The static quark potential in Maximal Abelian gauge with perturbation theory

Matthias Berwein (RIKEN) with Yukinari Sumino (Tohoku University)

Talk given at Confinement XIII

05.08.2018

The static quark potential in the Maximal Abelian gauge (MAG)

A popular approach to explain confinement:

- chromoelectric field in vacuum behaves very similar to magnetic field in type II superconductor
- by duality argument: one may expect confinement to arise from condensation of chromomagnetic monopoles
- no monopoles as fundamental d.o.f. but they appear as singularities in a particular gauge configuration (MAG)

picture arxiv:1412.8489 (H. Suganuma, N. Sakumichi)

Key features of lattice results

- evidence for magnetic monopoles found in MAG
- Abelian dominance: linear part of potential seems to be completely contained in contribution from Abelian gluons (in particular monopole part)

Diagonal and off-diagonal generators

Example: SU(3) generators:

$$\begin{split} T^1 &= \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad T^2 &= \frac{1}{2} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad T^3 &= \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ T^4 &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad T^5 &= \frac{1}{2} \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \\ T^6 &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad T^7 &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad T^8 &= \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \end{split}$$

Properties for general SU(N):

- N^2-1 hermitian traceless $N\times N$ matrices
- N-1 diagonal generators (\rightarrow Abelian subgroup)
- normalized as ${\rm Tr} \big[T^A, T^B \big] = \frac{1}{2} \delta^{AB}$

Color index convention

 a, b, \ldots for off-diagonal, i, j, \ldots for diagonal,

 A, B, \ldots for both

The Wilson loop and its Abelian projection

The Wilson loop:
$$W = \mathcal{P} \exp \left[-ig \int_{\square} dx_{\mu} (A^{A\mu}(x)T^{A}) \right]$$

- ullet contour \square is a square with temporal extent T and spatial extent r
- temporal Wilson lines are static quark propagators, spatial Wilson lines ensure gauge invariance
- large time limit gives potential: $V_0(r) = \lim_{T\to 0} \frac{\imath}{T} \ln \langle W \rangle$ (up to ultrasoft corrections at three-loop order)
- $\bullet \ \ \mathsf{gauge-invariant} \ \mathsf{and} \ \mathsf{renormalizable} \ \mathsf{(mult.} \ \mathsf{constant} \ + \ \mathsf{charge} \ \mathsf{renormalization)}$

Abelian projection:
$$W^{(AP)} = \mathcal{P} \exp \left[-ig \int_{\square} dx_{\mu} (A^{i\mu}(x)T^{i}) \right]$$

- only diagonal gluons contribute
- invariant under diagonal gauge transformations
- desirable to use a gauge that respects this symmetry

The Maximal Abelian gauge (MAG)

Global gauge condition:

$$\delta \int d^4x \, A^a_\mu(x) A^{a\,\mu}(x) = 0$$

Attempts to minimize the effect of off-diagonal gluons.

Infinitesimal variations

$$\delta A^a_\mu = \frac{1}{g} D^{ab}_\mu \omega^b$$

Local gauge condition

$$\left(\partial_{\mu}\delta^{ab} - gf^{abi}A^{i}_{\mu}\right)A^{b\mu} = 0$$

Residual gauge symmetry for diagonal transformations U:

$$A^a_\mu T^a \to U(A^a_\mu T^a) U^\dagger$$

$$A^a_\mu T^a \to U(A^a_\mu T^a)U^\dagger$$
, $A^i_\mu T^i \to U(A^i_\mu T^i)U^\dagger + \frac{i}{q}U\partial_\mu U^\dagger$

Gauge fix also diagonal gluons:

$$\partial_{\mu}A^{i\,\mu}=0$$

MAG Feynman rules

Comparison to covariant gauges:

- all propagators are the same in both gauges
- different vertices for diagonal or off-diagonal gluons
- additional vertices of two ghosts and two gluons
- ullet gauge fixing parameter ξ dependent terms in three- and four-gluon vertices
- ullet $\xi o 0$ limit diverges for individual diagrams, but all singularities cancel

Examples:

Gauge fixing and renormalizability

The Faddeev-Popov MA gauge fixing is not strictly renormalizable:

- four-ghost amplitude contains new divergences, e.g.
- can in principle be renormalized with four-ghost interaction
- BRST formalism allows such a term

But only Faddeev-Popov method has clear connection to MA gauge condition:

- ξ parameter from delta function: $\delta(x) = \lim_{\xi \to 0} \frac{1}{\sqrt{2\pi\xi}} e^{-x^2/2\xi}$
- ghost sector is representation of functional determinant
- ullet only $\xi o 0$ limit corresponds to true MAG

Conclusion

We will continue to use the Faddeev-Popov gauge fixing in order to get the correct limit for MAG.

