Understanding the dynamics of field theories far from equilibrium

European Research Council Established by the European Commission

Supporting top researchers from anywhere in the world

Project: CGCglasmaQGP

Kirill Boguslavski

XIIIth Quark Confinement and the Hadron Spectrum

August 2, 2018

Motivation

Pre-hydro evolution

Hydrodynamical studies suggest:

- Quick onset of hydrodynamics
- Nearly ideal fluid

Romatschke, Romatschke (2007); Song, Heinz (2008); Schenke, Jeon, Gale (2011); Schenke, Tribedy, Venugopalan (2012); Gale, Jeon. Schenke, Tribedy, Venugopalan (2013)

How does the created QCD matter evolve?

- Overview over the thermalization process in weak-coupling picture
- Focus on early phase: Nonthermal fixed points, universality with scalar theory
- Next step: Spectral functions

final detected **Relativistic Heavy-Ion Collisions** particles_distributions Kinetic freeze-out Hadronization tial energy In density adron gas phase QGP phase overlap z equilibrium viscous hydrodynamics dynamics free streaming collision evolution $\tau \sim 10^{15} \, \text{fm/c}$ $\tau \sim 0 \, \text{fm/c} \quad \tau \sim 1 \, \text{fm/c}$ τ~10 fm/c

Little Bang by P. Sorensen and C. Shen

Thermalization dynamics at early times

Initial state: Glasma

McLerran, Venugopalan (1999); Krasnitz, Venugopalan (1999, 2000, 2001); Krasnitz, Nara, Venugopalan (2001, 2003); Lappi (2003, 2006, 2011); Lappi, McLerran (2006); ...

Gelis, Iancu, Jalilian-Marian, Venugopalan, Ann. Rev. Nucl. Part. Sci 60, 463 (2010)

Plasma instabilities (at early times)

Mrowczynski (1993); Arnold, Lenaghan, Moore (2003); Romatschke, Strickland (2003); Romatschke, Venugopalan (2006); Attems, Rebhan, Strickland (2012); Fukushima, Gelis (2012); Berges, Schlichting (2013); Epelbaum, Gelis (2013); ...

Berges, Schenke, Schlichting, Venugopalan, Nucl. Phys. A 931, 348 (2014)

Nonthermal fixed point (NTFP)

Since typically $f \gg 1 \Rightarrow$ can use classical lattice simulations Son (2004); Jeon (2005)

Next stage of thermalization dynamics NTFP of highly occupied gauge plasma

Berges, KB, Schlichting, Venugopalan, PRD 89, 114007 (2014); PRD 89, 074011 (2014)

Comparing to a scalar $\lambda \phi^4$ field theory (O(N) symmetric)

Universality with gauge theory (1. stage of bottom-up)

Berges, KB, Schlichting, Venugopalan, PRL 114, 061601 (2015); PRD 92, 096006 (2015)

Reminder: Self-similar evolution $f(p_T, p_z, \tau) = \tau^{\alpha} f_s(\tau^{\beta} p_T, \tau^{\gamma} p_z)$

Universality:

Same scaling exponents, same f_s as in gauge theory!

 $egin{array}{rcl} lpha &\simeq -2/3 \ eta &\simeq 0 \ \gamma &\simeq 1/3 \end{array}$

Rescaled longitudinal distribution $(p_T = Q/2)$

Allowed to distinguish between different kinetic scenarios

Real-time lattice simulations

Thermalization scenarios

- Baier, Mueller, Schiff, Son (BMSS), (2001)
- Bodeker (BD), (2005)
- Kurkela, Moore (KM), (2011)
- Blaizot, Gelis, Liao, McLerran, Venugopalan (BGLMV), (2012)

Well described by "Bottom-up" (BMSS)! Baier, Mueller, Schiff, Son, PLB 502, 51 (2001)

Scenario consists of 3 stages; Self-similar evolution is 1. stage

Further studies of different stages: Blaizot, Iancu, Mehtar-Tani, *PRL 111, 052001 (2013)* Kurkela, Lu, *PRL 113, 182301 (2014)* Kurkela, Zhu, *PRL 115, 182301 (2015)*

Later stages of thermalization dynamics

Onset of hydrodynamics

Bottom-up involves only elastic

No (late-time) plasma instabilities, no condensate included

Kurkela, Zhu (2015); Keegan, Kurkela, Mazeliauskas, Teaney (2016); Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (2018), ...

