Charmonium(like) and open charm production at Belle

Sookyung Choi

Gyeongsang National University

For the Belle Collaboration

XIIIth Quark Confinement and Hadron Spectrum, 2018 Aug 5, Maynooth University, Ireland

The Belle Experiment

Belle Detector

Integrated Luminosity[fb-1]

1000

800

400

200

1998 2000 2002 2004 2006 2008 2010 2012

$$e^+e^- \to Y(4S) \to \overline{B}_{sig}B_{tag}$$

Peak luminosity recorded at KEKB: L= 2.1×10^{34} /cm²/sec with crab cavities

(Target Luminosity 10³⁴)

> 1 ab⁻¹ On resonance:

Y(5S): 121 fb⁻¹

1 (35): 121 ID ×(46) 711 ft -1

 $Y(4S): 711 \text{ fb}^{-1}$

Y(3S): 3 fb⁻¹ Y(2S): 25 fb⁻¹

 $Y(1S): 6 \text{ fb}^{-1}$

Off reson./scan:

 $\sim 100 \text{ fb}^{-1}$

Outline

- Absolute branching fraction measurement for $B \rightarrow X_{c\bar{c}}K^+$
- Observation of χ_{c0} in $e^+e^- \rightarrow J/\psi \ D\overline{D}$
- Search for $\Upsilon(1S,2S) \to Z^+ Z^{(\prime)-}$ and $e^+ e^- \to Z^+ Z^{(\prime)-}$ at $\sqrt{s} = 10.52$, 10.58, and 10.867 GeV
- $\gamma\gamma \rightarrow \eta_c(1S,2S)$: First observation of $\eta_c(2S) \rightarrow \eta'\pi\pi$

Absolute BF measurement for $B^+ \to X_{c\bar{c}}K^+$

Absolute BF measurement for $B^+ \to X_{c\bar{c}}K^+$

technique

Missing mass :
$$M_{
m miss(h)}=\sqrt{(p^*_{
m e^+e^-}-p^*_{
m tag}-p^*_{
m h})^2}/c$$
 technique

 $e^+e^- \to Y(4S) \to \overline{B}_{sig}B_{tag}$

Absolute BF measurement for $B^+ \to X_{c\bar{c}}K^+$

Summary of BF measurements for $B^+ \to X_{c\bar{c}}K^+$

TABLE II: Summary of the branching fraction measurements for $B^+ \to X_{c\bar{c}}K^+$ decay. For the branching fractions, the first uncertainties are statistical and the second are systematic. Values in brackets for \mathcal{E} represent the 90% C.L. upper limits.

	Mode	Yield	Significance (σ)	$\epsilon(10^{-3})$	$\mathcal{B} (10^{-4})$	World average for \mathcal{B} (10 ⁻⁴)	[10]
(b)	η_c	2590 ± 180	14.2	2.73 ± 0.02	$12.0 \pm 0.8 \pm 0.7$	9.6 ± 1.1	(b)
()	J/ψ	1860 ± 140	13.7	2.65 ± 0.02	$8.9 \pm 0.6 \pm 0.5$	10.26 ± 0.031	()
(c)	χ_{c0}	430 ± 190	2.2	2.67 ± 0.02	$2.0 \pm 0.9 \pm 0.1 \ (< 3.3)$	$1.50^{+0.15}_{-0.14}$	(c)
(-)	χ_{c1}	1230 ± 180	6.8	2.68 ± 0.02	$5.8 \pm 0.9 \pm 0.5$	4.79 ± 0.23	(- /
(d)	$\eta_c(2S)$	1050 ± 240	4.1	2.77 ± 0.02	$4.8 \pm 1.1 \pm 0.3$	3.4 ± 1.8	(d)
(- /	$\psi(2S)$	1410 ± 210	6.6	2.79 ± 0.02	$6.4\pm1.0\pm0.4$	6.26 ± 0.24	(-)
(e)	$\psi(3770)$	-40 ± 310	-	2.76 ± 0.02	$-0.2 \pm 1.4 \pm 0.0 \ (< 2.3)$	4.9 ± 1.3	(e)
(0)	X(3872)	260 ± 230	1.1	2.79 ± 0.01	$1.2 \pm 1.1 \pm 0.1 \ (< 2.6)$	(< 3.2)	(0)
	X(3915)	80 ± 350	0.3	2.79 ± 0.01	$0.4 \pm 1.6 \pm 0.0 \ (< 2.8)$	<u>-</u>	

- Improved BF measurements for η_c and η_c (25).
- Results for J/ ψ , χ_{co} , χ_{c1} and ψ (2S) are consistent with world average.
- No significant signals for $\psi(3770)$, X(3872), X(3915) and set ULs with 90% CL.