(The extra ghost divergences do not appear at two-loop order and it is not even clear that they will contribute at higher orders.)

The two-loop calculation of the Wilson loop

Outline of the program:

- use available diagram generator
- make modifications for MAG Feynman rules: diagonal/off-diagonal propagators and extra vertices
- translate diagram into color factor (including subtractions for logarithm)
- evaluate color factors with Fierz identities:

$$T^i_{IJ}T^i_{KL} = \frac{1}{2}\left(\delta_{IJKL} - \frac{1}{N}\delta_{IJ}\delta_{KL}\right) \qquad T^a_{IJ}T^a_{KL} = \frac{1}{2}\left(\delta_{IL}\delta_{KJ} - \delta_{IJKL}\right)$$

- insert Feynman rules and turn diagrams into standard integrals
- solve integrals

At 2-loop order

Full Wilson loop: 2404 diagrams \rightarrow 1971 log diagrams \rightarrow 771 integrals Abelian projection: 287 diagrams \rightarrow 200 log diagrams \rightarrow 377 integrals

The Laporta Algorithm

How to solve large number of standard integrals automatically?

1 - loop:
$$I_{[n_1, n_2, n_3]}(k^2) = \int \frac{d^D p}{(2\pi)^D} \frac{1}{p_0^{n_1} p^{2n_2} (k+p)^{2n_3}} \qquad (D = 4 - 2\epsilon)$$

$$\begin{split} &2-\text{loop}: \qquad I_{[n_1,n_2,n_3,n_4,n_5,n_6,n_7,n_8,n_9]}(k^2) \\ &= \iint\limits_{p\,q} \frac{1}{p_0^{n_1}q_0^{n_2}(p_0+q_0)^{n_3}p^{2n_4}q^{2n_5}(p+q)^{2n_6}(k+p)^{2n_7}(k+q)^{2n_8}(k+p+q)^{2n_9}} \end{split}$$

Solution: integration by parts

$$0 = \int \frac{d^D p}{(2\pi)^D} \, \partial_\mu p^\mu \, \frac{1}{p_0^{n_1} p^{2n_2} (k+p)^{2n_3}} \quad \text{(example)}$$
$$= (D - n_1 - 2n_2 - n_3) I_{[n_1, n_2, n_3]} - n_3 I_{[n_1, n_2 - 1, n_3 + 1]} + n_3 k^2 I_{[n_1, n_2, n_3 + 1]}$$

- indices can be systematically lowered with this and other identities
- only a handful of "master integrals" remain (with known solutions)
 1-loop: 1 integral
 2-loop: 5 integrals

Full potential

Schematic result

$$V(r) = \int \frac{d^{D-1}k}{(2\pi)^{D-1}} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{4\pi C_F \alpha_s(k)}{k^2} \left[1 + \frac{\alpha_s(k)}{4\pi} a_1 + \left(\frac{\alpha_s(k)}{4\pi}\right)^2 a_2 + \mathcal{O}\left(\alpha_s^3\right) \right]$$

$$= \frac{\alpha_s(1/r)}{r} C_F \left[1 + \frac{\alpha_s(1/r)}{4\pi} \left(a_1 + 2\beta_0 \gamma_E \right) + \left(\frac{\alpha_s(1/r)}{4\pi}\right)^2 \left(a_2 + 2\left(2a_1\beta_0 + \beta_1 \right) \gamma_E + 4\beta_0^2 \gamma_E^2 + \frac{\pi^2}{3} \beta_0^2 \right) + \mathcal{O}\left(\alpha_s^3\right) \right].$$

Coefficients

$$\begin{split} a_1 &= \frac{31}{9}N - \frac{10}{9}n_f \,, \qquad C_F = \frac{N^2 - 1}{2N} \\ a_2 &= \left(\frac{4343}{162} + 4\pi^2 - \frac{\pi^4}{4} + \frac{22}{3}\zeta(3)\right)N^2 - \left(\frac{899}{81} + \frac{28}{3}\zeta(3)\right)Nn_f \\ &- \left(\frac{55}{6} - 8\zeta(3)\right)\frac{N^2 - 1}{2N}n_f + \frac{100}{81}n_f^2 \end{split}$$

Abelian projected potential (in momentum space)

Schematic result

$$\widetilde{V}_{AP}(k) = \frac{4\pi C_{AP}\alpha_s(k)}{k^2} \left[1 + \frac{\alpha_s(k)}{4\pi} \left(a_1 + b_1 \xi(k) + c_1 \xi(k)^2 \right) + \left(\frac{\alpha_s(k)}{4\pi} \right)^2 \left(a_2 + b_2 \xi(k) + c_2 \xi(k)^2 + d_2 \xi(k)^3 \right) + \mathcal{O}\left(\alpha_s^3\right) \right]$$

