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1) The value of the pion-Nucleon sigma term ranges from 45 MeV to 64 MeV 

2) There is a long lasting “puzzle” associated with a combination of baryon masses (in 
SU(3) ) in the iso-spin symmetric limit, to obtain the pion-Nucleon sigma term, assuming 
the contribution by strange quark mass to the nucleon mass is negligible (OZI).

Gasser et al. [5]

Pavan et al. [7]

Alarcón et al. [8]

Hoferichter et al. [9]

Dürr et al. [14]

Yang et al. [15]

Abdel-Rehim et al. [16]

Bali et al. [17]

This work
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

x) The results obtained for �⇡N are consistent with the larger values obtained from ⇡N analyses
[7; 8; 9; 10; 11]. Note however that a more reliable value would require some more accurate and
extensive LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with
other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.

6

Gasser et al. (1991)

( )

�
�

� ��
���

�
�

� ��
���

!"# $## $"# %##
&##

!###

!!##

!$##

!%##

!'##

!"##

!(##

!� !)*+"

!
!
!!

�
!!
"#

"

Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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3) The connection between the pion-Nucleon sigma term and size of the correction to the 
Gell-Mann-Okubo relation

Can one explain these from the ChPT point of view ?

Motivation

3

Baryon masses and � terms in SU(3) BChPT ⇥ 1/Nc

I. P. Fernando⇤⇤ , J. M. Alarcón⇤ , J. L. Goity⇤,⇤⇤

* Thomas Je↵erson National Accelerator Facility, Newport News, VA 23606, USA.
** Department of Physics, Hampton University, Hampton, VA 23668, USA.

Abstract

Baryon masses and nucleon � terms are studied with the e↵ective theory that combines the chiral
and 1/Nc expansions for three flavors. In particular the connection between the deviation of the
Gell-Mann-Okubo relation and the � term associated with the scalar density ūu + d̄d � 2s̄s is
emphasized. The latter is at lowest order related to a mass combination whose low value has
given rise to a � term puzzle. It is shown that while the nucleon � terms have a well behaved
low energy expansion, that mass combination is a↵ected by large higher order corrections non-
analytic in quark masses. Adding to the analysis lattice QCD baryon masses, it is found that
�⇡N = 69(10) MeV and �s has natural magnitude within its relative large uncertainty.

Keywords: Sigma terms, nucleon mass, baryon masses, Gell-Mann-Okubo mass formula

1. Introduction

Baryon mass dependencies on quark masses, quantified by the di↵erent �-terms, are among
the fundamental observables in baryon chiral dynamics. In particular, they give information on the
baryon matrix elements of scalar quark densities, for which there is no alternative way for their
determination. The definition of � terms is through the Feynman-Hellmann theorem1, which,
for three flavors, through the physical baryon masses gives access to only two such terms, namely
those associated with the SU(3) octet quark mass combinations m3 = mu�md and m8 =

1p
3
(m̂�ms),

where m̂ is the average of the u and d quark masses. The � terms associated with the singlet
component m0 =

1
3 (2m̂ + ms) require knowledge of baryon masses for unphysical quark masses,

which is made possible through lattice QCD (LQCD) calculations. On the other hand, the pion-
nucleon � term �⇡N ⌘ m̂

2mN
hN | ūu + d̄d | Ni is accessible through its connection to pion-nucleon

scattering via a low energy theorem [1; 2; 3]. Such a determination of �⇡N had a long evolution
through the availability of increasingly accurate data and the development of combined methods
of dispersion theory and chiral perturbation theory [4; 5; 6; 7; 8; 9; 10; 11]. The values obtained
for �⇡N range from ⇠ 45 MeV [4; 5; 6] to & 58 MeV [7; 8; 9; 10; 11; 12], where the di↵erence
between the results of the di↵erent dispersive analyses resides mostly in the di↵erent values of
the S-wave ⇡N scattering lengths a1/2,3/2 used in the subtractions, cf. [12]. In addition to the

1The following notation will be used: �i(B) = mi
@
@mi

mB, where mi indicates a quark mass (i = u, d, s) or combina-
tion thereof (0, 3, 8), and B is a given baryon. When B is not explicitly indicated it is assumed to be a nucleon.
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Non relativistic version of the BChPT or HBChPT  is based on the expansion in terms of 
the “baryon mass”

Solution : 

pµ = mBvµ + kµ

65

3.5.1 Power counting scheme in HBChPT

In the HBChPT, the derivative expansion for both mesons and baryons becomes an

expansion in powers of (k/⇤�), where k is a momentum of the order of the meson mass

and ⇤� is the chiral symmetry breaking scale. Therefore, the higher derivative terms

in the e↵ective theory are suppressed by powers of (k/⇤�). The baryon propagator

can be revised into
1

p2 � m2
B

! 1

2mB

1

(v.k)
+ O

�

1/m2
B
�

(3.104)

a version where the mass dependence can be resided in the vertices which can be or-

dered according to their power in 1/mB. The chiral dimension D for a given Feynman

diagram is given by [46],

Ddim = 4NL � 2IM � IB +
1
X

n=1

2n NM
2n +

1
X

n=1

n NB
n , (3.105)

where, NL is the number of loops, IM is the number of internal meson lines, NM
2n is

the number of meson vertices from L2n, NB
n is the number of baryon vertices from

L(n)
MB, and IB is the number of internal baryon lines. For the processes which have

single baryon in the initial and final states, the Eq. (3.105) becomes,

Ddim = 2NL + 1 +
1
X

n=1

2(n � 1) NM
2n +

1
X

n=1

(n � 1) NB
n , (3.106)

because the total number of mesonic vertices NM can be related to IM by NL =

IM + IB � NM � NB + 1, and the total number of baryonic vertices can be written as,

NB =
1
X

n=1

NB
n = IB + 1 . (3.107)

Note that the loop contribution starts from Ddim > 3.

64

Therefore, the Feynman rule for the pion-nucleon V⇡NN vertex becomes,

V⇡NN = � g̊A

2F0

�µqµ�5~⌧ . (3.100)

Using the components Lext,V⇡NN the expression for the diagram in Fig. XX reads:

2B0F0mq

✓

i

t � M2
⇡

◆

ū(p0)

✓

� g̊A

2F0

�µqµ�5~⌧

◆

u(p) =
M2

⇡F0

M2
⇡ � t

g̊Am̊N

F0

ū(p0)�5i⌧iu(p) ,

with the aid of M2
⇡ = 2B0mq, ū�µqµ�5u = 2m̊N ū�5u, and F⇡ = F0 at O (p2). Com-

paring Eq. (3.96) and Eq. (3.101),

G⇡N(t) =
m̊A

F0

g̊A (3.101)

which yields the “Goldberger-Treiman (GT) relation”,

g⇡N =
m̊A

F0

g̊A (3.102)

at the leading order in chiral expansion when t = M2
⇡ .