Improved M & Γ measurements of the X(3872)?

- Mass : Is $M_{X(3872)} > (m_{D^0} + m_{D^{*0}})$ or $< (m_{D^0} + m_{D^{*0}})$? -need more precise M_X and m_{D^0} measurements
- Width: Is $\Gamma_{X(3872)} \approx \Gamma_{\chi c1}$ or $<<\Gamma_{\chi c1}$? ($\Gamma_{\chi c1} = 0.84 + 0.04$ MeV)

Belle (187 events):
$$M_{X(3872)} = 3871.85 \pm 0.27 \pm 0.19 \text{ MeV}$$

Mass:

```
BelleII statistical error: 0.27 \rightarrow \sim 0.04
systematic error: 0.19 \rightarrow \sim 0.10 \leftarrow \text{More work}
0.33 \rightarrow \sim 0.11
```

50 times of data

BelleII will probably reduce $M_{\chi(3872)}$ error to the m_{D0} +m $_{D*0}$ (3871.693 \pm 0.090 MeV) error Level. But, by the time BelleII runs, LHCb will probably have done much better.

Width:

Belle: X(3872) width limit (187 events): $\Gamma_{X(3872)} < 1.2 \text{ MeV}$

 ψ' width measurement (4.4K events): $\Gamma_{\psi'} \approx 280 \pm 90 \text{ keV}$ PDG: $\Gamma_{\psi'} = 299 \pm 8 \text{ keV}$

BelleII will be able to: make a >3 σ measurement of $\Gamma_{X(3872)}$ if it is > 300keV or set an upper-limit at this level if it is <300keV

No experiment will be able to do better than this until PANDA runs.

Observation of $\chi_{co}(2^3P_0)$ in $e^+e^- \rightarrow J/\psi$ D \overline{D}

The χ_{c0} and χ_{c2} are expected to decay into DD in S-wave with a large width

χ_{c0} candidate

in $e^+e^- \rightarrow J/\psi D\bar{D}$

K. Chilikin et al.: PRD95, 112003 (2017)

Reconstructed channels:

- D⁺ \rightarrow K⁰_S π ⁺, K⁻ π ⁺ π ⁺, K⁰_S π ⁺ π ⁰, K⁻ π ⁺ π ⁺ π ⁰, and K⁰_S π ⁺ π ⁺ π ⁻.
- $D^0 \to K^- \pi^+$, $K^0_{S} \pi^+ \pi^-$, $K^- \pi^+ \pi^0$, and $K^- \pi^+ \pi^+ \pi^-$.

 J/ψ and one of the D mesons are reconstructed

The measured mass & width are close to the potential model expectation of χ_{co} .

 J^{PC} = 0⁺⁺ is favored over 2⁺⁺ at the level of 2.5 σ .

Consistent with χ_{c0} hypotheses 11

X(3915) (\leftarrow Y(3940)) (ex - χ_{c0}' candidate)

 $M = 3915 \pm 5 \,\text{MeV}$

 Γ = 34 ± 13 MeV

 $M(\omega J/\psi)$

BaBar: $J^P = 0^+ \implies \chi_{c0}(2P)$ candidate

Then, what is the X(3915)?

• χ_{c0} ' is not OZI suppressed mode, but X(3915) is: $Bf(X_{3915} \rightarrow D^0 \overline{D}^0) < 1.2 \times Bf(X_{3915} \rightarrow \omega J/\psi)$

- ❖ Measured width: 20 MeV is too small, expect > 100 MeV (190MeV) above S-wave threshold
- $\chi_{c0}' \rightarrow DD$ should be dominant, but not seen in $\gamma \gamma$ either : $\Gamma(J/\psi \omega) > 0.6 \Gamma(DD)$ [Olsen PRD91, 057501(2015)]
- ❖ No other 0⁺⁺ charmonia nearby for the X(3915). [Zhou, et al. PRL115, 022001(2015)]
- Expect exotics : QCD diquark-diantiquark?

