Pseudoscalar pole contribution to the hadronic light-by-light piece of a_μ

Adolfo Guevara

Departamento de Física Teórica
Facultad de CC Físicas, Madrid, Spain

Quark Confinement and the Hadron Spectrum, Maynooth
August 2, 2018
The main purpose of this work is to reduce the theoretical uncertainty in the computation of the a_μ, in which the main source of uncertainty comes from the hadronic contributions. This is why we decided to analyze the hadronic light-by-light contribution using χPT extended to include resonances.
Magnetic moment

- The Dirac equation predicts a magnetic moment for a particle with EM charge Q and mass m

\[
\mu_\ell = g_\ell \frac{Q}{2m} \mathbf{s}
\]

- such that $g_\ell = 2$. This is obtained for a classic EM field.

- The deviation from $g_\ell = 2$ defines the anomalous magnetic moment, which will happen due to loop corrections.

\[
a_\ell := \frac{g_\ell - 2}{2} = \frac{\alpha}{2\pi} + \mathcal{O}(\alpha^2) \approx 0.00116.
\]
Contributions to a_μ

- The computation of a_μ can be split in different contributions, whose values can be found in PDG1

$$a_\mu = a^{QED}_\mu + a^{EW}_\mu + a^{Had}_\mu$$

- a^{QED}_μ are all corrections2 that might come from QED

$$a^{QED}_\mu = 116584718.95(0.08) \times 10^{-11} + \mathcal{O}\left(\frac{\alpha}{\pi}\right)^6$$

1C. Patrignani et al. (Particle Data Group), Chin.Phys.C40(2016)

2T. Aoyama et al. PRL 109(2012)
a_{μ}^{EW} and contributions to a_{μ}

- a_{μ}^{EW} are Electroweak contribution that are not a_{μ}^{QED} (W^\pm, Z, H) at two loops\(^3\). Three loops contribution is negligible ($\lesssim 0.4 \times 10^{-11}$).

$$a_{\mu}^{EW} = 153.6(1.0) \times 10^{-11}$$

Hadronic contributions

- \(a^{\mu}_{\text{Had}} \) can be split into two parts, the PDG values are\(^4\)

\[a^{\mu}_{\text{HVP}} = 6845(33)(7) \times 10^{-11} \]

- Hadronic Vacuum Polarization (HVP) contribution.

\[a^{\mu}_{\text{HLbL}} = 105(26) \times 10^{-11} \]

- Hadronic light-by-light (HLbL) contribution.

Hadronic contributions to a_μ

- All the contributions and their uncertainties are shown in the next table.

<table>
<thead>
<tr>
<th>Contribution</th>
<th>$\times 10^{11}$</th>
<th>Uncertainty $\times 10^{11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED</td>
<td>116 584 718.95</td>
<td>0.08</td>
</tr>
<tr>
<td>EW</td>
<td>153.6</td>
<td>1.0</td>
</tr>
<tr>
<td>Had</td>
<td>6950 (34)</td>
<td>(34) Vac. Pol. (26) Light-by-Light</td>
</tr>
<tr>
<td>Total</td>
<td>116 591 823</td>
<td>(34)(26)</td>
</tr>
<tr>
<td>Exp</td>
<td>116 592 091</td>
<td>(54)(33)</td>
</tr>
</tbody>
</table>

- Clearly, the largest uncertainty comes from the hadronic contribution.

- With these values there is a discrepancy

$$a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = 268(63)(43) \times 10^{-11} \sim 3.5\sigma$$
Hadronic contributions to a_μ

- The main uncertainty comes from hadronic contributions\(^5\), which give 4.3×10^{-10}.

- The current experimental\(^6\) error is 6.3×10^{-10}.

- Fermilab & J-Parc are planning to lower\(^7\) the error to 1.6×10^{-10}. It is necessary to reduce theoretical uncertainty.

- A reanalysis of R_{had} from Lattice QCD may reduce\(^8\) the HVP error (3.3×10^{-10}) below that of the HLbL piece.