Summary:

Thermalization process in weak-coupling picture

Back to nonthermal fixed points (NTFP)

- **Now:** examples in other systems
- Scalar systems
- Spin gases (experiment)
- Isotropic non-Abelian plasmas

Common approach:

- Experiment or real-time lattice simulations for observation
- Understanding with a kinetic or an effective theory
- Often: transport of a conserved quantity

Self-similar evolution $f(p,t) = t^{\alpha} f_{S}(t^{\beta}p)$

Nonthermal fixed points

In scalar systems: Dual cascade

Different theories: **Relativistic** scalars ($\lambda(\phi_a\phi_a)^n$; O(N)-sym.), **Nonrelativistic** scalars

Observations:

- Two separate scaling regions: IR, UV
- IR is universal: same in all theories,

i.e., same $\alpha \approx \frac{d}{2}$, $\beta \approx \frac{1}{2}$ and $f_s(p)$

Particle number conserved in IR

Understanding:

- Large-N kinetic theory
- Low-energy effective theory

Momentum: $\log(p)$

Micha, Tkachev (2003); Berges, Rothkopf, Schmidt (2008); Gasenzer, Nowak, Sexty (2012); Piñeiro Orioli, KB, Berges (2015); Berges, KB, Schlichting, Venugopalan (2015); Moore (2016); Schachner, Piñeiro Orioli, Berges (2017); Berges, KB, Chatrchyan, Jäckel (2017); Walz, KB, Berges (2018); Chantesana, Piñeiro Orioli, Gasenzer (2018); Schmied, Mikheev, Gasenzer (2018) ...

Nonthermal fixed point in a spin gas (ultracold atoms)

First experimental observation of a NTFP

Prüfer, Kunkel, Strobel, Lanning, Linnemann, Schmied, Berges, Gasenzer, Oberthaler, *arXiv:1805.11881*

02.08.2018 | University of Jyväskylä, Finland | Kirill Boguslavski | 12

Next step: spectral functions

Go beyond distribution functions

- To better understand microscopic dynamics
- To test quasiparticle assumptions underlying kinetic theories
- To extract *transport and diffusion* properties

A typical spectral function

Frequency: ω

- $\rho(\omega, p)$ includes all possible excitations
- Quasiparticles emerge as Lorentz peaks
- **Dispersion** $\omega(p)$ is energy of "on-shell" particles
- **Damping rate** $\gamma(p)$ is inverse of their life time
- More complicated structures can also emerge (cuts, extra poles, etc.)

KB, Kurkela, Lappi, Peuron, *PRD 98, 014006 (2018)*

Next step: Spectral functions

Linear response theory on a class. lattice

Perturbation

- Classical field simulations for background
- Source *j* at time *t'*
- Response in linear fluctuations a_j for t > t'Kurkela, Lappi, Peuron, EUJC 76 (2016) 688
- $\langle a_j(t, \mathbf{p}) \rangle = \int dt' G_{R,jk}(t, t', \mathbf{p}) j^k(t', \mathbf{p}),$ obtain ret. propagator $G_{R,jk}$ from response
- Spectral function: $G_{R,jk} = \theta(t t') \rho_{jk}$
- Distinguish polarizations

Self-similar evolution $f(p,t) = t^{\alpha} f_{S}(t^{\beta}p)$

First application: to NTFP

In an isotropic Yang-Mills system

Berges, Scheffler, Sexty (2009); Kurkela, Moore (2011, 2012); Berges, Schlichting, Sexty (2012); Schlichting (2012); Berges, KB, Schlichting, Venugopalan (2014); York, Kurkela, Lu, Moore (2014)

Observations:

- Self-similar, cascade to UV
- Scale separation grows with time $m/\Lambda \sim (Qt)^{-2/7} \ll 1$

<u>Asymptotic mass</u>: $m^2 \sim g^2 \int d^3p \ \frac{f(t,p)}{p}$

• Effective kinetic theory (AMY)

Momentum: log(p)

Scale separation allows usage of

• Hard-thermal Loop (HTL)

Braaten, Pisarski (1990); Blaizot, Iancu (2002) KB, Kurkela, Lappi, Peuron, *PRD 98, 014006 (2018)*

Next step: Spectral functions

Transverse spectral function ρ_T

Conclusion

- a. Thermalization process in weak-coupling picture in HIC:
 Glasma → Instabilities → Bottom-up → Hydrodynamics
- b. Nonthermal fixed points (NTFP) commonly emerge far from equilibrium. Examples: gluonic systems, scalars, spin gases (ultracold atoms), ...
- c. Non-perturbative numerical approach developed for spectral functions
 - ⇒ more information on microscopic dynamics accessible

Outlook: The technique to study spectral functions can be applied, e.g., to:

- <u>Transport</u> coefficients, jet quenching, diffusion
- <u>Anisotropy</u>, plasma instabilities, Glasma

Thank you for your attention!

