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Heavy quarkonium in the QGP

The quarkonium suppression is expected to serve as a signal for the formation of a
quark-gluon plasma (QGP). Matsui and Satz 1986

» Heavy quark produced at the beginning of heavy-ion collisions.

» [t is sensitive to the properties and evolution of QGP.

» Final state dilepton doesn’t interact with other hadrons.

The explanation of Matsui and Satz 1986 is that
» Cornell potential V(r) = -2 +orat T =0
> Yukawa potential V(r) = —ae’™D and o =0for T > T

r

Screening is stronger at hight 7', as the Debye radius rp ~ 1/mp decreases with
increasing 7'.

Cornell potential

r
Yukawa potential

/19



Heavy quarkonium in the QGP

Static potential of heavy quarkonium in real time at finite temperature for 1/r ~ gT'
is found to have an imaginary part. Laine et al. 2007; Brambilla et al. 2008; Beraudo et
al. 2008; Rothkopf et al. 2012; Burnier and Rothkopf 2012; Burnier et al. 2014.
«a e*TmD )
V(r)=———— —asmp — i T$(rmp)
r

with ¢(x) a monotonic function with ¢(0) = 0 and ¢(co) = 1, which is related to the
decay width of the heavy quark.

T T

Bottomonium

500~ 22 1

i Laine et al. 2007
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Heavy quarkonium in the QGP

Scales of Heavy quarkonium M > Mv > Mv?. v < 1 makes heavy quarkonium a
non-relativistic bound state.

» M: hard scale
» Muv ~p~ 1/r: soft scale, momentum transfer between QQ

» Mv? ~ E: ultrasoft(US) scale, binding energy
Thermodynamic scales of the QGP: T, mp ~ ¢T, ---
QCD scale: Agep

Mechanisms for quarkonium evolution in QGP includes regeneration, and
dissociation (color screening and scattering, and gluon absorption).

The different scales for the quarkonium evolution in a thermal medium calls for a
effective field theory description of the system.
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Effective field theories

The non-relativistic QCD (NRQCD) is carried out by integrating out the hard scale
M. Caswell and Lepage 1986; Bodwin et al. 1995

> M >p,E,Agcp (Mep =1.27,4.2 GeV, Agep = 0.2 GeV), the matching can be
done perturbatively.

. . . . 1
» —_
The Lagrangian is organised as an expansion of ;.

The potential non-relativistic QCD (pNRQCD) is derived by further integrating out
the soft scale mv from NRQCD. Pineda and Soto 1998; Brambilla et al. 2000

» M > p> E, Agcp, heavy quarks and anti-quarks are described with bound
states of color-singlet (S = S/v/N.) and octet (O = O*T*/+/Tr) with Coulomb

: p? p3
potential (hs,o = o T oo +Vs0).
» The Lagrangian is organised as an expansion of ﬁ and 7.

» To NLO in multipole expansion:
Lonrgep = Lgig+ / d3r{Tr [ST(io — hs)S + O (iDy — h,)O]

+ Tr[ofr-gEs+s*r-gEo+é(o*r-gEo+o*or-gE)]}.



Transport equations
Quantum transport equations
» Evolution of correlators (or density matrices): Schwinger-Dyson equation,
Kandoff-Baym equation Akamatsu 2015, Brambilla et at. 2017

(Semi-)Classical transport equations
» Langevin equation, Fokker-Plank euqaion Blaizot et al. 2015 : Momentum
drag/diffusion coefficient
. p .
t=-7  Mfi=—F —nip; +&
(§(0)&(t) = 6(t — ') Ai; with Xij = 2MTi;

0 - Ve 1
<8t + pM ) P(t,r,p) = Vo, [(nip; + Fi) Pl + 5 Vp, Vi, [Xi P]

» Boltzmann equation Muller et al. 2017: Loss/gain term

d p:-V: _
(dt+ M )f(tar7p)_ C*+C+

Relations from quantum to classical transport equations was discussed by e.g. Zurek
1991; Akamatsu 2015; Blaizot and Escobedo 2017; De Boni 2017

The relation between different transport equations is not fully understood. It would
be important to derive those equations from QCD. 5/19



Open Quantum System

Wikipedia: In physics, an open quantum system is a quantum-mechanical system
which interacts with an external quantum system, the environment.