\(^6\)G. W. Bennet et al., [Muon g-2 Collab.],PRD73(2006)

\(^8\)Talks given at the Muon g-2 Theory Initiative Workshops held during the last year at FNAL, Tsukuba, Connecticut Univ. and Mainz Univ.
Hadronic Light by Light

- We decided to analyze the HLbL piece since, nowadays, it can’t be obtained from experimental data.

- It can be separated into three parts.

- The sum of (b) and (c) is\(^9\) one order of magnitude smaller than (a).

Pseudoscalar pole

- Our contribution to a_μ comes from diagram (a)

- To compute the pion transition form factor $F_{\pi\gamma^*\gamma^*}$ we rely on Resonance Chiral Theory\(^\text{10}\) (R\(\chi\)T) with $U(3)$ breaking.

P.D. Ruíz-Femenía et al., JHEP 0307 (2003)
K. Kampf and J. Novotný PRD84 (2011)
We include corrections up to $O(m_P^2)$. Some of this give\(^\text{11}\)
\[
M^2_\rho = M^2_\omega = M^2_V - 4e^V_m m^2_\pi, \quad M^2_\phi = M^2_V - 4e^V_m (2m^2_K - m^2_\pi)
\]

Where e^V_m is the $U(3)$ breaking parameter.

We can constrain parameters by imposing high energy conditions on $F_{P\gamma^*\gamma^*}$.

After constraining parameters we find\(^\text{12}\)
\[
F_{\pi\gamma^*\gamma^*}(q^2_1, q^2_2) = \frac{32\pi^2 m^2_\pi F^2_V d^*_1 d^*_2}{12\pi^2 F_\pi D_\rho(q^2_1) D_\rho(q^2_2)} - N_C M^2_V M^2_\rho,
\]
where $D_R(q^2) = M^2_R - q^2$.

\(^{12}\)AG, P. Roig, JJ Sanz Cillero, JHEP 1806 (2018)
The $\eta^{(i)}$-TFF

- For the $\eta^{(i)}$ we find\(^\text{13}\)

$$
\mathcal{F}_{\eta^{*}\gamma^{*}}(q_1^2, q_2^2) = \frac{1}{12\pi^2 F D_\rho(q_1^2) D_\rho(q_2^2) D_\phi(q_1^2) D_\phi(q_2^2)} \times
\left\{ - \frac{N_C M_V^2}{3} \left[5 C_q M_\rho^2 D_\phi(q_1^2) D_\phi(q_2^2) - \sqrt{2} C_s M_\phi^2 D_\rho(q_1^2) D_\rho(q_2^2) \right] \\
+ \frac{32\pi^2 F_V^2 d_{123} m_\eta^2}{3} \left[(5 C_q D_\phi(q_1^2) D_\phi(q_2^2) - \sqrt{2} C_s D_\rho(q_1^2) D_\rho(q_2^2) \right] \\
- \frac{256\pi^2 F_V^2 d_{2}^*}{3} \left[(5 C_q \Delta_{\eta\pi}^2 D_\phi(q_1^2) D_\phi(q_2^2) + \sqrt{2} C_s \Delta_{2K\pi\eta}^2 D_\rho(q_1^2) D_\rho(q_2^2) \right] \right\}.
$$

- The η'-TFF can be obtained from $\mathcal{F}_{\eta\gamma^{*}\gamma^{*}}$ by making $C_q \rightarrow C'_q$, $C_s \rightarrow -C'_s$ and $m_\eta \rightarrow m_{\eta'}$.

\(^{13}\)AG, P. Roig, JJ Sanz Cillero, JHEP 1806 (2018)
Fit to experimental TFF

- We fit $e_m^V, M_V, d_{123}^*, d_2^*$ and $\eta - \eta'$ mixing parameters to experimental determinations of $\mathcal{F}_{\pi\gamma\gamma^*}$ and $\mathcal{F}_{\eta^{(i)}\gamma\gamma^*}$.