3.5 Heavy Baryon Approach

In the heavy baryon chiral pertuebation theory (HBChPT), the baryons are con-

sidered as heavy static fermions [40, 59]. The velocity of the baryon is nearly un-

changed or e↵ectively conserved when it exchanges a small momentum with a meson.

Therefore the baryon four-momentum can be decomposed into a large component

mBv and a small residual momentum component kµ,

pµ = mB v + kµ , vµvµ = 1 , v.k ⌧ mB . (3.103)
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3.5 Heavy Baryon Approach

In the heavy baryon chiral pertuebation theory (HBChPT), the baryons are con-

sidered as heavy static fermions [40, 59]. The velocity of the baryon is nearly un-

changed or e↵ectively conserved when it exchanges a small momentum with a meson.

Therefore the baryon four-momentum can be decomposed into a large component

mBv and a small residual momentum component kµ,

pµ = mB v + kµ , vµvµ = 1 , v.k ⌧ mB . (3.103)The issue of experiencing a slower rate 
of convergence compare to the 

Goldstone Boson Sector

Inclusion of the decuplet baryons in one-loop corrections to physical 
observables, has been showing a great improvement!

On the other hand, studying the baryons in the large Nc limit of QCD emerges a dynamical 
symmetry called “spin-flavor symmetry” which requires the possibility of having 
degenerate baryon multiplets of higher spin in the intermediate state/s. 

Introduction to the combined approach : BChPT x 1/Nc expansion

4
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Spin-flavor symmetry of Baryons in large Nc

Spin-
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composi-
tion of
excited
baryons

Ishara
Fernando

Baryon Spin-Flavor Symmetry

Consistency of pion-nucleon scattering implies an exact spin- flavor symmetry
exists for baryons in the limit Nc ! 1
Dominant diagrams for baryon-meson scattering amplitude

Pion-Nucleon vertex �!
@µ⇡a

f⇡
hB0|q̄�µ�5Taq|Bi ⌘ @µ⇡a

f⇡
gANchB0|Xia|Bi ⌘ O(

p
Nc)

Since, ⇡N amplitude is O(N0
c )

A = �i k
ikj

k0

Nc
2g2

f2
⇡

[Xia, Xib] ) [Xia, Xib] 6 O(1/Nc)

Large Nc consistency condition : [Xia
0 , Xib

0 ] = 0

Large Nc QCD has a contracted spin-flavor symmetry SUc(2Nf ) In baryon
sector. Where Nf is number of flavors.
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Gervais & Sakita; Dashen & Manohar

This symmetry is broken at sub-leading orders in 
1/Nc 

5

This spin-flavor symmetry requires the existence of degenerate baryon multiplets with different 
spins (a dynamical symmetry) : leads to the consideration of both octet and decuplet contributions 
in the intermediate state

This result is a tree level, so definitely we can apply it to the case of one loop

At large Nc, QCD has contracted spin-flavor            
symmetry                      in baryon sector 
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Effective Theories

PROBING QUANTUM CHROMODYNAMICS WITH EFFECTIVE THEORIES
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Figure 9.2: Left: Summary of measurements of αs(M2
Z), used as input for the

world average value; Right: Summary of measurements of αs as a function of the
respective energy scale Q. Both plots are taken from Ref. 172.
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Figure 3: Ratios of the light quark masses

from the experimental information concerning the decay # → 3$ . Since the electromagnetic con-
tributions to this transition are suppressed, this determination of Q is less sensitive to the uncer-
tainties therein. A comprehensive analysis of this decay is under way [15]. The gray elliptic band
in Figure 3 corresponds to the range Q = 22.3± 0.8, which in my opinion is a fair assessment of
the current knowledge based on # → 3$ . The MILC results for the quark mass ratios [7] imply
Q = 21.7± 1.1 and are thus consistent with the above value, but those obtained by the RBC col-
laboration [16], which are based on a simulation with Nf = 2, disagree with it, as they correspond
to Q= 26.1±1.2.

The position on the ellipse cannot be determined on the basis of phenomenology alone. The
expansion in powers of 1/Nc does give a theoretical handle. Unfortunately, however, the bound
I had obtained in that framework [17] receives large corrections from higher orders [18]. The
experimental information about the width of the decays # → %% and # ′ → %% can be used to bring
the 1/Nc expansion under better control. The resulting pattern for the masses and mixing angles
of the pseudoscalar nonet implies ms/mud = 26.6± 1.6 [18], indicating that the corrections to the
value ms/mud = 25.9 that follows from the leading order ratios (4.1) are small.

The lattice results for ms/mud are slightly higher. Adding the quoted errors3 in quadrature, the
MILC result reads ms/mud = 27.4(2) [7]. As a check on the convergence of the expansion in this
case, it is instructive to evaluate the NLO formula,4

ms
mud

=
NLO 2M2

K
M2
$

{

1−8
M2
K−M2

$

F2$
(2L8−L5)+µ$ −µ#

}

−1 , (4.3)

where the chiral logarithms stand for µP = M2
P ℓn(M2

P/µ
2)/(32$2F2$ ). For the relevant combina-

tion of effective coupling constants at running scale µ = M# , the MILC collaboration quotes the
value 2L8−L5 =−0.48(8)(21)×10−3. This leads to ms/mud =

NLO 28.1(0.5)(1.2). Although the un-
certainty in the couplings still leaves room for contributions from higher orders, the NLO formula
does represent a decent approximation.

3These do not account for the uncertainties in the electromagnetic self-energies discussed in section 3.
4The constant F$ can be replaced by F0 – the operation merely affects the size of the NNLO corrections.
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Figure 2: Mass of the strange quark, in the MS scheme at running scale µ = 2 GeV. Except for some of the
early estimates, disks indicate sum rule determinations, while squares represent lattice results.

found for the decay constants. It turns out that, in the !PT representation for the masses, the NLO
contributions from the valence quarks and from the Dirac determinant are of opposite sign and
roughly cancel. Accordingly, the Gell-Mann-Oakes-Renner formula describes the dependence of
M2
K on ms quite well, on the entire range between the chiral limit and the physical value of ms:

despite the fact that the mass of the strange quark is about 27 times heavier than the mean of u and
d, the departure from linearity is remarkably small. I will return to the convergence properties of
the expansion in section 4, in connection with the quark mass ratio ms/mud .

Note also that the numbers obtained at NLO are unambiguous only up to contributions of
higher order. Although this only matters beyond NLO, the convergence appears to favour the rep-
resentation obtained by expressing the corrections in terms of the masses and decay constants of
the Nambu-Goldstone bosons rather than the quark masses and couplings occurring in the effective
Lagrangian. At least in part, this can be understood from the fact that the properties of !PT are
governed by the infrared singularities of QCD. Since the position of these singularities is deter-
mined by the masses of the Nambu-Goldstone bosons, expressing the formulae in terms of these
before truncating the series ensures that the singularities are sitting at the proper place, ab initio.

