Confinement, infrared screening of the QCD vacuum density and small cosmological constant

Roman Pasechnik

Lund University & NPI Prague

In collaboration with Andrea Addazi, Antonino Marciano, George Prokhorov arXiv:1804.09826

August 3rd, Confinement2018, Maynooth

Vacuum state of the Universe

Friedmann equation

$$H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G(\rho_{M} + \rho_{rad} + \rho_{\Lambda} + \rho_{curv}) \qquad T_{00} = \rho(\mathbf{x})$$

$$T_{00} = \rho(\mathbf{x})$$

$$\Omega_{M} = \frac{\rho_{M,0}}{\rho_{c}}, \quad \Omega_{rad} = \frac{\rho_{rad,0}}{\rho_{c}}, \quad \Omega_{\Lambda} = \frac{\rho_{\Lambda,0}}{\rho_{c}}, \quad \Omega_{curv} = \frac{\rho_{curv,0}}{\rho_{c}}$$

critical density of the Universe

$$\rho_c \equiv \frac{3}{8\pi G} H_0^2$$

Universe expansion is dominated by three components

$$\Omega_M = \Omega_B + \Omega_{DM}$$

Dark Energy e.o.s.

$$\omega \equiv P/\rho = -1.13^{+0.13}_{-0.10}$$

exactly minus one for pure vacuum!

- Is the Dark Energy indeed the (non-trivial) vacuum state of the Universe?
- How has it been formed during evolution of the Universe?
- What is its time dependence and what will happen to our Universe in the future?

Vacuum Catastrophe... or not?

Vacuum energy

in Quantum Physics

"...the worst theoretical prediction in the history of physics" (Hobson 2006)

in Cosmology

Topological QCD vacuum unique strongly-coupled subsystem!

 $\Lambda_{\rm cosm} \sim 10^{-47} \, {\rm GeV}^4$

 $\sim 10^8 \text{GeV}^4$

Higgs condensate

"Old" CC problem: Why such small and positive? "New" CC problem: Why non-zeroth and exists at all?

Vacuum in Quantum Physics has incredibly wrong energy scale!

Quantum-topological (chromomagnetic) vacuum in QCD

$$\varepsilon_{vae(top)} = -\frac{9}{32} \langle 0| : \frac{\alpha_s}{\pi} F_{ik}^a(x) F_a^{ik}(x) : |0\rangle + \frac{1}{4} \left(\langle 0| : m_u \bar{u}u : |0\rangle + \langle 0| : m_d \bar{d}d : |0\rangle + \langle 0| : m_s \bar{s}s : |0\rangle \right)$$

$$\simeq -(5 \pm 1) \times 10^9 \text{ MeV}^4.$$

Two possible approaches to this problem:

• Let's forget about the "bare" vacuum (DE: "phantom", "quintessence", "ghost"... etc)
Zero vacuum density in the Minkowski limit, by (Casimir-like) definition, then (Zhitnitsky et al)

 $\Lambda_{
m cosm} \equiv \epsilon_{
m FLRW} - \epsilon_{
m Mink}$ simply imposing a cance

simply imposing a cancellation of the "bare" vacuum by hands!!

• Let's look closer at the vacuum state — why/how does it become "invisible" to gravity?

Effective YM action approach

At least, for SU(2) gauge symmetry, the all-loop and one-loop effective Lagrangians are practically indistinguishable (by FRG approach) H. Pagels and E. Tomboulis, Nucl. Phys. B 143, 485 (1978).Classical YM Lagrangian:

$$\mathcal{L}_{\rm cl} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a$$

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g_{\rm YM} f^{abc} A^b_\mu A^c_\nu$$

Running coupling:

$$\mathcal{A}^a_\mu \equiv g_{\rm YM} A^a_\mu$$

Effective YM Lagrangian: $\mathcal{F}_{\mu\nu}^a \equiv g_{\rm YM} F_{\mu\nu}^a$

$$\mathcal{F}^a_{\mu\nu} \equiv g_{\rm YM} F^a_{\mu\nu}$$

$$\mathcal{L}_{\text{eff}} = \frac{\mathcal{J}}{4\bar{g}^2(\mathcal{J})}, \quad \mathcal{J} = -\mathcal{F}_{\mu\nu}^a \mathcal{F}_a^{\mu\nu}$$

