XIII Quark Confinement and the Hadron Spectrum Conference August 1 – 6, 2018, Maynooth (Ireland)

Recent results on Strangeness production at the LHC with ALICE

Domenico Elia INFN, Bari (Italy)

on behalf of the ALICE Collaboration

Contents

Introduction:

- physics motivation
- experimental apparatus
- strange particle detection with ALICE

Results in pp, p-Pb and Pb-Pb (Xe-Xe):

- transverse momentum spectra
- baryon-to-meson ratios
- strange-to-pion ratios: strangeness enhancements
- comparison with statistical hadronization (thermal) models

Conclusions and Outlook

Physics motivation

- Main goal of the ALICE experiment:
 - study nucleus-nucleus (A-A) collisions
 - investigate deconfined phase of matter (Quark Gluon Plasma, QGP):
 - hydrodynamical evolution, energy loss, thermal/chemical equilibrium

Physics motivation

- Main goal of the ALICE experiment:
 - study nucleus-nucleus (A-A) collisions
 - investigate deconfined phase of matter (Quark Gluon Plasma, QGP):
 - hydrodynamical evolution, energy loss, thermal/chemical equilibrium

Fireball evolution:

- starts with a "pre-equilibrium state"
- forms a "**QGP phase**" (if $T > T_C$)
- "chemical freeze-out" (T_{ch}):

→ hadrons stop being produced

- "kinetic freeze-out" (T_{kin}):
 - → hadrons stop scattering

D. Elia (INFN Bari, Italy)

Physics motivation

- Main goal of the ALICE experiment:
 - study nucleus-nucleus (A-A) collisions
 - investigate deconfined phase of matter (Quark Gluon Plasma, QGP):
 - hydrodynamical evolution, energy loss, thermal/chemical equilibrium
 - use pp (and p-Pb) collisions as baseline / control experiments
 - intriguing observations from multiplicity dependent studies:
 - small collisions systems show remarkable commonalities with A-A
 - strong hints of collectivity

Physics motivation

- Main goal of the ALICE experiment:
 - study nucleus-nucleus (A-A) collisions
 - investigate deconfined phase of matter (Quark Gluon Plasma, QGP):
 - hydrodynamical evolution, energy loss, thermal/chemical equilibrium
 - use pp (and p-Pb) collisions as baseline / control experiments
 - intriguing observations from multiplicity dependent studies:
 - small collisions systems show remarkable commonalities with A-A
 - strong hints of collectivity

Studying strangeness in pp, p-Pb and Pb-Pb (Xe-Xe):

Collectivity (spectra):

transverse momentum distributions, baryon-to-meson ratios

Hadrochemistry (yields and ratios):

- strangeness enhancement, multiplicity and energy dependence
- comparison with thermal model predictions

Experimental apparatus

A Large Ion Collider Experiment at the LHC

Low material budget in the central region good momentum resolution (~1-5%) @ $p_{\rm T} = 0.1-20 \ {\rm GeV}/c$

ITS, TPC:

tracking, vertexing

V0A(C):

triggering, beam-gas rejection, centrality (Pb-Pb, Xe-Xe) and multiplicity (pp, p-Pb) class definition

D. Elia (INFN Bari, Italy)

Experimental apparatus

A Large Ion Collider Experiment at the LHC

Complementary particle identification techniques excellent PID capability in a wide p_{T} range:

- energy loss (ITS, TPC)
- time-of-flight (TOF)
- Cherenkov (HMPID)
- topological decays

Data samples:

- pp @ 2.76, 5.02, 7, 8, 13 TeV
- p-Pb @ 5.02, 8.16 TeV
- Pb-Pb @ 2.76, 5.02 TeV

D. Elia (INFN Bari, Italy)

Strange particle detection

- From charged tracks to yields:
 - topological decay reconstruction
 - geometrical and kinematical selections
 - decay product invariant mass analysis