Search for $\Upsilon(1S,2S) \rightarrow Z^+Z^{(\prime)-}$ and $e^+e^- \rightarrow Z^+Z^{(\prime)-}$

at \sqrt{s} = 10.52, 10.58, and 10.867 GeV

The Z_c states from BESIII (from ICHEP2018)

The Z_c states

What's their nature?

loosely bound meson-antimeson "molecule"

tightly bound diquark-diantiquark

Hadro-charmonium

Search for $\Upsilon(1S,2S) \rightarrow Z^{+}Z^{(\prime)-}$ and $e^{+}e^{-} \rightarrow Z^{+}Z^{(\prime)-}$ at $\sqrt{s} = 10.52$, 10.58, and 10.867 GeV

S.Jia et al. PRD97, 112004 (2018)

The nature of Z states are not identified.

PLB 764, 174 (2017)

The electromagnetic FF are dependent on the model by S. J. Brodsky, et al. PRD 91, 114025(2015)

$$F_{Z_c^+ Z_c^{\prime -}} \sim \frac{1}{s^3}$$
 for tetraquark model $F_{Z_c^+ Z_c^{\prime -}} \sim \frac{1}{s}$ for two tightly bound diquarks

States	Studied channels
$Z_c(3900)/Z_c(4200) \rightarrow \pi^+ \text{J}/\psi$	$\Upsilon(1S,2S) / e^+e^- \rightarrow Z_c(3900) + Z_c(3900), Z_c(4200) / Z_c(4200), Z_c(3900) / Z_c(4200)$
$Z_{c1}(4050)/Z_{c2}(4250) \rightarrow \pi^+ \chi_{c1}$	$\Upsilon(15,25) / e^+e^- \rightarrow Z_{c1}(4050) + Z_{c2}(4250), Z_{c1}(4250) + Z_{c2}(4250), Z_{c1}(4050) + Z_{c2}(4250)$
$Z_c(4050)/Z_c(4430) \to \pi^+ \psi(2S)$	$\Upsilon(15,25) / e^+e^- \rightarrow Z_c(4050) + Z_c(4430), Z_c(4050) + Z_c(4430), Z_c(4050) + Z_c(4430)$

Only one Z_c is fully reconstructed, the other is missing mass: $\sqrt{(p_{e^+e^-}-p_{\pi^+J/\psi})^2}$

$\Upsilon(1S,2S) \rightarrow Z^+Z^{(')-}$

$e^+e^- \rightarrow Z^+Z^{(\prime)-}$

$5 \times Br(Z_c^+ \to \pi^+ + c\overline{c}) (c\overline{c} = J/\psi, \chi_{c1}(1P), \psi(2S))$ (fb) • $Z_c^+ \rightarrow \pi^+ J/\psi$ • $Z_c^+ \rightarrow \pi^+ \chi_{c1}(1P)$ • $Z_c^+ \rightarrow \pi^+ \psi(2S)$ 10² 10

No clear signals are observed and 90% CL upper limits are set

$UL(x10^{-6})$

UL (X 10°)	
$\sigma^{\mathrm{UL}} imes$	\sqrt{s}
$\mathcal{B}(Z_c^+ \to \pi^+ J/\psi)$	(GeV)
2.3	10.52
26.5	10.52
18.3	10.52
1.3	10.58
15.5	10.58
5.1	10.58
2.2	10.867
21.9	10.867
26.6	10.867
$ \frac{\sigma^{\text{UL}} \times \mathcal{B}(Z_c^+)}{\sigma^{\text{UL}} \times \mathcal{B}(Z_c^+) + \chi_{c1}(1P)/\pi^+ \psi(2S))} $ 25.0	\sqrt{s}
$\rightarrow \pi^+ \chi_{c1}(1P)/\pi^+ \psi(2S)$	(GeV)
25.0	10.52
143.9	10.52
93.2	10.52
8.8	10.58
7.1	10.58
18.2	10.58
35.7	10.867
82.0	10.867
30.8	10.867
47.7	10.52
29.7	10.52
97.9	10.52
7.6	10.58
8.3	10.58
32.2	10.58
10.8	10.867
35.2	10.867
39.1	10.867

$\eta_c(1S,2S) \rightarrow \eta'\pi\pi$ production in γγ collisions

- Playing an important role in QCD test
 N. Brambilla et al., Eur. Phys. C 71, 1534 (2011).
- Precise measurement of Γ_{γγ→ηc(1S, 2S)}
 could give sensitive tests for QCD models
 J. P. Lansberg and T. N. Pham, Phys. Rev. D 74, 034001 (2006).
- Poor measurement for $\eta_c \rightarrow \eta' \pi \pi$, other than $\eta_c \rightarrow K_s K \pi$
- Can be a discovery mode like as X(1835)
 seen in two photon process by Belle