BACKUP SLIDES

Computational method

Classical-statistical lattice simulations

- $SU(N_c)$ gauge theory with $N_c = 2$ in temporal $A_0 = 0$ gauge
- Large occupancies $f(p \sim \Lambda) \gg 1$, weak coupling, real time \Rightarrow *Classical* approximation for *field dynamics* applicable
- Fields are link and chromo-electric fields U_i , E_i on 3D spatial lattice
- Initialization:

$$\langle |A(t=0,\boldsymbol{p})|^2 \rangle \sim \frac{f(t=0,p)}{p}, \qquad \langle |E(t=0,\boldsymbol{p})|^2 \rangle \sim p f(t=0,p)$$

then $A_i(0, \mathbf{p}) \rightarrow U_i(0, \mathbf{x}), E_i(0, \mathbf{p}) \rightarrow E_i(0, \mathbf{x})$ and restore Gauss law

Aarts, Berges (2002); Mueller, Son (2004); Jeon (2005)

Thermalization dynamics at early times

,Bottom-up' picture and onset of hydrodynamics

Kurkela, Zhu, PRL 115, 182301 (2015)

Full ,bottom-up' evolution Onset of hydrodyncamics ($\lambda = 4\pi \alpha_s N_c$ extrapolated to moderate values = 5, 10) 0.1 10000

Universality classes

The attractor in longitudinally expanding scalars

02.08.2018 | University of Jyväskylä, Finland | Kirill Boguslavski | 21

Nonthermal fixed points

Scalars: Inverse particle cascade to IR

Self-similar evolution $f(p,t) = t^{\alpha} f_{S}(t^{\beta}p)$

Nonthermal fixed points

Scalars: Universality in IR

• Same α , β and scaling function

 $\lambda f_S \simeq \frac{a}{(|\boldsymbol{p}|/b)^{\kappa_<} + (|\boldsymbol{p}|/b)^{\kappa_>}}$

with $\kappa_{<} \simeq 0 - 0.5$ and $\kappa_{>} \simeq 4 - 4.5$

Across relativistic (different N), nonrelativistic

- New *large-N kinetic theory* describes it quantitatively, shows that $\kappa_{<} \rightarrow 0, \kappa_{>} \rightarrow 4$ *Piñeiro Orioli, KB, Berges (2015); Walz, KB, Berges (2017)*
- (Systematically derived in 1/*N*, resums vertex)

Extracted spectral function vs. HTL predictions

KB, Kurkela, Lappi, Peuron, *PRD 98, 014006 (2018)* Extracted dispersion relations $\omega_{T,L}(p)$

- Extracted from peak position (for ω_L after subtracting HTL Landau cut)
- Similar to HTL predictions: $\omega_{T,L}^{\text{HTL}}(p)$
- Deviations at small p, for finite m/Λ ?
- " $\omega_L(p)$ " deviates at $p \sim m$ because peak is smaller than Landau cut, harder to measure

<u>Remark</u>: $\omega_T(p)$ also compatible with $\omega_T^{\text{rel}} = \sqrt{m_{\infty}^2 + p^2}$ –

Momentum: p / m_{HTL}

 $\omega_{T,L}$ / $m_{\rm HTL}$

Extracted spectral function vs. HTL predictions

KB, Kurkela, Lappi, Peuron, *PRD 98, 014006 (2018)* Extracted damping rates $\gamma_{T,L}(p)$

 $\gamma_{T,L}(p) \ / \ Q$

• $\gamma_{T,L}(p)$ is $\mathcal{O}(g^2Q)$ and *beyond HTL at LO*, it may contain non-perturbative contributions (*magnetic scale*)

• Here *first determination* of $\gamma_{T,L}(p)$!

- Extracted by fitting to a damped oscillator
- HTL prediction: $\gamma_{\text{HTL}}(p=0)$
- "Isotropic" $\gamma_T \approx \gamma_L$ for $p \lesssim m$