PLB 712 (2012) 309

$$\begin{split} K^0_S &\to \pi^+ + \pi^- \text{ (B.R. 69.2\%)} \\ \underline{\Lambda} &\to p + \pi^- \text{ (B.R. 63.9\%)} \\ \overline{\Lambda} &\to \overline{p} + \pi^+ \text{ (B.R. 63.9\%)} \end{split}$$

$$\begin{split} & \Xi^- \to \Lambda + \pi^- \to p + \pi^- + \pi^- \text{ (B.R. 63.9\%)} \\ & \overline{\Xi}^+ \to \overline{\Lambda} + \pi^+ \to \overline{p} + \pi^+ + \pi^+ \text{ (B.R. 63.9\%)} \\ & \Omega^- \to \Lambda + K^- \to p + \pi^- + K^- \text{ (B.R. 43.3\%)} \\ & \overline{\Omega}^+ \to \overline{\Lambda} + K^+ \to \overline{p} + \pi^+ + K^+ \text{ (B.R. 43.3\%)} \end{split}$$

D. Elia (INFN Bari, Italy)

Transverse momentum spectra

Transverse momentum spectra

Hardening of the spectra with increasing centrality of the collision

Spectra hardening more pronounced for heavier than for lighter particles (expected as effect of the radial flow)

Same pattern for multi-strange hadrons \rightarrow

Transverse momentum spectra

D. Elia (INFN Bari, Italy)

Results in pp @ 7 TeV

Transverse momentum spectra

- ALICE
- Multiplicity classes based on V0 detector:
 - > 2.8 < η < 5.1 and -3.7 < η < -1.7
 - > 10 multiplicity classes (I \rightarrow X)
 - I: $< dN_{ch}/d\eta > \approx 3.5 < dN_{ch}/d\eta >^{INEL>0}$
 - X: $< dN_{ch}/d\eta > \approx 0.4 < dN_{ch}/d\eta >^{INEL>0}$

with $< dN_{ch}/d\eta >^{INEL>0} \approx 6.0$

Results in pp @ 7 TeV

Transverse momentum spectra

- Multiplicity classes based on V0 detector:
 - > 2.8 < η < 5.1 and -3.7 < η < -1.7
 - > 10 multiplicity classes (I \rightarrow X)
 - I: $< dN_{ch}/d\eta > \approx 3.5 < dN_{ch}/d\eta >^{INEL>0}$
 - X: $< dN_{ch}/d\eta > \approx 0.4 < dN_{ch}/d\eta >^{INEL>0}$ with $< dN_{ch}/d\eta >^{INEL>0} \approx 6.0$
- Shape evolution similar to A-A:
 - harder with increasing multiplicity
 - hardening more pronounced for heavier than for lighter particles

In A-A collisions such behaviour could be explained by models based on relativistic hydrodynamics

Results in pp @ 13 TeV

Transverse momentum spectra

Same pattern as observed in pp @ 7 TeV

D. Elia (INFN Bari, Italy)

Results in pp @ 13 TeV

Transverse momentum spectra

Same pattern as observed in pp @ 7 TeV

D. Elia (INFN Bari, Italy)

Baryon-to-meson ratios

- Same behaviour as in Pb-Pb @ 2.76 TeV:
 - maximum increasing with centrality
 - > peak position shifts to higher p_T (radial flow, quark recombination)
 - > high- p_{T} region: no medium effect on particle composition

Baryon-to-meson ratios

- Same behaviour as in Pb-Pb @ 2.76 TeV:
 - maximum increasing with centrality
 - > peak position shifts to higher p_T (radial flow, quark recombination)
 - high-p_T region: no medium effect on particle composition

D. Elia (INFN Bari, Italy)

Baryon-to-meson ratios

- Same behaviour as in Pb-Pb @ 2.76 TeV:
 - maximum increasing with centrality
 - > peak position shifts to higher p_T (radial flow, quark recombination)
 - high-p_T region: no medium effect on particle composition