The progress in the numerical simulation of QCD with light dynamical quarks is impressive,
but Figure 2 shows that the lattice determinations of ms do not yet yield a satisfactory picture (for
some of the lattice entries, only the statistical error is shown, because an estimate for the systematic
error is lacking). One of the problems may arise from nonperturbative renormalization effects –
some of the collaborations still use perturbative renormalization. Also, since ms is often taken
in the vicinity of the physical value, while mud is substantially larger than in nature, the mass of
the kaon is too large for the NLO formulae of !PT to yield a good basis for the extrapolation to
the physical values. Within the present uncertainties, the lattice results confirm the values of ms
found on the basis of QCD sum rules. It does not take much courage to predict that the progress
being made with lattice simulations of light dynamical quarks will soon lead to a significantly more
precise determination of ms.
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because in the latter case the discussed cancellations reduce the M� dependence, while the

lack of such cancellations for the loop contribution to the masses is magnified by Nc. The

combined fits are displayed in Fig 3, which shows the LO to NNLO fits of LQCD results

from the PACS-CS and LHP collaborations.
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FIG. 3: Combined fits to PACS-CS [35] and LHP [42] corresponding to the results shown in the first

row of Table I. The diamonds depict the physical values. The fits correspond to: LO (long-dashed

line), NLO (short-dashed line) and NNLO (solid line). The bands correspond to the theoretical

68% confidence interval.

The following remarks on the fits are in order:

1. All fitted LECs are of natural size when the renormalization scale is taken to be

µ � m⇥.

2. Parameters appearing at lower orders, namely m0, g̊A and CHF , remain stable at higher

orders, except c1 that changes by more than the estimated 30% when increasing the

order in � of the fit by one unit.

3. For baryon masses, LQCD data and physical point values are consistent even at LO,

where with only three parameters one can extrapolate to the physical values and get

a good fit up to M� � 350 MeV as shown in Fig. 3. For larger values of M� an

approximate linear fit is consistent [34] in the range Mphys
� < M� < 450 MeV. Since at

LO there are contributions to the baryon masses which are proportional to Nc c1M2
� ,
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.

�2
DOF g̊A m0 CHF c1 µ2 z1 CA

1 CA
2 CA

3 gA(M⇥ ) CA
5 (M⇥ ) g1(M⇥ )

[MeV ] [MeV ] [MeV�1] [MeV�1] [MeV�2] [MeV�2]

2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2

5
6⇥F2

⇥
((mN�

m�)2�M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2
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m�)2�M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is

5

Axial-vector couplings in 1/Nc - ChPT A. Calle Cordón

Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2
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�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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FIG. 1: The energies obtained for each symmetry channel of isospin 1
2 baryons are shown based on

the 2.64fm3 Nf = 2 lattice QCD data for mπ = 400 MeV (left panel) and mπ = 572 MeV (right

panel). The scale shows energies in Mev and errors are indicated by the vertical size of the box.
The gold open boxes show Nπ threshold states.

form-factors. First exploratory results have been obtained in Ref. [22] for the excited nucleon

P11 − N transition using a very simple basis of operators. The main result is shown in

Figure 2. The low Q2 region for F2(Q2), at these very large unphysical pion masses shows

large deviations from experiment, consistent with many statements that the pion cloud

effects are stronger in excited state systems compared to the ground states. However, these

first preliminary results are very encouraging given the very limited operator basis. Work

is underway now using the previously developed full basis of nucleon operators for a more

accurate computation of the excited nucleon form-factors at much smaller pion masses using

the Nf = 2 + 1 configurations already produced. In addition, the ground and excited

state hyperon transition form-factors will also be computed. It is not clear what kind of

statistical accuracy that might be achieved - it is very sensitive to the system of interest,

what excited level, and what Q2 (many are available in one calculation). The results in
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Figure 3: Ratios of the light quark masses

from the experimental information concerning the decay # → 3$ . Since the electromagnetic con-
tributions to this transition are suppressed, this determination of Q is less sensitive to the uncer-
tainties therein. A comprehensive analysis of this decay is under way [15]. The gray elliptic band
in Figure 3 corresponds to the range Q = 22.3± 0.8, which in my opinion is a fair assessment of
the current knowledge based on # → 3$ . The MILC results for the quark mass ratios [7] imply
Q = 21.7± 1.1 and are thus consistent with the above value, but those obtained by the RBC col-
laboration [16], which are based on a simulation with Nf = 2, disagree with it, as they correspond
to Q= 26.1±1.2.

The position on the ellipse cannot be determined on the basis of phenomenology alone. The
expansion in powers of 1/Nc does give a theoretical handle. Unfortunately, however, the bound
I had obtained in that framework [17] receives large corrections from higher orders [18]. The
experimental information about the width of the decays # → %% and # ′ → %% can be used to bring
the 1/Nc expansion under better control. The resulting pattern for the masses and mixing angles
of the pseudoscalar nonet implies ms/mud = 26.6± 1.6 [18], indicating that the corrections to the
value ms/mud = 25.9 that follows from the leading order ratios (4.1) are small.

The lattice results for ms/mud are slightly higher. Adding the quoted errors3 in quadrature, the
MILC result reads ms/mud = 27.4(2) [7]. As a check on the convergence of the expansion in this
case, it is instructive to evaluate the NLO formula,4

ms
mud

=
NLO 2M2

K
M2
$

{

1−8
M2
K−M2

$

F2$
(2L8−L5)+µ$ −µ#

}

−1 , (4.3)

where the chiral logarithms stand for µP = M2
P ℓn(M2

P/µ
2)/(32$2F2$ ). For the relevant combina-

tion of effective coupling constants at running scale µ = M# , the MILC collaboration quotes the
value 2L8−L5 =−0.48(8)(21)×10−3. This leads to ms/mud =

NLO 28.1(0.5)(1.2). Although the un-
certainty in the couplings still leaves room for contributions from higher orders, the NLO formula
does represent a decent approximation.

3These do not account for the uncertainties in the electromagnetic self-energies discussed in section 3.
4The constant F$ can be replaced by F0 – the operation merely affects the size of the NNLO corrections.
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Figure 2: Mass of the strange quark, in the MS scheme at running scale µ = 2 GeV. Except for some of the
early estimates, disks indicate sum rule determinations, while squares represent lattice results.

found for the decay constants. It turns out that, in the !PT representation for the masses, the NLO
contributions from the valence quarks and from the Dirac determinant are of opposite sign and
roughly cancel. Accordingly, the Gell-Mann-Oakes-Renner formula describes the dependence of
M2
K on ms quite well, on the entire range between the chiral limit and the physical value of ms:

despite the fact that the mass of the strange quark is about 27 times heavier than the mean of u and
d, the departure from linearity is remarkably small. I will return to the convergence properties of
the expansion in section 4, in connection with the quark mass ratio ms/mud .

