t|¢t;-7:t>

|¢t;Ft><-Ft; ¢t’
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A lattice theory of mesons

After projection

Z. = / DOt D = SolUiF1-5m[®.01.U ]

Meson effective action

Suld, o, U; F1 =" Tr {log (1 + &0, ) — log(De 41 [0, d1])}
t

Dy t+1 is a term linear and quartic in the ® fields.

The action is still not a polynomial in &, o)l

A way out:
@ choose ® to describe colourless mesons;
o take the large N, limit;

@ average over gauge and evaluate the result on the saddle point.
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Colourless mesons in the large N limit

Structure of a colourless meson

@ specialize multi-index J = (p, i): space, colour;

o " = 8f(p)b] (q)
@ define a suitable creator operator: ['(p, q) = Z

P AL

T
@ define suitable structure matrices: CDI(p, q) =1y, 9e(p. q)

c /NC

Quadratic mesonic action:

Sy — tr {—¢t (¢I+1 - Qbi) + (ﬁltﬁbt(ﬁ];-i-l + ’H/tqbi-i-l(ﬁt)

Ne—o0 4 space

1 o
+ 5 (~20la o, + oo + olmP Vol V) |

To put it in an usual form of the type ¢!, diagonalize it with respect to
the doublets (qu, ¢») = Bars-Green equations for colourless mesons

[BG78, KN02].
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Conclusions and outlooks

Starting from the fundamental theory of quarks and gluons (QCD3), we
obtained

@ an effective theory for mesons on the lattice which reproduces,
in the continuum limit, results well known from Hamiltonian
canonical approach;

@ a remarkable physical insight about boson dominance, interpreted as
a projection on composite states.

Future perspectives

@ application to more realistic models of strong interaction;

@ study of models at finite temperature and chemical potential
(projection on diquarks states? colour superconductivity?
deconfinement?).
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Thank you for your attention.