Coefficients

$$a_{1} = \frac{205}{36}N - \frac{10}{3}n_{f}, \qquad b_{1} = \frac{3}{2}N, \qquad c_{1} = \frac{1}{4}N, \qquad C_{AP} = \frac{N-1}{2N}$$

$$a_{2} = \left(\frac{90391}{1296} - \frac{57}{8}\zeta(3)\right)N^{2} + \left(\frac{347}{24} - \frac{115}{4}\zeta(3)\right)N - \left(\frac{1736}{81} + 4\zeta(3)\right)Nn_{f}$$

$$-\left(\frac{55}{6} - 8\zeta(3)\right)\frac{N^{2} - 1}{2N}n_{f} + \frac{100}{81}n_{f}^{2},$$

$$b_{2} = \left(\frac{211}{16} + \frac{5}{4}\zeta(3)\right)N^{2} + \left(\frac{367}{24} - \frac{7}{2}\zeta(3)\right)N - \frac{5}{3}Nn_{f},$$

$$c_{2} = \left(\frac{191}{48} - \frac{1}{8}\zeta(3)\right)N^{2} + \left(\frac{145}{24} + \frac{1}{4}\zeta(3)\right)N, \qquad d_{2} = \frac{9}{16}N^{2} + \frac{7}{8}N$$

Performing the Fourier transform

• Fourier transform introduces extra terms due to the scale dependence of the coupling constant (with $A=\alpha(1/r)/4\pi$ and $L=\ln(k^2r^2)$)

$$\alpha_s(k) = \alpha_s(1/r) \Big[1 - A\beta_0 L - A^2 \left(\beta_1 L - \beta_0^2 L^2\right) + \mathcal{O}\left(\alpha_s^3\right) \Big]$$
 with $\beta_0 = \frac{11}{3}N - \frac{2}{3}n_f$ and $\beta_1 = \frac{34}{3}N^2 - \frac{10}{3}Nn_f - 2\frac{N^2 - 1}{2N}n_f$

- at 2-loop order charge renormalization does not remove all divergences
- ullet remaining divergences can be absorbed by renormalization of ξ -parameter
- also ξ becomes scale dependent:

$$\begin{split} \xi(k) &= \xi(1/r) \left[1 - A \left(\frac{\zeta_0^{(-1)}}{\xi(1/r)} + \zeta_0^{(0)} + \zeta_0^{(1)} \xi(1/r) \right) L + \mathcal{O}\left(\alpha_s^2\right) \right] \\ \text{with } \zeta_0^{(-1)} &= 3, \ \zeta_0^{(0)} = -\frac{13}{6}N + 3 + \frac{2}{3}n_f \text{, and } \zeta_0^{(1)} = \frac{1}{2}N + 1 \end{split}$$

• this scale dependence affects Fourier transform of Abelian projected potential

Abelian projected potential (in position space)

Final expression:

$$V_{AP}(r) = \frac{\alpha_s(1/r)}{r} C_{AP} \left[1 + A \left(a_1 + 2\beta_0 \gamma_E + b_1 \xi(1/r) + c_1 \xi(1/r)^2 \right) \right.$$

$$+ A^2 \left(a_2 + \left(4a_1 \beta_0 + 2b_1 \zeta_0^{(-1)} + 2\beta_1 \right) \gamma_E + 4\beta_0^2 \gamma_E^2 + \frac{\pi^2}{3} \beta_0^2 \right.$$

$$+ \left(b_2 + \left(4b_1 \beta_0 - 2b_1 \zeta_0^{(0)} + 4c_1 \zeta_0^{(-1)} \right) \gamma_E \right) \xi(1/r)$$

$$+ \left(c_2 + \left(4c_1 \beta_0 + 4c_1 \zeta_0^{(0)} + 2b_1 \zeta_0^{(1)} \right) \gamma_E \right) \xi(1/r)^2$$

$$+ \left(d_2 + 4c_1 \zeta_0^{(1)} \gamma_E \right) \xi(1/r)^3 + \mathcal{O}\left(\alpha_s^3\right) \right]$$

Discussion

Some observations

- full potential is gauge invariant and agrees with known result
- Abelian projected potential similar in structure (no sign of linear part)
- ullet renormalization and scale dependence of ξ -parameter prohibits $\xi o 0$ limit
- ullet taking bare $\xi_0 o 0$ would re-introduce divergences
- ullet extra ghost interaction in BRST gauge fixing leads to (finite) difference in two-loop $\mathcal{O}(\xi)$ terms

Conclusions

- perturbative MA gauge may not coincide with lattice gauge
- difficulties in taking the "true" MA gauge limit may hint at missing monopole contributions