Note also that the numbers obtained at NLO are unambiguous only up to contributions of
higher order. Although this only matters beyond NLO, the convergence appears to favour the rep-
resentation obtained by expressing the corrections in terms of the masses and decay constants of
the Nambu-Goldstone bosons rather than the quark masses and couplings occurring in the effective
Lagrangian. At least in part, this can be understood from the fact that the properties of !PT are
governed by the infrared singularities of QCD. Since the position of these singularities is deter-
mined by the masses of the Nambu-Goldstone bosons, expressing the formulae in terms of these
before truncating the series ensures that the singularities are sitting at the proper place, ab initio.

The progress in the numerical simulation of QCD with light dynamical quarks is impressive,
but Figure 2 shows that the lattice determinations of ms do not yet yield a satisfactory picture (for
some of the lattice entries, only the statistical error is shown, because an estimate for the systematic
error is lacking). One of the problems may arise from nonperturbative renormalization effects –
some of the collaborations still use perturbative renormalization. Also, since ms is often taken
in the vicinity of the physical value, while mud is substantially larger than in nature, the mass of
the kaon is too large for the NLO formulae of !PT to yield a good basis for the extrapolation to
the physical values. Within the present uncertainties, the lattice results confirm the values of ms
found on the basis of QCD sum rules. It does not take much courage to predict that the progress
being made with lattice simulations of light dynamical quarks will soon lead to a significantly more
precise determination of ms.
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because in the latter case the discussed cancellations reduce the M� dependence, while the

lack of such cancellations for the loop contribution to the masses is magnified by Nc. The

combined fits are displayed in Fig 3, which shows the LO to NNLO fits of LQCD results

from the PACS-CS and LHP collaborations.
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FIG. 3: Combined fits to PACS-CS [35] and LHP [42] corresponding to the results shown in the first

row of Table I. The diamonds depict the physical values. The fits correspond to: LO (long-dashed

line), NLO (short-dashed line) and NNLO (solid line). The bands correspond to the theoretical

68% confidence interval.

The following remarks on the fits are in order:

1. All fitted LECs are of natural size when the renormalization scale is taken to be

µ � m⇥.

2. Parameters appearing at lower orders, namely m0, g̊A and CHF , remain stable at higher

orders, except c1 that changes by more than the estimated 30% when increasing the

order in � of the fit by one unit.

3. For baryon masses, LQCD data and physical point values are consistent even at LO,

where with only three parameters one can extrapolate to the physical values and get

a good fit up to M� � 350 MeV as shown in Fig. 3. For larger values of M� an

approximate linear fit is consistent [34] in the range Mphys
� < M� < 450 MeV. Since at

LO there are contributions to the baryon masses which are proportional to Nc c1M2
� ,

20

Axial-vector couplings in 1/Nc - ChPT A. Calle Cordón

Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.

�2
DOF g̊A m0 CHF c1 µ2 z1 CA

1 CA
2 CA

3 gA(M⇥ ) CA
5 (M⇥ ) g1(M⇥ )

[MeV ] [MeV ] [MeV�1] [MeV�1] [MeV�2] [MeV�2]

2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2

5
6⇥F2

⇥
((mN�

m�)2�M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2
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⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2
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�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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FIG. 1: The energies obtained for each symmetry channel of isospin 1
2 baryons are shown based on

the 2.64fm3 Nf = 2 lattice QCD data for mπ = 400 MeV (left panel) and mπ = 572 MeV (right

panel). The scale shows energies in Mev and errors are indicated by the vertical size of the box.
The gold open boxes show Nπ threshold states.

form-factors. First exploratory results have been obtained in Ref. [22] for the excited nucleon

P11 − N transition using a very simple basis of operators. The main result is shown in

Figure 2. The low Q2 region for F2(Q2), at these very large unphysical pion masses shows

large deviations from experiment, consistent with many statements that the pion cloud

effects are stronger in excited state systems compared to the ground states. However, these

first preliminary results are very encouraging given the very limited operator basis. Work

is underway now using the previously developed full basis of nucleon operators for a more

accurate computation of the excited nucleon form-factors at much smaller pion masses using

the Nf = 2 + 1 configurations already produced. In addition, the ground and excited

state hyperon transition form-factors will also be computed. It is not clear what kind of

statistical accuracy that might be achieved - it is very sensitive to the system of interest,

what excited level, and what Q2 (many are available in one calculation). The results in
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Figure 3: Ratios of the light quark masses

from the experimental information concerning the decay # → 3$ . Since the electromagnetic con-
tributions to this transition are suppressed, this determination of Q is less sensitive to the uncer-
tainties therein. A comprehensive analysis of this decay is under way [15]. The gray elliptic band
in Figure 3 corresponds to the range Q = 22.3± 0.8, which in my opinion is a fair assessment of
the current knowledge based on # → 3$ . The MILC results for the quark mass ratios [7] imply
Q = 21.7± 1.1 and are thus consistent with the above value, but those obtained by the RBC col-
laboration [16], which are based on a simulation with Nf = 2, disagree with it, as they correspond
to Q= 26.1±1.2.

The position on the ellipse cannot be determined on the basis of phenomenology alone. The
expansion in powers of 1/Nc does give a theoretical handle. Unfortunately, however, the bound
I had obtained in that framework [17] receives large corrections from higher orders [18]. The
experimental information about the width of the decays # → %% and # ′ → %% can be used to bring
the 1/Nc expansion under better control. The resulting pattern for the masses and mixing angles
of the pseudoscalar nonet implies ms/mud = 26.6± 1.6 [18], indicating that the corrections to the
value ms/mud = 25.9 that follows from the leading order ratios (4.1) are small.

The lattice results for ms/mud are slightly higher. Adding the quoted errors3 in quadrature, the
MILC result reads ms/mud = 27.4(2) [7]. As a check on the convergence of the expansion in this
case, it is instructive to evaluate the NLO formula,4

ms
mud

=
NLO 2M2

K
M2
$

{

1−8
M2
K−M2

$

F2$
(2L8−L5)+µ$ −µ#

}

−1 , (4.3)

where the chiral logarithms stand for µP = M2
P ℓn(M2

P/µ
2)/(32$2F2$ ). For the relevant combina-

tion of effective coupling constants at running scale µ = M# , the MILC collaboration quotes the
value 2L8−L5 =−0.48(8)(21)×10−3. This leads to ms/mud =

NLO 28.1(0.5)(1.2). Although the un-
certainty in the couplings still leaves room for contributions from higher orders, the NLO formula
does represent a decent approximation.