P. Dona, A. Marciano, Y. Zhang and C. Antolini, Phys. Rev. D **93** (2016) no.4, 043012. 0.02 г

A. Eichhorn, H. Gies and J. M. Pawlowski, Phys. Rev. D 83 (2011) 045014 [Phys. Rev. D 83 (2011) 069903].

Effective Lagrangian:

The energy-momentum tensor:

$$T_{\mu}^{\nu} \!=\! \frac{1}{\bar{g}^2} \! \left[\frac{\beta(\bar{g}^2)}{2} \! - \! 1 \right] \! \left(\mathcal{F}_{\mu\lambda}^a \mathcal{F}_a^{\nu\lambda} \! + \! \frac{1}{4} \delta_{\mu}^{\nu} \mathcal{J} \right) \! - \! \delta_{\mu}^{\nu} \frac{\beta(\bar{g}^2)}{8\bar{g}^2} \mathcal{J}$$

Equations of motion:

trace anomaly:

$$\begin{split} &\overrightarrow{\mathcal{D}}_{\nu}^{ab} \left[\frac{\mathcal{F}_{b}^{\mu\nu}}{\overline{g}^{2}} \left(1 - \frac{\beta(\overline{g}^{2})}{2} \right) \right] \! = \! 0, \\ &\overrightarrow{\mathcal{D}}_{\nu}^{ab} \! \equiv \! \left(\delta^{ab} \overrightarrow{\partial}_{\nu} \! - \! f^{abc} \mathcal{A}_{\nu}^{c} \right), \end{split}$$

$$T^{\mu}_{\mu} = -\frac{\beta(\bar{g}^2)}{2\bar{g}^2} \mathcal{J}$$

(Savvidy vacuum)

chromoelectric (CE) condensate

0.2

-0.02

-0.04

G. K. Savvidy, Phys. Lett. **71B**, 133 (1977)

$$\frac{d\ln|\bar{g}^2|}{d\ln|\mathcal{J}|/\mu_0^4} = \frac{\beta(\bar{g}^2)}{2}$$

appears to be invariant under

$$\mathcal{J} \longleftrightarrow -\mathcal{J}
\bar{g}^2 = \bar{g}^2(|\mathcal{J}|)$$

CE condensate on non-stationary (FLRW) background

FLRW metric in conformal time:

$$\mathcal{J} = \frac{2}{\sqrt{-g}} \sum_{a} (\mathbf{E}_a \cdot \mathbf{E}_a - \mathbf{B}_a \cdot \mathbf{B}_a) \equiv \frac{2}{\sqrt{-g}} (\mathbf{E}^2 - \mathbf{B}^2) \qquad g \equiv \det(g_{\mu\nu}), \ g_{\mu\nu} = a(\eta)^2 \operatorname{diag}(1, -1, -1, -1)$$

$$\sqrt{-g} = a^4(\eta), \qquad t = \int a(\eta) d\eta$$

• Basic qualitative features on the non-perturbative YM action are noticed already at one loop

Einstein-YM equations of motion for the effective YM theory:

$$\begin{split} \frac{1}{\varkappa} \left(R^{\nu}_{\mu} - \frac{1}{2} \delta^{\nu}_{\mu} R \right) &= \bar{\epsilon} \delta^{\nu}_{\mu} + \frac{b}{32\pi^{2}} \frac{1}{\sqrt{-g}} \left[\left(-\mathcal{F}^{a}_{\mu\lambda} \mathcal{F}^{\nu\lambda}_{a} \right) + \frac{1}{4} \delta^{\nu}_{\mu} \mathcal{F}^{a}_{\sigma\lambda} \mathcal{F}^{\sigma\lambda}_{a} \right) \ln \frac{e |\mathcal{F}^{a}_{\alpha\beta} \mathcal{F}^{\alpha\beta}_{a}|}{\sqrt{-g} \, \lambda^{4}} - \frac{1}{4} \delta^{\nu}_{\mu} \mathcal{F}^{a}_{\sigma\lambda} \mathcal{F}^{\sigma\lambda}_{a} \right], \end{split} \qquad \qquad \\ \left(\frac{\delta^{ab}}{\sqrt{-g}} \overrightarrow{\partial}_{\nu} \sqrt{-g} - f^{abc} \mathcal{A}^{c}_{\nu} \right) \left(\frac{\mathcal{F}^{\mu\nu}_{b}}{\sqrt{-g}} \ln \frac{e |\mathcal{F}^{a}_{\alpha\beta} \mathcal{F}^{\alpha\beta}_{a}|}{\sqrt{-g} \, \lambda^{4}} \right) = 0 \end{split}$$