- We avoid observables involving $q^2 > 0$ since radiative corrections might have a large effect.\(^\text{14}\)

- BaBar π^0-TFF is at odds with the asymptotic QCD limit, with Belle data and $\eta^{(i)}$-TFF related through chiral symmetry.

- Neglecting BaBar π^0-TFF data reduces χ^2/dof from $150./101 \rightarrow 69./84$.

- Therefore, our best fit will exclude BaBar π^0-TFF.

After fitting we get\(^\text{15}\).

BaBar data is shown in red.

\(^\text{15}\)AG, P. Roig, JJ Sanz Cillero, JHEP 1806 (2018)
\[\mathcal{F}_{\eta \gamma \gamma^*} \text{ and } \mathcal{F}_{\eta' \gamma \gamma^*} \]

- Our fit for the η-TFF gives16

16AG, P. Roig, JJ Sanz Cillero, JHEP 1806 (2018)
\(F_{\eta\gamma\gamma^*} \) and \(F_{\eta'\gamma\gamma^*} \)

- While for the \(\eta' \)-TFF gives\(^{17}\)

\(^{17}\) AG, P. Roig, JJ Sanz Cillero, JHEP 1806 (2018)
We get a total pseudoscalar exchange contribution of

\[a_{\mu, HLbL}^P = (8.47 \pm 0.16) \cdot 10^{-10} \]

For TFFs in the chiral limit we get \(a_{\mu, HLbL}^P = 8.27 \cdot 10^{-10} \).

This shows that NNLO corrections, which will be suppressed by further powers of \(m_P^2 \), must be negligible.

NLO effects from \(1/N_C \) can be estimated from \(\pi\pi \) and \(K\bar{K} \) loops contribution to \(D_\rho: (\Delta a_{\mu, HLbL}^P)_{1/N_C} = \pm 0.09 \times 10^{-10} \).

Our TFF \(\sim 1/Q^4 \) when \(Q^2 \to \infty \) for doubly off-shell photon. A rough estimate of uncertainty is \((\Delta a_{\mu, LbL}^P)_{\text{asym}} = ^{+0.5}_{-0.0} \cdot 10^{-10} \).
Now we can compare our results with earlier results.

<table>
<thead>
<tr>
<th>$a^{P,HLbL}_\mu \cdot 10^{10}$</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3 ± 1.2</td>
<td>M. Knecht and A. Nyffeler, PRD 65(2002)</td>
</tr>
<tr>
<td>8.5 ± 1.3</td>
<td>J. Bijnens, E. Palante and J. Prades, Phys.Lett.75(1995)</td>
</tr>
<tr>
<td>8.60 ± 0.25</td>
<td>P. Roig, AG and G. López Castro, PRD 89 (2014)</td>
</tr>
<tr>
<td>9.4 ± 0.5</td>
<td>P. Masjuan and P. Sánchez Puertas, PRD 95 (2017)</td>
</tr>
<tr>
<td>8.28 ± 0.34</td>
<td>H. Czyż, P. Kisza and S. Tracz, PRD 97 (2018)</td>
</tr>
</tbody>
</table>

Our contribution gives

$$a^{P,HLbL}_\mu = (8.47 \pm 0.16_{\text{sta}} \pm 0.09_{1/N_C}^{0.5 \text{ asym}}) \cdot 10^{-10}$$
Conclusions

• Our determination of the $a_{\mu}^{P,HLbL}$ has an improved theoretical accuracy with lower uncertainty compared with previous determinations.

• We found that BaBar π^0-TFF data is incompatible with measurements of $\eta^{(l)}$ form factors.

• Excluding fitting data in the $q^2 > 0$ region we avoid large uncertainties due to EM radiative corrections.