$\gamma\gamma \rightarrow \eta_c(1S,2S)$ at Belle

Xu et al. arXiv: 1805.03044 (2018)

792 fb⁻¹ at \sqrt{s} =10.58 GeV (Y(4S)) and 60 MeV below it. 149 fb⁻¹ at \sqrt{s} =10.88 GeV (Y(5S)) and scan data around this energy point.

$$\eta_c(1S,2S) \rightarrow \eta'(\rightarrow \eta \pi \pi) \pi \pi$$

$$\eta_c(1S,2S) \rightarrow \eta'(\rightarrow \rho \gamma) \pi \pi$$

Clear $\eta_c(1S)$ signal for both η^c decay modes Huge background by the low energy photons for $\eta^c \rightarrow \rho \gamma$ mode

Simultaneous Fit to $\eta_c(1S)$ and $\eta_c(2S)$

$$\eta_c(2S) \rightarrow \eta'(\rightarrow \rho \gamma) \pi \pi$$

	$\eta_c(1S)$		$\eta_c(2S)$	
	γho	$\eta \pi^+ \pi^-$	γho	$\eta \pi^+ \pi^-$
n_s	1728^{+69}_{-68}	945^{+38}_{-37}	65^{+14}_{-13}	41^{+9}_{-8}
$M ({\rm MeV}/c^2)$	$2984.6 \pm$	0.7 ± 2.2	3635.1	$\pm 3.7 \pm 2.9$
$\Gamma \text{ (MeV)}$	30.8^{+2}_{-2}	$\frac{3}{2} \pm 2.5$	11.	2[fixed]
$\Gamma_{\gamma\gamma}\mathcal{B} \text{ (eV)}$	65.4 ± 2	2.6 ± 6.9	5.6^{+}_{-}	$^{1.2}_{1.1} \pm 1.1$
	·	·		

First observation of $\eta_c(2S) \rightarrow \eta' \pi \pi$ with a significance of **5.5** σ

$M_{\pi\pi}$ distribution in $\eta_c(1S) \rightarrow \eta'(\rightarrow \eta \pi \pi) \pi \pi$

 $M_{\pi\pi}$ distribution within signal region 2.9<M($\eta_c(1S)$)<3.06GeV $M_{\pi\pi}$ within sideband region of 2.6–2.81GeV or 3.15–3.36GeV

N_s (signal yields fitted in each bin) distribution

$$\eta_c(1S) \rightarrow \eta' \mathbf{f_0}(2080)$$
 observation is evident

Summary

- Recent studies on charmonium(like) states were reported
- The absolute branching fractions of B⁺ \rightarrow X_{cc}K⁺ have been measured, but statistics is not enough to measure BFs for B \rightarrow { ψ (3770),X(3872),X(3915)}K, etc, and set ULs.
- A new χ_{c0} (canididate) in DD was found with the mass of $M=(3862^{+26}_{-32}{}^{+40}_{-13})~{\rm MeV}/c^2$ and width $\Gamma=(201^{+154}_{-67}{}^{+88}_{-82})~{\rm MeV}$. Then, the X(3915) is Not χ_{c0} (2P). What is it?
- Double $Z_c^+ Z_c^-$ production in Y(1S and 2S) decays and in e+e- annihilation at the \sqrt{s} = 10.52, 10.58, and 10.867 GeV have been studied. No significant signals are observed in any of studied modes and 90% CL UIs are set.
- First observation of $\eta_c(2S) \rightarrow \eta' \pi \pi$ with a significance of 5.5 σ in $\eta_c(1S,2S)$ production in two photon collision.
- More exciting results are going to come out from Bellell.

Luminosity Run, 26th April 2018 First Hadronic Event Experiment 3 Run 125

Event 223

Thank You

SuperKEKB

Belle II

$$e^- \xrightarrow{^{7 \, \text{GeV}}} (\star) \xleftarrow{^{4 \, \text{GeV}}} e^+$$

$$\int^{\text{goal}} \mathcal{L} dt = 50 \text{ ab}^{-1} = 50 \times \mathcal{L}_{\text{Belle}}^{\text{int}}$$

The Belle II Detector

Width:

