Exotic states and their properties in large – N_c QCD

Wolfgang Lucha, Dmitri Melikhov, Hagop Sazdjian

HEPHY, Austrian Academy of Sciences & SINP, M. V. Lomonosov Moscow State University & IPN, Orsay

We will discuss properties of those Green functions that may contain tetraquark poles in large- N_c QCD: diagram selection criteria and consistency conditions.

Based on W.L., D.M, H.S.,

Narrow exotic tetraquark mesons in large- N_c QCD, PRD96, 014022, 2017;

Tetraquark and two-meson states at large-N_c, **EPJC77, 866, 2017.**

Supported by Austrian Science Fund (FWF): P29028

QCD at large Nc

 $SU(N_c)$ gauge theory with $N_c \rightarrow \infty$ and $\alpha_s \sim 1/N_c$. At leading order, QCD Green functions have only non-interacting mesons as intermediate states; tetraquark bound states may emerge only in N_c -subleading diagrams. This fact was believed to provide the theoretical explanation of the non-existence of exotic tetraquarks.

However, even if the exotic tetraquark bound states appear only in subleading diagrams, the crucial question is their width: if narrow, they might be well observed in nature.

We discuss four-point Green functions of bilinear quark currents, depend on 6 variables p_1^2 , p_2^2 , p'_1^2 , p'_2^2 , $p = p_1 + p_2 = p'_1 + p'_2$, and the two Mandelstam variables $s = p^2$ and $t = (p_1 - p'_1)^2$.

Criteria for selecting diagrams which potentially contribute to the tetraquark pole at $s = M_T^2$:

- **1.** The diagram should have a nontrivial (i.e., non-polynomial) dependence on the variable *s*.
- 2. The diagram should have a four-particle cut (i.e. threshold at $s = (m_1 + m_2 + m_3 + m_4)^2$), where m_i are the masses of the quarks forming the tetraquark bound state. The presence or absence of this cut is established by solving the Landau equations for the corresponding diagram.

Flavour – exotic tetraquarks ($u \overline{c} d \overline{s}$)

Bilinear quark currents $j_{ij} = \bar{q}_i q_j$ producing M_{ij} from the vacuum, $\langle 0|j_{ij}|M_{ij}\rangle = f_{M_{ij}}, f_M \sim \sqrt{N_c}$. "Direct" 4-point functions $\Gamma_{I}^{(\text{dir})} = \langle j_{12}^{\dagger} j_{34}^{\dagger} j_{12} j_{34} \rangle$ and $\Gamma_{II}^{(\text{dir})} = \langle j_{14}^{\dagger} j_{32}^{\dagger} j_{14} j_{32} \rangle$:)j₁₂ j₁₂ **∮**₁₂ J₁₂ **j**34 **∮**]34 **j**₃₄ **J**₃₄ **j**₃₄ 34 $\sim N_c^2$ $\sim N_c^3 \alpha_s \sim N_c^2 \alpha_s^2$ (a) (b) (c) "Recombination" functions $\Gamma^{(\text{rec})} = \langle j_{12}^{\dagger} j_{34}^{\dagger} j_{14} j_{32} \rangle$ and $\Gamma^{(\text{rec})\dagger}$: 4 **j**₁₄ **4 J**₁₄ **J**₁₂ J_{12} J_{12} **J**₃₄ A]₃₂ J_{34} J₃₂ 32 $\sim N_c^2 \alpha_s$ $\sim N_c \alpha_s^2$ $\sim N_c$ (a) (b) (c)

(b)

 $\sim N_c^2 \alpha_s$

 $\sim N_c \alpha_s^2$ (c)

Direct and recombination Green functions have different large – Nc behaviour

$$\Gamma_{\mathrm{I},T}^{(\mathrm{dir})} = \langle j_{12}^{\dagger} j_{34}^{\dagger} j_{12} j_{34} \rangle = O(N_c^0), \quad \Gamma_{\mathrm{II},T}^{(\mathrm{dir})} = \langle j_{14}^{\dagger} j_{32}^{\dagger} j_{14} j_{32} \rangle = O(N_c^0), \quad \Gamma_T^{(\mathrm{rec})} = \langle j_{12}^{\dagger} j_{34}^{\dagger} j_{14} j_{32} \rangle = O(N_c^{-1}).$$

If one has a bound state, its contribution cannot exceed these bounds at large N_c ($f_M \sim \sqrt{N_c}$):

$$\Gamma_{I,T}^{(\text{dir})} = O(N_c^0) = f_M^4 \left(\frac{|A(M_{12}M_{34} \to T_A)|^2}{p^2 - M_{T_A}^2} + \frac{|A(M_{12}M_{34} \to T_B)|^2}{p^2 - M_{T_B}^2} \right) + \cdots,$$

$$\Gamma_{II,T}^{(\text{dir})} = O(N_c^0) = f_M^4 \left(\frac{|A(M_{14}M_{32} \to T_A)|^2}{p^2 - M_{T_A}^2} + \frac{|A(M_{14}M_{32} \to T_B)|^2}{p^2 - M_{T_B}^2} \right) + \cdots,$$

$$\Gamma_T^{(\text{rec})} = O(N_c^{-1}) = f_M^4 \left(\frac{A(M_{12}M_{34} \to T_A)A(T_A \to M_{14}M_{32})}{p^2 - M_{T_A}^2} + \frac{A(M_{12}M_{34} \to T_B)A(T_B \to M_{14}M_{32})}{p^2 - M_{T_A}^2} \right) + \cdots.$$