3These do not account for the uncertainties in the electromagnetic self-energies discussed in section 3.
4The constant F$ can be replaced by F0 – the operation merely affects the size of the NNLO corrections.
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Figure 2: Mass of the strange quark, in the MS scheme at running scale µ = 2 GeV. Except for some of the
early estimates, disks indicate sum rule determinations, while squares represent lattice results.

found for the decay constants. It turns out that, in the !PT representation for the masses, the NLO
contributions from the valence quarks and from the Dirac determinant are of opposite sign and
roughly cancel. Accordingly, the Gell-Mann-Oakes-Renner formula describes the dependence of
M2
K on ms quite well, on the entire range between the chiral limit and the physical value of ms:

despite the fact that the mass of the strange quark is about 27 times heavier than the mean of u and
d, the departure from linearity is remarkably small. I will return to the convergence properties of
the expansion in section 4, in connection with the quark mass ratio ms/mud .

Note also that the numbers obtained at NLO are unambiguous only up to contributions of
higher order. Although this only matters beyond NLO, the convergence appears to favour the rep-
resentation obtained by expressing the corrections in terms of the masses and decay constants of
the Nambu-Goldstone bosons rather than the quark masses and couplings occurring in the effective
Lagrangian. At least in part, this can be understood from the fact that the properties of !PT are
governed by the infrared singularities of QCD. Since the position of these singularities is deter-
mined by the masses of the Nambu-Goldstone bosons, expressing the formulae in terms of these
before truncating the series ensures that the singularities are sitting at the proper place, ab initio.

The progress in the numerical simulation of QCD with light dynamical quarks is impressive,
but Figure 2 shows that the lattice determinations of ms do not yet yield a satisfactory picture (for
some of the lattice entries, only the statistical error is shown, because an estimate for the systematic
error is lacking). One of the problems may arise from nonperturbative renormalization effects –
some of the collaborations still use perturbative renormalization. Also, since ms is often taken
in the vicinity of the physical value, while mud is substantially larger than in nature, the mass of
the kaon is too large for the NLO formulae of !PT to yield a good basis for the extrapolation to
the physical values. Within the present uncertainties, the lattice results confirm the values of ms
found on the basis of QCD sum rules. It does not take much courage to predict that the progress
being made with lattice simulations of light dynamical quarks will soon lead to a significantly more
precise determination of ms.
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because in the latter case the discussed cancellations reduce the M� dependence, while the

lack of such cancellations for the loop contribution to the masses is magnified by Nc. The

combined fits are displayed in Fig 3, which shows the LO to NNLO fits of LQCD results

from the PACS-CS and LHP collaborations.
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FIG. 3: Combined fits to PACS-CS [35] and LHP [42] corresponding to the results shown in the first

row of Table I. The diamonds depict the physical values. The fits correspond to: LO (long-dashed

line), NLO (short-dashed line) and NNLO (solid line). The bands correspond to the theoretical

68% confidence interval.

The following remarks on the fits are in order:

1. All fitted LECs are of natural size when the renormalization scale is taken to be

µ � m⇥.

2. Parameters appearing at lower orders, namely m0, g̊A and CHF , remain stable at higher

orders, except c1 that changes by more than the estimated 30% when increasing the

order in � of the fit by one unit.

3. For baryon masses, LQCD data and physical point values are consistent even at LO,

where with only three parameters one can extrapolate to the physical values and get

a good fit up to M� � 350 MeV as shown in Fig. 3. For larger values of M� an

approximate linear fit is consistent [34] in the range Mphys
� < M� < 450 MeV. Since at

LO there are contributions to the baryon masses which are proportional to Nc c1M2
� ,

20
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.

�2
DOF g̊A m0 CHF c1 µ2 z1 CA

1 CA
2 CA

3 gA(M⇥ ) CA
5 (M⇥ ) g1(M⇥ )

[MeV ] [MeV ] [MeV�1] [MeV�1] [MeV�2] [MeV�2]

2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2

5
6⇥F2

⇥
((mN�

m�)2�M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2
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⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ = CA2
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�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the �⌅N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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FIG. 1: The energies obtained for each symmetry channel of isospin 1
2 baryons are shown based on

the 2.64fm3 Nf = 2 lattice QCD data for mπ = 400 MeV (left panel) and mπ = 572 MeV (right

panel). The scale shows energies in Mev and errors are indicated by the vertical size of the box.
The gold open boxes show Nπ threshold states.

form-factors. First exploratory results have been obtained in Ref. [22] for the excited nucleon

P11 − N transition using a very simple basis of operators. The main result is shown in

Figure 2. The low Q2 region for F2(Q2), at these very large unphysical pion masses shows

large deviations from experiment, consistent with many statements that the pion cloud

effects are stronger in excited state systems compared to the ground states. However, these

first preliminary results are very encouraging given the very limited operator basis. Work

is underway now using the previously developed full basis of nucleon operators for a more

accurate computation of the excited nucleon form-factors at much smaller pion masses using

the Nf = 2 + 1 configurations already produced. In addition, the ground and excited

state hyperon transition form-factors will also be computed. It is not clear what kind of

statistical accuracy that might be achieved - it is very sensitive to the system of interest,

what excited level, and what Q2 (many are available in one calculation). The results in
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Heavy Baryon ChPT

 Spin-flavor Symmetry     +      Chiral Symmetry

mean life time ⇡ 10

31
years

mean life time ⇡ 10

31
years

Baryon Mean life time

Proton ⇡ 10

31
years

Neutron 880.3±1.1 s

Lambda (2.632± 0.020)⇥ 10

�10
s

Sigma (0.8018± 0.0026)⇥ 10

�10s

L(Lagrangian) = x0LLO + x1LNLO + x2LNNLO + x3LNNNLO + .... (1)

2

� � expansion : 1/Nc = O(p)

Combined approach
Combining the HBChPT with 1/Nc provides a 

well behaved expansion  
in the low energy phenomenology   

Introduction to the combined approach : BChPT x 1/Nc expansion  (Continued…)2



Introduction to the combined approach : BChPT x 1/Nc expansion  (Continued…)

Leading order Lagrangian

component of the baryon masses, namely M0 = Nc m0 (m0 can be considered here to be a

LEC defined in the chiral limit and which will have itself an expansion in 1/Nc).

Bases of spin-flavor tensor operators are built using the tools in Appendix A, and requires

in general lengthy algebraic work. In the Appendix only the bases needed in this work are

provided.

In order to ensure the validity of the OZI rule for the quark mass dependency of baryon

masses, namely, that the non-strange baryon mass dependence on ms is O(N0
c ), the following

combination of the source �+ is defined:

�̂+ ⌘ �̃+ + Nc �0
+, (9)

which is O(Nc) but has dependence on ms which is O(N0
c ) for al states where the strangeness

is O(N0
c ).

For convenience a scale ⇤ is introduced, which can be chosen to be a typical QCD scale,

in order to render most of the LECs dimensionless. In the calculations ⇤ = m⇢ will be

chosen.