For Heavy quarkonium in high energy heavy-ion collisions: the QGP + heavy quark
is considered as a large closed system.

H=Hqg+ Hqarp + Hi
The Heavy quarkonium (HQ) evolution is described by

pa(t) = Trqoar(p(t)]

» Interaction between the HQ system and the QGP is weak:
p(t) = pq ® poar
Evolution of the HQ system:

dpo(t)
dt

i = [Hq, pa(t)] +iDpq(t)

» iDpg(t) describes the dissipation of the HQ system due to interaction with the
QGP.
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Density evolution with pNRQCD
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Brambilla, Escobedo et al. 2017

The density matrices for color-singlet and octet are

<r1,r2|p5(t,t)\r'1,r'2> = ps(t7I‘17I‘2;I‘,1,I‘/2) = <SI(t,I‘1,I‘2)52('L’7 I‘,17I‘/2)>

6ab ab

ﬁ <I‘17I‘2|po(t7 t)|r/17rl2> = 7,00(15,1‘171‘2;1‘,1,1‘/2) = <OTT(t>r17r2)Og(ta r/17r,2)>
c

NZ 1
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Density evolution with pNRQCD
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Brambilla, Escobedo et al. 2017
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Evolution equations for the density matrix of color-singlet and octet states’:
dps(t, ;1 , / /
# [ = i(ha(r) = he(r')) = (SL(t,¥) + Ba(t,1)] pu(t, 13 ¥)

+Es0(t, po, ;1)
= [ ilho(r) = ho(x')) = (S1(t:x") + Eo(t,))] po(t, 73 ¥)
+Eos (t, Ps, T l'/) + Eog(t, Po, T3 I',) .

Higher order correction has been included on the right hand side:
—ih_( oy (t—10)
s(0)

dpo(t7 I'; I‘l)
dt

ps(a)(to,to)eiihs(") — Ps(o) (t,t), which makes the evolution a Markovian process.
7/19
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Self-energies in real time formalism
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The self-energies are expressed as?

2 oS} . X
Zs(t,rl,rg):%\i / dty (T {1y ()T e~ "o O T {TL, (0) ™)
0

C

Gluon field in multipole expansion (with field redefinition):
Iy = AG(r))T" — Ag(rs)To ~ AG(O)(T® — To) — Lr - B(T + T7).

» Lindblad equation has been derived in weak and strong coupling plasma.
Brambilla, Escobedo, Soto, and Vairo 2017

2f0tft0 dt; — [ dt1, and neglecting density matrix in 11 and 22 correlators
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Quarkonium evolution in a strongly coupled plasma
Scales for strongly coupled pasma: M > p~ Mv > T ~mp ~ ¢gT > E ~ Mv2.

» We can expand the exponentials et?s0(t=40) ~ 1 4 ik ,(t — to) with

2
hs,o = —% + Vio. (hs,o(t —to) < 1 as the correlation time ¢ — tg ~ % 2

» The LO expansion is used for deriving Lindblad equation.

» The LO and the NLO correspond to the momentum diffusion and
momentum drag in the Fokker-Plank equation and Langevin equation in a
semi-classical approximation.

St = [ dt'{mm (B2 (VB (0)) + ¥ (rBE () 00V ()7, + ) E2(0)) }

> §V(r) = Vi(r) — Vo(r) and © = i[VZ,r]/M.