Similarities in the evolution across different systems:

Significant enhancement of strange to non-strange particle yields visible for high-multiplicity pp

D. Elia (INFN Bari, Italy)

QC&HS 2018 / Maynooth (Ireland) August 1 - 6, 2018

ezione di Bari

Significant enhancement of strange to non-strange particle yields visible for high-multiplicity pp

Consistent pattern between pp, pPb and Pb-Pb with nice overlap at fixed final state multiplicity: enhancement observed as a function of $<dN_{ch}/d\eta>$ independent on the collision type!

Strange to non-strange ratios reach values similar to those observed in PbPb collisions

D. Elia (INFN Bari, Italy)

Significant enhancement of strange to non-strange particle yields visible for high-multiplicity pp

Consistent pattern between pp, pPb and Pb-Pb with nice overlap at fixed final state multiplicity: enhancement observed as a function of $<dN_{ch}/d\eta>$ independent on the collision type!

Strange to non-strange ratios reach values similar to those observed in PbPb collisions

No MC models describe the data satisfactorily

Question:

 is the enhancement in pp due to mass or some baryon/meson effect or due to strangeness content of the particle?

Ratios of yields for particles with large mass difference do not show enhancement as a function of charged multiplicity

No model is able to reproduce the increase of the hyperon to pion ratios and the flatness of baryon to meson ratios simultaneously

enhancement is strangeness rather than mass related

Results in pp @ 7 TeV, p-Pb @ 5 TeV, Pb-Pb @ 2.76 TeV Strangeness enhancement

Nature Physics 13 (2017) 535

Double-ratio in pp collisions (and in p-Pb) evolves smoothly with multiplicity density

Protons (S=0) is consistent with unity up to the highest $<dN_{ch}/d\eta>$ probed

Hyperon production increases from low to high multiplicity in pp and p-Pb

enhancement is strangeness rather than mass related

Results in pp @ 7 TeV, p-Pb @ 5 TeV, Pb-Pb @ 2.76 TeV Strangeness enhancement

Nature Physics 13 (2017) 535

Double-ratio in pp collisions (and in p-Pb) evolves smoothly with multiplicity density

Protons (S=0) is consistent with unity up to the highest $<dN_{ch}/d\eta>$ probed

Hyperon production increases from low to high multiplicity in pp and p-Pb

The larger the valence strange quark content, the steeper the slope: (dashed line fit to guide the eye)

enhancement is strangeness rather than mass related

hierarchy determined by the strangeness content of the hadron

D. Elia (INFN Bari, Italy)

Results in pp @ 7 TeV, p-Pb @ 5 TeV, Pb-Pb @ 2.76 TeV Strangeness enhancement

Nature Physics 13 (2017) 535

Double-ratio in pp collisions (and in p-Pb) evolves smoothly with multiplicity density

Protons (S=0) is consistent with unity up to the highest $<dN_{ch}/d\eta>$ probed

Hyperon production increases from low to high multiplicity in pp and p-Pb

The larger the valence strange quark content, the steeper the slope: (dashed line fit to guide the eye)

Further questions:

- is the same enhancement present at higher energy (pp @ 13 TeV)?
- is the enhancement collision-energy dependent or multiplicity driven?

Results in pp @ 13 TeV, Pb-Pb @ 5 TeV

Strangeness enhancement

- Results in pp @ 13 TeV (and Pb-Pb @ 5 TeV):
 - no signs of energy dependence

Similar scaling with multiplicity observed for strangeness production in pp @ 7 and 13 TeV

Most peripheral Pb-Pb @ 5 TeV results bridge p-Pb and high-multiplicity pp, in agreement with Pb-Pb @ 2.76 TeV (also with STAR Au-Au, Cu-Cu @ 200 GeV)

Event activity (system size) drives particle production: strange particle production is collision energy independent at similar multiplicity

Results in pp @ 13 TeV, Pb-Pb @ 5 TeV, Xe-Xe @ 5.44 TeV Strangeness enhancement

- Results in Xe-Xe @ 5.44 TeV:
 - system size/geometry dependence: confirm same behaviour

Similar scaling with multiplicity observed for strangeness production in pp @ 7 and 13 TeV

Most peripheral Pb-Pb @ 5 TeV results bridge p-Pb and high-multiplicity pp, in agreement with Pb-Pb @ 2.76 TeV (also with STAR Au-Au, Cu-Cu @ 200 GeV)

Event activity (system size) drives particle production: strange particle production is collision energy independent at similar multiplicity

Results in pp @ 13 TeV

Strangeness enhancement

Near-term prospects with higher energy pp:

- special high-multiplicity trigger used for pp @ 13 TeV data taking
- enough statistics to study 0-0.1% and 0-0.01% multiplicity samples

D. Elia (INFN Bari, Italy)

Results in pp @ 13 TeV

Strangeness enhancement

Near-term prospects with higher energy pp:

Aim to answer next question: is there any hint of a saturation of the strangeness production for higher-multiplicity pp?

 special high-multiplicity trigger used for pp @ 13 TeV data taking
enough statistics to study 0-0.1% and 0-0.01% multiplicity samples

Results in Pb-Pb @ 5 TeV Thermal model fits

- Working fairly well in Pb-Pb @ 2.76 TeV:
 - > most light-flavour yields described with single T_{fo} (156±3 MeV)
 - some tension for protons and (multi-)strange hadrons

Results in Pb-Pb @ 5 TeV Thermal model fits

- □ Working fairly well in Pb-Pb @ 2.76 TeV:
 - > most light-flavour yields described with single T_{fo} (156±3 MeV)
 - some tension for protons and (multi-)strange hadrons

In Pb-Pb @ 5.02 TeV similar behaviour: $T_{fo} = 153 \pm 3 \text{ MeV}$

lower temperature, consistent with that for Pb-Pb @ 2.76 TeV within uncertainties

THERMUS: Wheaton et al., Comput. Phys. Commun. 180 84 (2009) GSI-Heidelberg: Andronic et al., DI R 672 142 (2000)

PLB **673** 142 (2009) **SHARE**: Petran et al., *Comput. Phys. Commun.* **185** 2056 (2014)

D. Elia (INFN Bari, Italy)

Results in Pb-Pb @ 5 TeV Thermal model fits

- □ Working fairly well in Pb-Pb @ 2.76 TeV:
 - > most light-flavour yields described with single T_{fo} (156±3 MeV)
 - some tension for protons and (multi-)strange hadrons

In Pb-Pb @ 5.02 TeV similar behaviour: $T_{fo} = 153 \pm 3 \text{ MeV}$

lower temperature, consistent with that for Pb-Pb @ 2.76 TeV within uncertainties

Additional effects needed?

Baryon annihilation, interacting hadron gas, incomplete hadron spectrum

D. Elia (INFN Bari, Italy)

Conclusions

- Strange hadron spectra:
 - hardening of transverse momentum spectra with increasing centrality in Pb-Pb collisions (as expected from radial flow)
 - similar effect observed in pp @ 7, 13 TeV, with increasing multiplicity
 - Baryon-to-meson ratios:
 - results in Pb-Pb @ 5 TeV (and pp @ 7, 13 TeV) confirm enhancement at intermediate p_T seen in Pb-Pb at 2.76 TeV
- Strangeness enhancement:
 - strangeness enhancement observed in high-multiplicity pp collisions (possible consequence of canonical suppression)
 - strange-to-pion ratios evolve smoothly and universally with event multiplicity, regardless collision system and energy
- □ Thermal model fit to the yields:
 - confirmed good description in Pb-Pb @ 5 TeV (few caveats)

... and Outlook

- Among the most intriguing open questions:
 - will the relative strangeness production in pp saturate?
 - stay tuned for results from high-multiplicity trigger in pp @ 13 TeV!