• We find that further chiral corrections to $F_{P\gamma*\gamma*}$ must be negligible.
Back up
Short Distance constraints

- One finds by taking the limits
 \[
 \lim_{Q^2 \to \infty} F_{\pi \gamma^* \gamma^*}(Q^2, 0) \quad \text{and} \quad \lim_{Q^2 \to \infty} F_{\pi \gamma^* \gamma^*}(Q^2, Q^2),
 \]

- $\mathcal{O}(m_\pi^0)$:
 \[
 C_{22}^W = 0, \quad c_{125} = 0, \quad c_{1256} = -\frac{N_C M_V}{32 \sqrt{2} \pi^2 F_V}, \quad d_3 = \frac{c_{1256}}{\sqrt{2}} \frac{M_V}{F_V}
 \]

- $\mathcal{O}(m_\pi^2)$:
 \[
 \lambda_V = -\frac{32 \pi^2 F_V}{N_C} C_7^W, \quad c_{1235}^* = \frac{N_C M_V}{4 \sqrt{2} \pi^2 F_V} \left(\frac{e_m^V}{2} + \frac{M_V^2 \lambda_V}{F_V} \right)
 \]

- From $F_{\eta \gamma^* \gamma^*}$:
 \[
 C_8^W = 0, \quad c_3 = \frac{c_{1235}}{8}
 \]

- From VVP Green’s function: $C_7^W = \lambda_V = 0$.
We get for π^0

$$a_{\mu}^{\pi, LbL} = 5.81 \pm 0.09 \times 10^{-10}$$

While we get for η

$$a_{\mu}^{\eta, LbL} = 1.51 \pm 0.06 \times 10^{-10}$$

And for η'

$$a_{\mu}^{\eta', LbL} = 1.15 \pm 0.07 \times 10^{-10}$$

Getting a total pseudoscalar exchange contribution of

$$a_{\mu}^{P, HlLbL} = 8.47 \pm 0.16 \times 10^{-10}$$
Fitted parameters

<table>
<thead>
<tr>
<th></th>
<th>With π^0-BaBar</th>
<th>Without π^0-BaBar</th>
<th>Fixing M_V and e_m^V</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>-0.2 ± 1.0</td>
<td>0.0 ± 1.0</td>
<td>0.0 ± 1.0</td>
</tr>
<tr>
<td>P_2</td>
<td>0.5 ± 1.0</td>
<td>0.0 ± 0.5</td>
<td>0.0 ± 1.0</td>
</tr>
<tr>
<td>\bar{d}_2</td>
<td>$(-2.9 \pm 1.7) \cdot 10^{-2}$</td>
<td>$(-2.7 \pm 1.7) \cdot 10^{-2}$</td>
<td>$(-3 \pm 2) \cdot 10^{-2}$</td>
</tr>
<tr>
<td>\bar{d}_{123}</td>
<td>$(-2.5 \pm 1.5) \cdot 10^{-1}$</td>
<td>$(-2.3 \pm 1.5) \cdot 10^{-1}$</td>
<td>$(-3 \pm 2) \cdot 10^{-1}$</td>
</tr>
<tr>
<td>M_V</td>
<td>(799 ± 5) MeV</td>
<td>(791 ± 6) MeV</td>
<td>764.3 MeV</td>
</tr>
<tr>
<td>e_m^V</td>
<td>-0.35 ± 0.10</td>
<td>-0.36 ± 0.10</td>
<td>-0.228</td>
</tr>
<tr>
<td>θ_8</td>
<td>$(-19.5 \pm 0.9)\degree$</td>
<td>$(-19.5 \pm 0.9)\degree$</td>
<td>$(-21.7 \pm 0.9)\degree$</td>
</tr>
<tr>
<td>θ_0</td>
<td>$(-9.5 \pm 1.6)\degree$</td>
<td>$(-9.5 \pm 1.6)\degree$</td>
<td>$(-10.4 \pm 1.6)\degree$</td>
</tr>
<tr>
<td>f_8</td>
<td>(118 ± 4) MeV</td>
<td>(118 ± 3) MeV</td>
<td>(118 ± 3) MeV</td>
</tr>
<tr>
<td>f_0</td>
<td>(108 ± 3) MeV</td>
<td>(107.5 ± 1.0) MeV</td>
<td>(107 ± 3) MeV</td>
</tr>
<tr>
<td>χ^2/dof</td>
<td>$150./101$</td>
<td>$69./84$</td>
<td>$101./86$</td>
</tr>
</tbody>
</table>