Defining the real and imaginary parts of the correlator through
2 0o o
2ch fo dt’ <Ez tE > = 5 [kij(t) + vi5(t)] and
% I3 dt’ (B¢ (0) f(t)) = 5 [Kij(t) — ivi;(t)], the singlet self-energy reads

1 1
T 0V (r)ki; (1) + IMT

S (tr) = 3 e ey 8) + 755 () + o

narj Rij (t)
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Quantum transport equation in the Lindblad form

The Lindblad equation for the Makovian evolution of the density matrix is

d _ . 1 t te t
2P = —ilH,pl = 5 > [CiCup+ pClCn — 200 pCl]
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Brambilla et al. 2017

Bottonium Suppression with 1.8 < 5 < 3.4 and v = 0.
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Quantum transport equation in the Lindblad form

The Lindblad equation for the Makovian evolution of the density matrix is

% i[H, p] - Z[CTCnp+pCTC —2C,pC1)
~( 0 1 a(N2—a)nt) 4 (0 0
C,? = ( ) (\/NQ 0) and Cll = 7]\]3_1 T 0 1

e
—-—

by -
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Brambilla et al. 2017

Bottonium Suppression with 1.8 < 75 <3.4 and v = 0.
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Semi-classical approximation in a strongly coupled plasma

Semi-classical limit
» In the static (M — oo) limit r = 1r’.

» The semi-classical limit is derived through Taylor expansion of small r~ =r —r’.

Withr™ =r —r’ and r* = %‘”l , the semi-classical approximation of the singlet
self-energy reads

_ _ _ 1 _ _ . _
Y. (8, rtr )= Es(t,r+7r )+ El(t,rﬂr )~ (rfrj + 17T Vkij (t) + zrjrj ~ij (t)

1

+ 2MT

1
(27"?1"{ + r;’rfr,zar;r)éV(rJr) +

3T (r 0+ + 170 )| Kis(t)
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Fokker-Planker equation

The Fokker-Planker equation can be worked out by Wigner transformation of the
semi-classical results.

! d3p ip-r
p(t,r,r):/(%)ge" p(t,r",p)
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Fokker-Planker equation

In the basis of po = ps + po and ps = ps — po/(NZ — 1),
> Static limit (Similar to Blaizot and Escobedo 2017 with Non-relativistic QCD):

dpo(t,rt 0
% = 0 < color equilibrium states ps = ng_ T
dps(t,rt NZ o
w = = I k(t)(r*)?ps(t,r,p) <decreases in time

» Diagonalising the semi-classical equations of pg and pg, the maximum entropy
v
P oot F, p) = L pf (.17, p)
Vo, [(NZ —1)8:V, (r ) + 0V (x)]
Ne

1 (N2 —1)20;6V'(xrT)9;6V'(x™) 1
+ V VPJ ( Kij (t) + T?T;r/lii/j/ (t)NCG + 2MT vPi PjRij (t)
{z‘(NZ — 1)V () (@ Ky (DY () + 1k (H9,8V ()

4TN47“.+7".+/£1 /(t)
T Kin (O)8V (1) (i kg (8)V (7)) + i1 K (8) 950V (x ))}
16ri,r;mi/]/( YN2T?

state evolves w.r.t. (% +

L/

+ Vp,Vp;

—+

with 9,VI(rt) = OiVa(rt) 4+ y(1), BiVA(rT) = BVo(e) + 1 525 (),
and@idV’ = BZVS’ — ((91‘/0/ and (97,5‘/ = &VS — 8iVo. 12 /19



Langevin equation

The Corresponding Langevin equation (strongly coupled pNRQCD with contribution
from ultra-soft gluon) is
po2 ME

M 2
Mij = gapr Fis (1), and (& (D)€ (') = 6(t — ')Ay with Aij = MT;;.

2_1)29, 5V (rT)8; 5V (rF
The random force (0 (£)0; () = §(t — t') 2 Ee—1 22V (téi;j” )
J-/“i/j/ c

=—F —nijpj + & + 6 1)

+R.F from

T
il

potential change of bound states.