temporal (Hamilton) gauge

$$A_0^a = 0$$

$$A_0^a = 0 e_i^a A_k^a \equiv A_{ik} e_i^a e_k^a = \delta_{ik} e_i^a e_i^b = \delta_{ab}$$

$$e_i^a e_k^a = \delta_{ik}$$

$$e_i^a e_i^b = \delta_{ab}$$

due to local $SU(2) \sim SO(3)$ isomorphism

$$A_{ik}(t, \vec{x}) = \delta_{ik}U(t) + \widetilde{A}_{ik}(t, \vec{x})$$

The resulting equations:

$$\frac{6}{\varkappa} \frac{a''}{a^3} = 4\bar{\epsilon} + T_{\mu}^{\mu, \text{U}}, \qquad T_{\mu}^{\mu, \text{U}} = \frac{3b}{16\pi^2 a^4} \left[(U')^2 - \frac{1}{4}U^4 \right], \qquad \frac{\partial}{\partial \eta} \left(U' \ln \frac{6e \left| (U')^2 - \frac{1}{4}U^4 \right|}{a^4 \lambda^4} \right) + \frac{1}{2}U^3 \ln \frac{6e \left| (U')^2 - \frac{1}{4}U^4 \right|}{a^4 \lambda^4} = 0$$

CE condensate on non-stationary (FLRW) background

Classical YM condensate

$$Q \equiv \frac{32}{11} \pi^2 e(\xi \Lambda_{\text{QCD}})^{-4} T^{\mu}_{\mu}[U]$$
$$= 6e \left[(U')^2 - \frac{1}{4} U^4 \right] a^{-4} (\xi \Lambda_{\text{QCD}})^{-4}$$

Savvidy (CE) vacuum

Exact partial solution:

$$|Q| = 1$$

Quantum corrections

"Radiation" medium

$$\epsilon_{\rm YM} \propto 1/a^4$$

Unstable solution!

QCD vacuum:

a ferromagnetic undergoing spontaneous magnetisation (Pagels&Tomboulis)

Asymptotic tracker solution!

$$\epsilon_{\text{CE}} \rightarrow + \text{const} \quad t \rightarrow \infty$$

Stable solution!

• In fact, both chromoelectric and chromomagnetic condensates are stable on non-stationary (FLRW) background of expanding Universe

"Mirror" symmetry of the ground state

In a vicinity of the ground state, the effective Lagrangian

$$\mathcal{L}_{ ext{eff}} = rac{\mathcal{J}}{4ar{g}^2} \qquad \mathcal{J} \simeq \, \mathcal{J}^*$$

is invariant under

$$\mathbb{Z}_2$$
: $\mathcal{J}^* \longleftrightarrow -\mathcal{J}^*, \quad \bar{g}^2(\mathcal{J}^*) \longleftrightarrow -\bar{g}^2(\mathcal{J}^*), \quad \beta(\bar{g}_*^2) \longleftrightarrow -\beta(\bar{g}_*^2)$

For pure gluodynamics at one-loop:

$$\beta_{(1)} = -\frac{bN}{48\pi^2} \,\bar{g}_{(1)}^2 \qquad b = 11$$

$$\alpha_{\rm s} = \frac{\bar{g}^2}{4\pi}$$
 $\alpha_{\rm s}(\mu^2) = \frac{\alpha_{\rm s}(\mu_0^2)}{1 + \beta_0 \, \alpha_{\rm s}(\mu_0^2) \ln(\mu^2/\mu_0^2)}$
 $\mu^2 \equiv \sqrt{|\mathcal{J}|}$

$$\mu^2 \equiv \sqrt{|\mathcal{J}|}$$

Choosing the ground state value of the condensate $\mu_0^2 \equiv \sqrt{|\mathcal{J}^*|}$ as the physical scale

we observe that the mirror symmetry, indeed, holds provided

$$\mathcal{J} \simeq \mathcal{J}^* \qquad \alpha_s(\mu_0^2) \longleftrightarrow -\alpha_s(\mu_0^2)$$

i.e. in the ground state only!