The lowest order Lagrangian is [31]:

L(1)
B = B

†
✓

iD0 + g̊AuiaGia � CHF

Nc

~̂S2 +
c1
2⇤

�̂+

◆

B. (10)

The kinetic term is O(p N0
c ), and the terms involving GBs (when the vector and axial vector

sources are turned o↵) start with the Weinberg-Tomozawa term which is O(p/Nc). The

second term gives in particular the axial vector current and the GB-baryon interaction. g̊A

is the axial coupling in the chiral and large Nc limits (it has to be rescaled by a factor 5/6

to coincide with the usual axial coupling as defined for the nucleon, i.e., gN
A = gA = 5

6 g̊A).

Because the matrix elements of Gia are O(Nc), the GB-baryon coupling is O(
p

Nc). This

strong coupling at large Nc demands the constraints of SU(6), which will allow for Nc

consistency at higher orders in the e↵ective theory. The third term gives the SU(3) singlet

mass splittings between baryons of di↵erent spins, and it is O(p0/Nc). The fourth term

gives the contributions of quark masses to the baryon masses, it is O(p2Nc) and gives SU(3)

breaking e↵ects which are O(p2N0
c ). This indicates a first issue with the interchange of

chiral and large Nc limits. As it becomes evident at the NLO due to the non-analytic terms

of loop corrections, the limits do not commute, and for that reason it becomes necessary

to make a choice: the choice made here is that 1/Nc is counted as a quantity of order p:

8

Only the hyperfine mass splitting term breaks symmetry at O(
1

Nc
) �CHF

Nc
B†Ŝ2B

1 Equations

L(2)
B = B†

✓
(� 1

2m
+

w1

⇤

)

~D2
+ (

1

2m
� w2

⇤

)

˜D2
0 +

c2
⇤

�0
+

+

CA
1

Nc
uiaSiIa +

CA
2

Nc
✏ijkuia{Sj , Gka} this terms is T odd

+

1

m
(

~B0
+ +

~Ba
+I

a
) · ~S +

1

2m
(2(0

~B0
+ + 1

~BaIa) · ~S +

6

5

2 Bia
+Gia

) + ⇢0 ~E0
� · ~S + ⇢1E

ia
�Gia

these terms are T odd

+ i
⌧1+
Nc

(ua
0G

iaDi +Diu
a
0G

ia
) +

⌧1�
Nc

[Di, u0]
aGia

this term is T odd

+ i✏ijkuiaujaSk
+ uµaua

µ +

1

Nc
uµaua

µ
ˆS2O(⇠3) +

1

Nc
uiauja

(SiSj
)

(`=2)O(⇠3) +
1

Nc
uµaub

µ{T a, T b}[I=2]O(⇠3)

+

1

Nc
uiaujb{Gia, Gjb}(`=2,I=2)O(⇠3)

◆
B, (1)

where m = Ncm0 is the spin-flavor singlet baryon mass in chiral limit, and the magnetic moment terms

consist of the one coming from the Dirac term

1
m (

~B0
+ +

~Ba
+T

a
) · ~S and the anomalous terms involving 0

(isoscalar) and 1,2 (isovector). Note that the magnetic transition between baryons of di↵erent spin are

meadited only by the term 2.Do we need w1,2 terms?

L(2)
B = B†

✓
� 1

2m
D2

+

c2
⇤

�0
+
CA

1

Nc
uiaSiIa +

CA
2

Nc
✏ijkuia{Sj , Gka}+ 1

m
(

~B0
+ +

~Ba
+I

a
) · ~S

+

1

2m
(2(0

~B0
+ + 1

~BaIa) · ~S +

6

5

2 Bia
+Gia

) + ⇢0 ~E0
� · ~S + ⇢1E

ia
�Gia

+ i
⌧1+
Nc

(ua
0G

iaDi +Diu
a
0G

ia
) +

⌧1�
Nc

[Di, u0]
aGia

◆
B (2)

1

GB-baryon coupling is Oð
ffiffiffiffiffiffi
Nc

p
Þ. This strong coupling at

large Nc demands the constraints of SUð6Þ, which will
allow for Nc consistency at higher orders in the effective
theory. The third term gives the SUð3Þ singlet mass
splittings between baryons of different spins, and it is
Oðp0=NcÞ. The fourth term gives the contributions of
quark masses to the baryon masses, it isOðp2NcÞ and gives
SUð3Þ breaking effects which are Oðp2N0

cÞ. This indicates
a first issue with the interchange of chiral and large Nc
limits. As it becomes evident at the NLO due to the
nonanalytic terms of loop corrections, the limits do not
commute, and for that reason it becomes necessary to make
a choice: the choice made here is that 1=Nc is counted as a
quantity of order p: 1=Nc ¼ OðpÞ ¼ OðξÞ, which is
coined as the ξ expansion. The Lagrangian is now organ-
ized in powers of ξ. If the Nc dependencies of the matrix
elements of the spin-flavor operators are disregarded, Lð1Þ

B
is OðξÞ.
The construction of higher-order Lagrangians is accom-

plished making use of the tools provided in Appendixes A

and B. In this work, the Lagrangians of Oðξ2Þ and Oðξ3Þ
are needed. Throughout, the spin-flavor operators appear-
ing in the effective Lagrangians will be scaled by the
appropriate powers of 1=Nc in such a way that all LECs are
of zeroth order in Nc. The 1=Nc power of a Lagrangian
term with nπ pion fields is given by [57], n − 1 − κ þ nπ

2 ,
where the spin-flavor operator is n-body (n is the number of
factors of SUð6Þ generators appearing in the operator), and
κ takes into account the Nc dependency of the spin-flavor
matrix elements. The last term, nπ=2, stems from the factor
ð1=FπÞnπ carried by any term with nπ GB fields.
For convenience, the following definitions are used:

δm̂≡ CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ

iD̃0 ≡ iD0 − δm̂: ð11Þ

Note that δm̂ gives rise to mass splittings between baryons
which are Oð1=NcÞ or Oðp2Þ.