$P_{1/2}$ are related to \bar{d}_{123} and \bar{d}_2 through a rotation that reduces correlation between the two latter.
Asymptotic behavior

- We obtained the correct behavior for an on-shell photon,

\[
\lim_{Q^2 \to \infty} F_{\pi \gamma^* \gamma^*} (Q^2, 0) \approx \frac{2F}{Q^2}.
\]

- The correct behavior for \(F_{\pi \gamma^* \gamma^*} (Q^2, Q^2) \) can be obtained considering another vector multiplet. In the chiral limit we get

\[
F_{\pi^0 \gamma^* \gamma^*} (q_1^2, q_2^2) = \frac{-1}{12 \pi^2 F (M_\rho^2 - q_1^2) (M_\rho^2 - q_2^2) (M_{\rho'}^2 - q_1^2) (M_{\rho'}^2 - q_2^2)}
\]

\[
\times \left[-q_1^2 q_2^2 \left(N_C M_{\rho'}^4 - 48 \pi^2 F^2 M_{\rho'}^2 + 4 \pi^2 F^2 (q_1^2 + q_2^2) \right) + N_C M_\rho^4 M_{\rho'}^4 - 8 \pi^2 F^2 M_\rho^2 \left(3 (q_1^2 + q_2^2) M_{\rho'}^2 - q_1^2 q_2^2 \right) \\
+ 64 \pi^2 F_\rho^2 d_3^{(\rho, \rho)} M_\rho^2 q_1^2 q_2^2 \left(1 - \frac{M_{\rho'}^2}{M_\rho^2} \right)^2 \\
- \frac{16 \pi^2 \sqrt{2} F_\rho c_{125}^{(\rho)}}{M_\rho} q_1^2 q_2^2 (q_1^2 - q_2^2)^2 \left(1 - \frac{M_{\rho'}^2}{M_\rho^2} \right) \right].
\]
Asymptotic behavior

- Only two parameters remain unconstrained after matching with high energy QCD behavior, which we choose c_{125}^ρ and d_3^ρ.

- Since contributions from the second multiplet are considered subleading, and one constraint is

$$F_\rho c_{125}^\rho M_\rho + F_\rho' c_{125}^\rho M_\rho' = 0$$

we assume that $c_{125}^\rho = c_{125}^\rho' = 0$.

- For d_3 we use the SD constraint from previous analysis.

$$F_\rho^2 d_3^\rho = \frac{N_C M_\rho^2}{64\pi^2}$$

- Comparison is done in the chiral limit, using $M_\rho = 770$ MeV.
A NLO effect from $1/N_C$ terms will be the intermediate $\pi\pi$ and $K\bar{K}$ contribution\(^{18}\) to D_ρ.

This gives

$$M_\rho^2 - q^2 \rightarrow M_\rho^2 - q^2 + \frac{q^2 M_\rho^2}{96\pi^2 F_\pi^2} \left(A_\pi(q^2) + \frac{1}{2} A_K(q^2) \right),$$

where

$$A_P(q^2) = \ln \frac{m_P^2}{M_\rho^2} + 8 \frac{m_P^2}{q^2} - \frac{5}{3} + \sigma_P^3(q^2) \ln \left(\frac{\sigma_P(q^2) + 1}{\sigma_P(q^2) - 1} \right),$$

and

$$\sigma_P(q^2) = \sqrt{1 - \frac{4m_P^2}{q^2}}.$$

Since for $a_\mu^{H,LbL}$ the photon momenta are $q^2 < 0$, D_ρ is real.

Beyond Standard Model (BSM) probe

- Precise measurements of a_ℓ make feasible the search of BSM effects.