... and Outlook

- Among the most intriguing open questions:
 - will the relative strangeness production in pp saturate?
 - stay tuned for results from high-multiplicity trigger in pp @ 13 TeV!

Thanks!

Strangeness in Quark Matter Conference

Bari, Italy June 10 – 15, **2019**

We look forward to welcoming you in Bari!

Backup slides

D. Elia (INFN Bari, Italy)

Physics motivation

Strangeness enhancement:

*J. Rafelski and B. Müller, PRL 48, 1066 (1982)

- enhanced production of strange particles in A-A wrt pp
 - one of the first proposed signatures of QGP formation in A-A collisions*

PLB 728 (2014) 216-227

Hierarchy based on strangeness content: E(S=3) > E(S=2) > E(S=1)

D. Elia (INFN Bari, Italy)

Physics motivation

Strangeness enhancement:

*J. Rafelski and B. Müller, PRL 48, 1066 (1982)

- enhanced production of strange particles in A-A wrt pp
 - one of the first proposed signatures of QGP formation in A-A collisions*

PLB 728 (2014) 216-227

Physics motivation

- Strangeness enhancement:
 - compare A-A to pp normalising to pions

Ratios in Pb-Pb at LHC increase with centrality and saturate towards central collisions (larger system) matching predictions from thermal models based on a Grand-Canonical (GC) formulation

Relative production of strangeness in pp increases faster with energy than in A-A going from RHIC to LHC (removal of canonical suppression)

Unprecedented pp/p-Pb statistics at the LHC allows extensive multiplicity study of reference samples: suitable to explore transition between pp and A-A

Sezione di Bari

Multiplicity definition

- Based on the measurements in the V0:
 - > analyzed events have at least one charged particle in $|\eta| < 1$ (INEL>0)
 - > event sample divided into 10 classes according to ionisation energy deposited in the V0 detectors (2.8 < η < 5.1 and -3.7 < η < -1.7)

<d N_{ch} /d η >: average pseudorapidity density of primary charged particles in $|\eta| < 0.5$

Class name	Ι	II	III	IV	V
$\frac{\sigma/\sigma_{\rm INEL>0}}{\langle {\rm d}N_{\rm ch}/{\rm d}\eta\rangle}$	$\begin{array}{c} 0-0.95\% \\ 21.3\pm0.6 \end{array}$	$\begin{array}{c} 0.95-4.7\%\ 16.5\pm0.5 \end{array}$	$\begin{array}{c} 4.7-9.5\% \\ 13.5\pm 0.4\% \end{array}$	9.5 - 14% 11.5 ± 0.3	14 - 19% 10.1 ± 0.3
Class name	VI	VII	VIII	IX	Х
$\frac{\sigma/\sigma_{\rm INEL>0}}{\langle {\rm d}N_{\rm ch}/{\rm d}\eta\rangle}$	19 - 28% 8.45 ± 0.25	28 - 38% 6.72 ± 0.21	38 - 48% $5.40 \pm 0.17\%$	48 - 68% 3.90 ± 0.14	68 - 100% 2.26 ± 0.12

Multiplicity classes used in pp @ 7 TeV analysis

D. Elia (INFN Bari, Italy)

Blast-Wave fit

At similar multiplicity, the kinetic freeze-out temperature and the average transverse velocity are higher in pp than in Pb-Pb collisions

D. Elia (INFN Bari, Italy)

ALI-PREL-109116

Results in pp @ 7 TeV Comparison with pp @ 13 TeV

Similar scaling with multiplicity observed for strangeness production in pp @ 7 and 13 TeV

Event activity drives particle production: strange particle production is collision energy independent at similar multiplicity

Models: EPOS reproduces multiplicity trend

D. Elia (INFN Bari, Italy)