With this, the Oðξ2Þ Lagrangian is given by3:

Lð2Þ
B ¼ B†

""
−

1

2Ncm0

þ w1

Λ

#
D⃗2þ

"
1

2Ncm0

−
w2

Λ

#
D̃2

0 þ
c2
Λ
χ0þ

þ CA
1

Nc
uiaSiTa þ CA

2

Nc
ϵijkuiafSj; Gkag

þ κ0ϵijkF0
þijS

k þ κ1ϵijkFa
þijG

ka þ ρ0F0
−0iS

i þ ρ1Fa
−0iG

ia

þ τ1
Nc

ua0G
iaDi þ

τ2
N2

c
ua0S

iTaDi þ
τ3
Nc

∇iua0S
iTa þ τ4∇iua0G

ia þ % % %
#
B; ð12Þ

where additional terms not explicitly displayed are not needed in the present work. Note that there are also Oðξ2Þ terms
stemming from the 1=Nc suppressed terms in the LECs of the lower-order Lagrangian. Similar comments apply to the
higher-order Lagrangians. Such terms require knowledge of the physics at Nc > 3 to be determined, which can in principle
be obtained using LQCD results at varying Nc [58,59].
Similarly, the Oðξ3Þ Lagrangian needed here is given by

Lð3Þ
B ¼ B†

"
c3

NcΛ3
χ̂2þ þ h1Λ

N3
c
Ŝ4 þ h2

N2
cΛ

χ̂þŜ
2 þ h3

NcΛ
χ0þŜ

2 þ h4
NcΛ

χaþfSi; Giag

þ CA
3

N2
c
uiafŜ2; Giagþ CA

4

N2
c
uiaSiSjGja

þDA
1

Λ2
χ0þuiaGia þDA

2

Λ2
χaþuiaSi þ

DA
3 ðdÞ
Λ2

dabcχaþuibGic þDA
3 ðfÞ
Λ2

fabcχaþuibGic

þ gE½Di; Fþi0' þ α1
i
Nc

ϵijkFa
þ0iG

iaDk þ β1
i
Nc

Fa
−ijG

iaDj þ % % %
#
B ð13Þ

3The notation for the LECs used here differs from the ones used in ordinary BChPT due to the unification of terms demanded by the
1=Nc expansion. The notation aims at distinguishing classes of terms in the Lagrangian, e.g., spin-independent mass terms, spin-
dependent mass terms, axial-vector couplings, etc. The identification of some of the LECs with those used in ordinary versions of
BChPT are straightforward.
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Chiral Symmetry + Spin-flavor Symmetry

� � expansion : 1/Nc = O(p)
Intermediate Octet and Decuplet  
baryon contributions are included

p0

k

O(1/Nc)

=

Z
ddk

(2�)d
i

k2 �M2
�

i

p0 + k0 � (mB0 �mB)| {z }
⇥ vertex factors

spin S reads:

mB(S) = Ncm0 +
CHF

Nc
S(S + 1) + c1NcM

2
⇥ + ⇥m1�loop+CT

B (S), (13)

where ⇥m1�loop+CT
B (S) involves contributions from the one-loop diagram in Fig. 1, and CT

denotes counter-terms. From both types of contributions, there are O(⌃2) and O(⌃3) terms,

and the calculation is exact at the latter order, as can be deduced from the previous discus-

sion on power counting. Notice that CHF is equal to the LO term in M� � MN in the real

world Nc = 3.

p0

k

FIG. 1: One-loop contribution to baryon self energy. The thick propagator indicates sum over all

possible baryons that can contribute.

The leading 1-loop correction to the baryon self energy, diagram in Fig. 1, can be calculated

through the matrix element ⌅B | ⇥�1�loop | B⇧, with:

⇥�1�loop = i
g̊2

A

F 2
⇥

1

d � 1

⇧

n

GiaPnG
ia I1�loop(⇥mn � p0, M⇥) , (14)

where n indicates the possible intermediate baryon spin-isospin states in the loop, Pn are

the corresponding spin-flavor projection operators, ⇥mn = ⇥m(Sn), and the loop integral is

calculated in dimensional regularization with the result,

I1�loop(Q, M⇥) =

⌃
ddk

(2⌥)d

⇡k2

k2 � M2
⇥ + i⇤

1

k0 � Q + i⇤

=
i

16⌥2

⇤
Q

�
(3M2

⇥ � 2Q2)(⌅� � log
M2

⇥

µ2
) + (5M2

⇥ � 4Q2)

⇥

+ 2⌥(M2
⇥ � Q2)3/2 + 4(Q2 � M2

⇥)3/2 tanh�1 Q⌥
Q2 � M2

⇥

⌅
, (15)

where Q = ⇥mn � p0, ⌅� = 1
� � � + log 4⌥, and µ is the renormalization scale which will be

taken later to be of the order of m⇤. For the specific evaluation of ⇥�1�loop for a given baryon

11

spin S reads:

mB(S) = Ncm0 +
CHF

Nc
S(S + 1) + c1NcM

2
⇥ + ⇥m1�loop+CT

B (S), (13)

where ⇥m1�loop+CT
B (S) involves contributions from the one-loop diagram in Fig. 1, and CT

denotes counter-terms. From both types of contributions, there are O(⌃2) and O(⌃3) terms,

and the calculation is exact at the latter order, as can be deduced from the previous discus-

sion on power counting. Notice that CHF is equal to the LO term in M� � MN in the real

world Nc = 3.

p0

k

FIG. 1: One-loop contribution to baryon self energy. The thick propagator indicates sum over all

possible baryons that can contribute.

The leading 1-loop correction to the baryon self energy, diagram in Fig. 1, can be calculated

through the matrix element ⌅B | ⇥�1�loop | B⇧, with:

⇥�1�loop = i
g̊2

A

F 2
⇥

1

d � 1

⇧

n

GiaPnG
ia I1�loop(⇥mn � p0, M⇥) , (14)

where n indicates the possible intermediate baryon spin-isospin states in the loop, Pn are

the corresponding spin-flavor projection operators, ⇥mn = ⇥m(Sn), and the loop integral is

calculated in dimensional regularization with the result,

I1�loop(Q, M⇥) =

⌃
ddk

(2⌥)d

⇡k2

k2 � M2
⇥ + i⇤

1

k0 � Q + i⇤

=
i

16⌥2

⇤
Q

�
(3M2

⇥ � 2Q2)(⌅� � log
M2

⇥

µ2
) + (5M2

⇥ � 4Q2)

⇥

+ 2⌥(M2
⇥ � Q2)3/2 + 4(Q2 � M2

⇥)3/2 tanh�1 Q⌥
Q2 � M2

⇥

⌅
, (15)
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� � � + log 4⌥, and µ is the renormalization scale which will be

taken later to be of the order of m⇤. For the specific evaluation of ⇥�1�loop for a given baryon
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Baryon Masses to           in SU(3)                O(⇠3)

spin S reads:
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Nc
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The leading 1-loop correction to the baryon self energy, diagram in Fig. 1, can be calculated

through the matrix element ⌅B | ⇥�1�loop | B⇧, with:

⇥�1�loop = i
g̊2

A

F 2
⇥

1

d � 1

⇧

n

GiaPnG
ia I1�loop(⇥mn � p0, M⇥) , (14)

where n indicates the possible intermediate baryon spin-isospin states in the loop, Pn are

the corresponding spin-flavor projection operators, ⇥mn = ⇥m(Sn), and the loop integral is

calculated in dimensional regularization with the result,

I1�loop(Q, M⇥) =

⌃
ddk
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⇥ + i⇤
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k0 � Q + i⇤