Heterogenic quantum YM ground state: two-scale vacuum

The running coupling at one-loop

$$\bar{g}_1^2(\mathcal{J}) = \frac{\bar{g}_1^2(\mu_0^4)}{1 + \frac{bN}{96\pi^2}\bar{g}_1^2(\mu_0^4)\ln(|\mathcal{J}|/\mu_0^4)} = \frac{96\pi^2}{bN\ln(|\mathcal{J}|/\lambda_{\pm}^4)}$$

$$\mathcal{L}_{\mathrm{eff}}^{(1)} \!=\! \frac{bN}{384\pi^2} \mathcal{J} \! \ln\! \left(\frac{|\mathcal{J}|}{\lambda_{\pm}^4} \right) \qquad \text{with two energy scales}$$

$$\lambda_{\pm}^{4} \equiv |\mathcal{J}^{*}| \exp\left[\mp \frac{96\pi^{2}}{bN|\bar{g}_{1}^{2}(\mathcal{J}^{*})|}\right] \qquad |\mathcal{J}^{*}| = \lambda_{+}^{2}\lambda_{-}^{2}$$

CE vacuum:

$$\beta(\bar{g}_*^2) = 2$$

e.o.m. is automatically satisfied!

Trace anomaly: $T^{\mu}_{\mu,{\rm CE}} = -\frac{1}{\overline{q}_{*}^{2}} \mathcal{J}^{*}$

One-loop:

Mirror

symmetry

$$(\lambda_+^2/\lambda_-^2 = e)$$

CM vacuum: $\beta(\bar{g}_*^2) = -2$

Reduces to the standard YM e.o.m. discussed in e.g. in instanton theory

$$\overrightarrow{\mathcal{D}}_{\nu}^{ab} \left[\frac{\mathcal{F}_{b}^{\mu\nu}}{\bar{g}^{2}} \right] = 0, \quad \bar{g}^{2} \simeq \bar{g}_{*}^{2}$$

Trace anomaly:
$$T^{\mu}_{\mu, \mathrm{CM}} = +\frac{1}{\overline{g}_{*}^{2}} \mathcal{J}^{*}$$

Cosmological CE attractor

Cosmological CM attractor

Cosmological evolution and vacua cancellation

$$\epsilon_{\text{vac}} \equiv \frac{1}{4} \langle T^{\mu}_{\mu} \rangle_{\text{vac}} = \mp \mathcal{L}_{\text{eff}}(\mathcal{J}^*)$$

$$\epsilon_{\text{vac}}^{\text{CE}} \big|_{\mathcal{J}^* > 0} + \epsilon_{\text{vac}}^{\text{CM}} \big|_{\mathcal{J}^* < 0} \equiv 0$$

Exact compensation of CM and CE vacua as soon as the cosmological attractor is achieved!

System with very unusual dynamical properties!

Summary

- No ghost problem associated with negative coupling due to:
 - (i) only gauge invariant quantities are used
 - (ii) local loss of Lorentz (e.g. rotational) invariance
- Nielsen-Olsen proof of instability of CE condensate on a rigid Minkowski in NOT in contradiction with our results: we consider YM evolution on a dynamical (FLRW) spacetime while equilibrium is achieved only asymptotically.
- A possible decay of CE condensate into an anisotropic vacuum after a cosmological relaxation time would be exponentially suppressed and is practically never realised
- Even starting from an initial non-zero energy-density, the evolution of localised 3-space "pockets" of the CE and CM condensates trigger a mutual screening, flowing towards a zero-energy density attractor and accompanying by a formation of the domain walls corresponding to an asymptotic restoration of the Z2 (Mirror) symmetry and effectively protecting the "false" CE vacua pockets from further decay
- The vacua cancellation mechanism seems to naturally marry the existing confinement pictures related to a formation of a network of t'Hooft monopoles or chromovortices. In this approach, the scalar kink profile may correspond the J-invariant whose change may be related to the presence of monopole or vortex solutions localise inside the space-time domain walls. This implies the existence of space-time solitonic objects of a new type.