- Contributions to BSM interactions, like chiral $d=5$ operator
 $\mathcal{O}_{d=5} = \frac{g}{\Lambda} \psi \sigma^{\mu\nu} F_{\mu\nu} \psi$ mixes helicities of ℓ.

- Helicity flips are allowed only for massive particles, so $\mathcal{O}_{d=5}$
 must be suppressed by a factor $\sim \frac{g m_\ell}{\Lambda^2}$.

- If current discrepancy is from BSM contribution to a_μ,

 $\Lambda \approx \sqrt{g} \ 100 \ \text{TeV}$
Why not $\ell = \tau$?

- Since transition probability is squared modulus of the amplitude, BSM effects will be easier to detect with $\ell = \mu$

$$\left(\frac{m_\mu}{m_e}\right)^2 \sim 4 \times 10^4$$

- Therefore, BSM effects should be larger on a_τ. Nevertheless, τ_τ is so small that experimental results\(^{19}\) are still compatible with $a_\tau = 0$.

$$\tau_\mu = 2.197 \times 10^{-6} \text{s}, \quad \tau_\tau = 2.906 \times 10^{-13} \text{s} \quad \Rightarrow \quad \frac{\tau_\tau}{\tau_\mu} \sim 10^{-7}$$

a_e vs a_μ precision

- Even though measurements of a_e are 2250 times more precise20, a_μ is
 \[\frac{1}{2250} \left(\frac{m_\mu}{m_e} \right)^2 \sim 19 \]
 times more sensitive to BSM contributions.

- Therefore, it would be more plausible to find such a deviation in the a_μ.

20R.S. Van Dyck et al., PRL59(1987);
Electromagnetic current

- The way to compute a_μ is through the interaction Lagrangian

$$\mathcal{L}_{int}^{QED}(x) = -e \bar{\psi}(x) \gamma^\mu A_\mu(x) \psi(x),$$

- where $A = A^{QED} + A^{ext}$. A^{QED} will give the radiative corrections as that given by Schwinger and A^{ext} is a classic EM field.

- Through Gordon identity, the lepton current in momentum space can be written as

$$\tilde{j}^\alpha = (-ie) \bar{u}(p+q) \left[\gamma^\alpha F_E(q^2) + i \frac{\sigma^{\alpha\beta} q^\beta}{2m_\mu} F_M(q^2) \right] u(p),$$

- where $F_E(q^2)$ is called the Dirac (or electric charge) form factor and $F_M(q^2)$ is the Pauli (or magnetic) form factor.
Magnetic moment

• Then, $\vec{\mu}$ is the part interacting with the \vec{B} from A^{ext}, $\vec{\mu} \cdot \vec{B}$.

• This gives

$$\vec{\mu} = g \left(\frac{e}{2m} \right) \vec{s},$$

• where

$$g = 2[F_1(0) + F_2(0)].$$

• By neglecting contributions from A^{QED}_μ one gets $F_1(0) = 1$ and $F_2(0) = 0$, recovering Dirac's result $g = 2$.

• Therefore, the $\vec{\mu} \cdot \vec{B}$ interaction is needed to measure a_μ.
How to measure a_μ?

- If \vec{B} is constant, the problem reduces to determining the helicity.

- However, one big issue arises. Muons are unstable!

- Thanks to maximal parity violation of weak interactions one can determine the helicity of the muon.

- To see this one needs to know how to generate muons.
The π decay

- Charged pions decay 99.99% of the time to muons

$$\mathcal{B}(\pi^+ \rightarrow \mu^+ \nu_\mu) \approx 99.99\%.$$

- Therefore, one can produce muons by first producing π^\pm, generated by hitting a fixed target with a proton beam.

\[\begin{array}{c}
\pi^- \rightarrow \bar{u} \ W^- \rightarrow \mu^- \bar{\nu}_\mu \\
da \ W^- \rightarrow \mu^- \bar{\nu}_\mu.
\end{array} \]

\[\pi^-\text{decay} \]

- The lepton current coupling to the weak gauge boson, W^α, is

$$j^W_\alpha(x) = \bar{\psi}_\nu_L(x)\gamma_\alpha\psi_{\mu L}(x),$$

- where $\psi_L = \frac{1}{2}(1 - \gamma_5)\psi$ is a left eigenstate of helicity.

* Figure treacherously stolen from F. Jegerlehner & A. Nyffeler, Phys.Rep.477(2009).
Helicity of muons.

- This means that muons obtained from π decays have a determined helicity.

- From π^+ decays results right anti-muons, where from π^- decays results left muons.

The muon also decays through a weak gauge boson exchange. This means that the helicity of the electron (positron) can also be determined. Therefore, in wherever direction the electron is ejected, it must be parallel (\(e^+\)) or antiparallel (\(e^-\)) to its momentum. An additional electric quadrupole field normal to the muon orbit is used to focus the beam.

* Same as before, Jegerlehner and Nyffeler, Phys.Rep.33(2009)
Experimental summary

- To summarize, this is the experimental setup.

- All remaining is to determine the Larmor precession.

Who TF Larmor?

- The Larmor precession is defined as the precession of a magnetic moment about a magnetic field.

\[\vec{\omega} = -\frac{e}{m_\mu} \left[a_\mu \vec{B} - a_\mu \left(\frac{\gamma}{\gamma + 1} \right) (\vec{\nabla} \cdot \vec{B}) \vec{v} + \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{E} \times \vec{v} \right]. \]

“Who is That Famous Larmor?”
It's magic?

- One can *magically disappear* the electric quadrupole field contribution.
Magic? Always believe it’s not so

- It is done by choosing the *magic* Lorentz factor to be \(\gamma^\infty = 29.3 \), corresponding to a *magic* energy \(E^\mu_\infty \approx 3.098 \) GeV.

- \(\vec{E} \) generates an oscillation in the beam direction and in \(\vec{B} \) direction.

- The reason to disregard the contribution from \(\vec{E} \) is to minimize \(\vec{\omega} \). This will reduce the error for \(a_\mu \).
• The relevant degrees of freedom are\(^{21}\) the octet of the lightest pseudoscalar \((\pi, K, \eta \text{ and } \eta')\).

• The expansion parameter in this theory is \(1/N_C\), and in large \(N_C\) the \(U(1)_A\) broken symmetry is restored, that is the reason for taking \(\eta'\) at the same level as the other resonances.

\(F_{\pi\gamma\gamma} \) parameters

- \(R_{\chi T} \) parameters can be found using short distance behavior of QCD, which predicts an asymptotic behavior of \(s^{-1} \) for this process.
- Thus, short distance relationships22 ensure a convergent behavior

\[
d_3 = -\frac{N_C M_V^2}{64\pi^2 F_V^2} + \frac{F^2}{8F_V^2} - \frac{4\sqrt{2}P_2}{F_V}; \quad c_{125} = 0; \quad d_{123} = \frac{1}{24};
\]

\[
F_V = \sqrt{3}F; \quad c_{125} = 0; \quad c_{1256} = -\frac{N_C M_V}{32\sqrt{2}\pi^2 F_V}
\]

Restored $U(1)_A$

- Within t’Hooft’s large N_C, the anomaly term is suppressed by a factor $1/N_C$ with respecto to the rest of the QCD lagrangian
 \[\frac{g^2}{8\pi^2} \frac{\theta}{N_C} \mathrm{Tr} F^{\mu\nu} \tilde{F}_{\mu\nu}, \]

- Therefore in the limit $N_C \to \infty$ the $U(1)_A$ symmetry is restored.
Wess-Zumino-Witten

- A fundamental part of the analysis is the WZW term, which is order p^4 in the chiral counting and describe intrinsic odd interactions 23.