Molecular states

(bound states in effective meson-meson theory)

$$L_{\rm eff} = \frac{\lambda_1}{N_c} \phi_{1\bar{2}} \phi_{3\bar{4}} (\phi_{1\bar{2}} \phi_{3\bar{4}})^{\dagger} + \frac{\lambda_2}{N_c^2} \phi_{1\bar{2}} \phi_{3\bar{4}} (\phi_{1\bar{4}} \phi_{3\bar{2}})^{\dagger} + h.c.$$

Summation of meson blobs in a two-channel problem leads to two poles of the masses $M^2 = O(N_c)$. Molecular four-quark states are broad at large N_c .

Narrow states with finite mass

Are bound states with a finite mass at large N_c allowed? Yes, but need 2 states T_a and T_b with different preferred decay channels.

 T_A couples stronger to $M_{12}M_{34}$ channel, T_B couples stronger to $M_{14}M_{32}$ channel.

 $\begin{aligned} A(T_A \to M_{12}M_{34}) &= O(N_c^{-1}), & A(T_A \to M_{14}M_{32}) = O(N_c^{-2}), \\ A(T_B \to M_{12}M_{34}) &= O(N_c^{-2}), & A(T_B \to M_{14}M_{32}) = O(N_c^{-1}). \end{aligned}$

The widths $\Gamma(T_{A,B}) = O(N_c^{-2})$.

What could be the structure of these states? Most likely, diquark-antidiquark.

But we have one flavour combination $ud \ \bar{s}\bar{c}$. How can one form out of this one flavour combination two states with different preferred channels? (other quantum numbers are unlikely to help)

Hard to find a sensible scenario.

One may speculate that flavour-exotic narrow states do not exist.

(In fact such candidates have not been seen yet).

Crypto – exotic tetraquarks ($c \overline{c} u \overline{s}$)

Diagrams of new topologies emerge.

For direct functions $\Gamma_{(I,II),T}^{(dir)}$, new diagrams do not change leading large- N_c behavior: j_{12} j_{23} j_{23} j_{23} $N_c^2 \alpha_s^2$ (a)
(b)

For recombination functions, the new diagram modifies leading large- N_c behavior

The new diagram modifies the leading large- N_c behavior:

$$\Gamma_{\mathrm{I},T}^{(\mathrm{dir})} = \langle j_{12}^{\dagger} j_{23}^{\dagger} j_{12} j_{23} \rangle = O(N_c^0), \quad \Gamma_{\mathrm{II},T}^{(\mathrm{dir})} = \langle j_{13}^{\dagger} j_{22}^{\dagger} j_{13} j_{22} \rangle = O(N_c^0), \quad \Gamma_T^{(\mathrm{rec})} = \langle j_{12}^{\dagger} j_{23}^{\dagger} j_{13} j_{22} \rangle = O(N_c^0).$$

"dir" and "rec" functions have the same behavior, and one exotic state T is enough:
 $A(T \to M_{12}M_{23}) = O(N_c^{-1}), \qquad A(T \to M_{13}M_{22}) = O(N_c^{-1}).$
Its width is $\Gamma(T) = O(N_c^{-2}).$

T can mix with the ordinary meson M_{13} . The restriction on the mixing parameter $g_{TM_{13}}$:

$$\Gamma_{I,T}^{(\text{dir})} = O(N_c^0) = f_M^4 \left(\frac{A(M_{12}M_{23} \to T)}{p^2 - M_T^2} g_{TM_{13}} \frac{A(M_{13} \to M_{12}M_{23})}{p^2 - M_{M_{13}}^2} \right) + \cdots$$

 $A(M_{13} \to M_{12}M_{23}) \sim 1/\sqrt{N_c}$, so $g_{TM_{13}} \leq O(1/\sqrt{N_c})$.

The analysis of Green functions in large- N_c QCD allows one to restrict some properties of the possible exotic states.

Conclusions

• QCD at large N_c :

Large- N_c QCD restricts properties of the exotic poles if such poles exist.

E.g., two exotic $\bar{q}_1 q_2 \bar{q}_3 q_4$ narrow states $\Gamma \sim O(1/N_c^2)$, each decaying preferrably into one mesonmeson channel are needed on the basis of N_c -leading behaviour of Green functions. This could be a non-molecular state with $D\bar{D}$ structure. Since for a flavour-exotic state one has only one $D\bar{D}$ configuration, it is hard to imagine that two states with different preferred decay channels may be formed. The existence of flavour-exotic narrow tetraquarks is unlikely.

One cryptoexotic state $\bar{q}_1 q_2 \bar{q}_2 q_3 \Gamma \sim O(1/N_c^2)$ decaying into various meson-meson channels with similar probabilities.

• Dynamics of exotic-state decays and implications for QCD sum rules:

Dynamics of fall-apart decays of exotic resonances has fundamental difference from dynamics of ordinary-meson decays: the appropriate contributions to Green functions describing decays of exotic states emerge only at subleading α_s orders; the leading order disconnected diagrams are not related to strong decays of exotic hadrons. This makes the calculation of α_s -corrections mandatory.