The external force F =

2
(N? —1)vv;(r:)+vvs’(r+)

c

; _ _Cr — _1
with V, = —=F |V, = SN
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Langevin equation

The Langevin equation from non-relativistic QCD with only Coulomb gluon
field(Blaizot and Escobedo 2017 ) is

F=0

Mij = 2MT Di0;W(0), and (& (t)&i(t)) = 6(t — t')\i; with Xij = M T,

(©:(06,(+) = 6<t t)%—% ith
W (r) = ( f # (Ao (t, 1) A0 (0,0)) + (Ao(0, ) Ao(t,0)) and
V(r)—V(0) = 2 "0 4 o mp, W(r) — W(0) = aeTé(rmp) (for 1/r ~ mnp).
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Langevin equation

The Corresponding Langevin equation (strongly coupled pNRQCD with contribution
from ultra-soft gluon) is

2 ME
M 2
Nij = sapr ig (1), and (&(8)&; (")) = 6(t — ')Ay with Xij = MTn;.

) 2(N2-1)29;6V'(xT)9;6V’ (x 1)
r;r; Kyl g (t)NS

—Fi —nijp; + & + ©; 1)

The random force (©;(t)0;(t')) = 6(t — ¢’ +R.F from

potential change of bound states.

WN2-1)vViEh+vviet)

The external force F = N2 with Vs = —Cr V, = =—4—

» Ultra-soft gluons in QGP introduce extra force in the Langevin equation of p;.
> Potential change of the bound state introduces a random force.

» When the force is large, it can’t be considered as a small random force, thus the
Langevin equation is not valid.
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Time Evolution of Correlators

The density is related to the correlator through

Galt,r,r ) = (rlps(t,O)|r') = <51(t,r)52(t,r')>,

5°Go(t, ro, .

5ab N
D) = 5T (relpo(t.DIrb) = (O (11, 12) O3t v 15))

The evolution of correlators are

% = /dg’r”[fi(hs(r) — ha(r)) = (SHE ) + Bt 1, )]
(tI‘ T )+~—lso(t Gg,I'I‘)

% = /d3 ” [ —i(ho(r) — ho(r")) — (El(t,r”,r/)—|—Eo(t,r,r”))]
Go(t,v'";1") + Zos (t, G, 15 1') + Eoo (8, Go, 15 1)

hs(0) = p*/M + Vi(o)(r) with Vi(r) = —Cp 2 and V,(r) = 5o

3Ncr
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Assumptions in deriving Boltzmann equation

4 d3 ipr
Guttr.r') = [ B e G p)

» » P d3p = I‘—I—I‘” 3 ’
3 _ ipr
/d r Ys(t,r,r )Gs(t,r ,r )= / OE e 3a(t, 3

d3p ipr— 4 (8%5.9Gs _9=s.5Cs
/Wep e# (507 =07 07 ) 5 (1, v, p) Gt v, p)

The system is a weak nonequilibrium system with weak and instantaneous local

interactions with the medium (Kandoff-Baym ansatz).

> (a) The dependence of G, and X is slow enough that one can use
r+r“ ~ r“«‘fr/ ~ r+r/

2 2 B} Xr.

> (b) The evolution of potential is slow enough to be neglected (hs,, ~ p*/M).

> (c) The spectral function of the system is a product of a d-function and the
distribution function (G12 = 27§(E — M/2)f).
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Time evolution of Correlators
Implementating (a) and (b):

d 2 : r —_

(— p-V ) Gs(t,r,p) = —2Re{Z:(t,r,p)}Gs(t,r,p)+ Eso(t,r,p)
dt M
d 2 N r —_

(a + va ) Go(t,np) = =2 Re{Eo(t,r,p)}Go(t,r,p) + :"S(t’r’p)

+Zoo(t, T, p)
For a strongly coupled system with p > T ~ gT' > E

2 S . . . . . N
Ys(t,r,p) = 2%\7 / ds <r,p|rle_m"srjelh°‘s r,p> <Ea"(s,0)Ea’J (0, 0)>
c Jo
[ &3 [d®po [d*k (x,p|r’|ro, Po) (o, Polr’|r, P)
(2m)? (2m)* Eo — Es + ko

d3po / d*k <r7p|7ni‘r07po> <ro7po|’l“j|r,p>
(2m)* ) (2m)* Eo — Es + ko

xkg DY (k)(2m)°8%(p — po — k) (2)

where we have used

= ig’Cr k3 D> (k)

= i¢°Cr

(B (5,0)5°7(0,0)) = (NZ - 1)/ (;1;’;4 ¢ 0s k2 D> (k)

in dimensional regularization.
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Time evolution of Correlators

Implementating (a) and (b):

d 2p - r —_
(— T JA )Gs@,r,p) = 2Re{S4 (6, p)}Ga(t, 1, D) + Zao(t, 1, )
T M

d  2p-V.
(E +%>Go(t,r,p) = —2Re{Z,(t,r,p)}Go(t,r,p) + Eos(t, 1, p)

+Eoo(t7 r, p)
With D7 (k) = (6:; — kik; /k*)D” (k), with D> (k) = ns (ko) + 1 we get

d? d'k_ | (r,plei (k) -rlro, po) |
s Do , Pl€x 0y Po
Zs(t,r,p) = g CF/ (27)3 /(27;)4 E, — E; + ko

k3D (k) (2m)°6" (p — po — k)

€§(k)€)\(k) = (Sij — k’zk]/kZ

The factor m = Q1! is the free octet propagator, which in a thermal medium
will be m + (fo(Eo,To, Po) + 3 )2m6(Eo — Es + ko) (Kandoff-Baym ansatz

(c))-
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The results for different Feynman diagrams

The results for singlets are

2R{T.(t,r,p)} = 220/d3p0 /ﬂur lex(K) - r|ro, po) |2
s\, T, p - g F (271_)3 2]{:(271_)3 ; PIEX o; Po

02 [ (o (B ) + 5 s+ 1)

(2m)*6(Es — Eo — k)3°(p — po — k)

2 2 3 3
= _ g (Nc - 1) / d Do / d°k * . 2
‘—‘So(ta r, p) - 2]{5(271’)3 | <I‘,p|6)\(k) I“I‘o, p0> |

N (2m)3

<k (. (Brip) +  na)|

(271-)46(E3 - EO + k)és(p — Po + k)GO(tv ro, po)

This two terms can be combined by changing (ko, k) to —(ko, k) and using

Similar calculation can be done for octet self-energies.
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The Boltzmann equations

Gs(t, r, p) = fs(t7r7p)2776(E5 - %) and Go(t,r,p) = fo(tv I‘o,pp)Qﬂ'(S(Eo - %)

d 2p -V, . s s
(& +T>fs(t7r7p)— CZ+ 0
d  2po-Vs . .
(E + pTVO) FoltyTospo) = (—C° (s 4> 0) + C%.(5 < 0) + C) /(N? — 1)

3 3
C’ = g2CF/ dpo /i | (r, p|ex (k) - r|r,, po) |>< Dissociation of Singlets
- (2m)3 ) 2k(2m)3 'Y ’

xk? fs(Es,x, p)(n (k) +1)(21)"8(Es — Eo — k)8° (p — po — k)

cs =g°C / &p, /d?)il€ | (r,plex(k) - r|r ) |?<= Regeneration of Singlets
T =g Cr o7 | 2k ,plex s Po generation ing
<k fo(t, o, Po) (s (k) + 1)(2m) *6(Es — Eo — k)0°(p — po — k)
202 3, 3
g (NS —4)Cr d°p, d°k » g2 ..
C; = 5 Gnp | k@n)? | {ro, Poler(k) - r|r,, py) |« Octets transition
XK (fo(Eo, T, Do) = fo(Bo, Yo, Po)) (s (k) +1)(27)*0(Eo — B = k)8*(Po — P, — k)
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Summary

(Semi-)classical description of quarkonia evolution in a strongly coupled plasma has
been derived from pNRQCD for a strongly coupled system.

» Langevin equation and Fokker-Plank equation are derived in a semi-classical
approximation.

» Boltzmann equation is worked out for a weakly nonequilibrium system with
weak interaction with the QGP.

In addition,
» it would be interesting to numerically solve those equations.
» Similar calculation can be done for a weakly coupled system.

» Comparing to experimental data (with proper initial condition and medium
description) will reveal the properties of QGP and formation of heavy quarkonia.

Thank you!