\[Z[U, l, r] = - \frac{i N_c}{240 \pi^2} \int_{M^5} d^5 x \varepsilon^{ijklm} \langle \Sigma^L_i \Sigma^L_j \Sigma^L_k \Sigma^L_l \Sigma^L_m \rangle \]

\[- \frac{i N_c}{48 \pi^2} \int d^4 x \varepsilon_{\mu \nu \rho \sigma} (W(U, l, r)^{\mu \nu \rho \sigma} - W(1, l, r)^{\mu \nu \rho \sigma}) \]

\[
W(U, l, r)^{\mu \nu \rho \sigma} = \langle U_l U_\mu l_\nu l_\rho U_r^\dagger r_\sigma + \frac{1}{4} U_l U_\mu U_r^\dagger r_\nu U_\rho U_r^\dagger r_\sigma + i U_\mu \partial_\nu l_\rho \partial_\rho l_\sigma + i \Sigma^L_\mu l_\nu \partial_\rho l_\sigma + \Sigma^L_\mu U_r^\dagger \partial_\nu r_\rho U_l \sigma \\
\quad + \Sigma^L_\mu \Sigma^L_\nu U_r^\dagger r_\rho U_l \sigma + \Sigma^L_\mu \Sigma^L_\nu \partial_\rho l_\sigma + \Sigma^L_\mu \partial_\nu l_\rho l_\sigma - i \Sigma^L_\mu l_\nu l_\rho l_\sigma \\
\quad + \frac{1}{2} \Sigma^L_\mu l_\nu \Sigma^L_\rho l_\sigma - i \Sigma^L_\mu \Sigma^L_\nu \Sigma^L_\rho l_\sigma - (L \leftrightarrow R) \rangle, \tag{1} \]

\[
\Sigma^L_\mu = U_r^\dagger \partial_\mu U, \Sigma^R_\mu = U_\mu \partial_\mu U^\dagger, \]

Contribución de resonancias a las LEC de \(\chi PT \) a \(\mathcal{O}(p^4) \)

- El lagrangiano de interacción de las resonancias vectoriales es

\[
\mathcal{L}(V) = \langle V_{\mu\nu} J_{\mu\nu} \rangle; \quad J_{\mu\nu} = \frac{F_V}{2\sqrt{2}} f_{\mu\nu}^\pm + i \frac{G_V}{2\sqrt{2}} [u^\mu, u^\nu]
\]

- Con \(f_{\mu\nu}^\pm = uF_{L}^{\mu\nu} u^\dagger \pm u^\dagger F_{R}^{\mu\nu} u \), donde

\[
F_{R,L}^{\mu\nu} = \partial^\mu (r, \ell)^{\nu} - \partial^{\nu} (r, \ell)^{\mu} - i [(r, \ell)^{\mu}, (r, \ell)^{\nu}]
\]

- siendo \(r \) y \(\ell \) las corrientes vectoriales y axiales externas, respectivamente.

- \(u^{\mu} = i \left[u^\dagger (\partial^\mu - ir^{\mu}) u - u (\partial^\mu - i\ell^{\mu}) u^\dagger \right] = iu^\dagger D^\mu U u^\dagger \)

- \(F_V \) y \(G_V \) son parámetros reales.
• Así, se encuentra que V debe cumplir una ecuación de constricción

$$\nabla^\alpha \nabla^\rho V^{\alpha\beta} - \nabla^\beta \nabla^\rho V^{\rho\alpha} + M_V^2 V^{\alpha\beta} = -2J^{\alpha\beta}$$

• Donde $\nabla_\mu R = \partial_\mu R + [\Gamma_\alpha, R]$ y

$$\Gamma_\alpha = \frac{1}{2} [u^\dagger (\partial_\alpha - ir_\alpha) u + u (\partial_\alpha - i\ell_\alpha) u^\dagger].$$

Al sustituir V y a orden p^4 se tiene que

$$L_1^V = \frac{G_V^2}{8M_V^2} \quad L_2^V = 2L_1^V \quad L_3^V = -6L_1^V$$

$$L_9^V = \frac{F_V G_V}{2M_V^2} \quad L_{10}^V = -\frac{F_V^2}{4M_V^2}$$

• y de igual forma para las demás resonancias.