=
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16⌥2

⇤
Q

�
(3M2

⇥ � 2Q2)(⌅� � log
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⇥

µ2
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⇥)3/2 tanh�1 Q⌥
Q2 � M2

⇥

⌅
, (15)

where Q = ⇥mn � p0, ⌅� = 1
� � � + log 4⌥, and µ is the renormalization scale which will be

taken later to be of the order of m⇤. For the specific evaluation of ⇥�1�loop for a given baryon
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Several of these relations are poorly satisfied. The deviations are calculable and given by the

non-analytic contributions to one-loop. It is easy to understand why these relations receive

large corrections: they behave at large Nc as O(p3Nc). This implies that tree level relations

used to relate ms and m̂ � terms will in general receive large non-analytic deviations. In the

physical case Nc = 3, those deviations are numerically large for the first, third, and fourth

relations above. This in particular a↵ects the nucleon strangeness � term, and thus indicates

that its estimation from arguments based on tree level relations is subject to important

corrections [63]. In terms of the octet components of the quark masses, in addition to GMO

and ES relations one finds:

�N m8 =
(Nc + 3) �⇤m8 + 3(Nc � 1) �⌃m8

4(Nc � 3)
(29)

��m8 =
�5(Nc � 3) �⇤m8 + 5(Nc � 3) �⌃m8 + 4Nc �⌃⇤ m8

4(Nc � 3)
, (30)

where it can be readily checked that they are well defined for Nc ! 3 as the numerators on

the RHS are proportional to (Nc � 3). These relations are violated at large Nc as O(p3N0
c ).

For both relations in the limit Nc ! 1 one finds LHS�RHS = Nc
128⇡

⇣

g̊A
F⇡

⌘2

(MK�M⇡)(M2
K�

M2
⇡) + O(1/Nc). Thus they are not as precise as the GMO and ES relations.

Finally, if the LEC constant h3 vanishes, one extra tree-level relation related to Eqn. (26)

follows, namely,

�⌅⇤m8 � �⌃⇤m8 � (�⌅m8 � �⌃m8) = 0 (31)

which is only violated at large Nc as O(1/N2
c ), and thus expected to be very good.

To complete this section, fits to the octet and decuplet baryon masses including results

from LQCD are presented. This in particular allows for exploring the range of validity of

the calculation as the quark masses are increased. The mass formula for the fit is 4 :

mB = Ncm0 +
CHF

Nc

Ŝ2 � c1
2⇤

�̂+ � c2
⇤

�0
+ � c3

Nc⇤3
�̂2
+

� h2

N2
c ⇤

�̂+Ŝ2 � h3

Nc⇤
�0
+Ŝ2 � 2

h4

Nc⇤
�̃a
+SiGia + �m1�loop

B , (32)

where, in the isospin symmetry limit, �0
+ ! 4B0m0, �̃a

+ ! 8B0�a8m8, and �̂+ !
4B0(m8T 8 + Ncm0). The fits at Nc = 3 cannot obviously give the Nc dependence of LECs.

4 A useful formula for the term proportional to h4 is [64]:

SiGi8 = 1p
3

⇣

3
4 Î2 � 1

4 Ŝ2 � 1
48Nc(Nc + 6) + 1

8 (Nc + 3)Y � 3
16Y 2

⌘

= 1
16

p
3
(12Î2 � 4Ŝ2 + 3S(2 � S)), where

S is the strangeness. This term is responsible for the tree-level mass splitting between ⇤ and ⌃.
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�8 itself, and thus �̂, has a natural expansion and therefore the culprit in the puzzle is the large
non-analytic correction to the mass combination 1

3(2mN �m⌃�m⌅) [22]. find if there is some more
references where this claim has been made (Jose Manuel?)

this goes later after we obtain our results for �s While for �s one finds an nice agreement
between phenomenological determinations [22] and LQCD calculations at the physical point [12;
13; 14; 15], the situation for �⇡N is much more involved.

Since phenomenological extractions and LQCD determinations point to a small value of �s,
�s ⇠ 40 MeV [15], this contribution to �⇡N through (??) is negligible, and one expects to have
�⇡N ⇡ �̂.

perhaps discuss this later after we give the results We show that at O((ms� m̂)3/2), �̂ comes out
larger than the old results of Ref. [23; 24], and consistent with the recent evaluation of Ref. [22].
These findings imply a value of the pion-nucleon sigma term, �⇡N =??(??) MeV, and favors a large
value of �⇡N .

2. Baryon masses in BChPT ⇥ 1/Nc

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of an SU(6) dynamical
spin-flavor symmetry, broken by sub-leading corrections in 1/Nc and which requires the inclusion
of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants
(LECs) in the chiral Lagrangian. The details on the calculations of baryon masses concerning the
present work can be found in [29].

The chiral Lagrangian to O(⇠3), including electromagnetic corrections to the baryon masses is
given by [29]:

LB = B†
 
iD0 + g̊AuiaGia � CHF

Nc
Ŝ 2 � 1

2⇤
c2�̂+ +

c3

Nc⇤3 �̂
2
+

+
h1

N3
c

Ŝ 4 +
h2

N2
c⇤
�̂+Ŝ 2 +

h3

Nc⇤
�0
+Ŝ

2 +
h4

Nc⇤
�a
+{S i,Gia} + ↵Q̂ + �Q̂2

!
B, (1)

where terms not directly relevant to the baryon masses have been omitted. In addition to the well
known chiral building blocks, B represents the baryon spin-flavor multiplet field, Ŝ 2 is the square
of the baryon spin operator, Gia are the spin-flavor generators of SU(6), and Q̂ is the electric
charge operator. No baryon-spin dependent electromagnetic e↵ects are included. M0 = O(Nc) is
the spin-flavor singlet piece of the baryon mass and provides the large mass expansion parameter
for HBChPT. The term proportional to CHF gives the leading order mass splitting between the spin
1/2 and 3/2 baryons. g̊A is identified with 6

5gN
A at the LO. The rest of the terms describe the quark

mass e↵ects. The combination �̂+ = Nc �0
+ + �̃+, where �0

+ =
1
3Tr �+ and �̃+ is the traceless piece

of �+, assures that the nucleon mass dependency on ms is at most O(N0
c ) (OZI). ⇤ is an arbitrary
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This work analyzes the σ terms through the octet and decu-
plet baryon masses in the combined chiral and 1/Nc expansions 
BChPT × 1/Nc. The emphasis is in that the effective theory can give 
at NNLO (one chiral loop) a natural description of baryon masses, 
including LQCD results, along with the axial couplings which have 
been obtained in LQCD at different quark masses. In particular, 
the resolution of the σ term puzzle is explained by the fact that 
"σ8 ≡ σ8 − 1

3 (2mN −m# −m$) receives large non-analytic in quark 
mass corrections dominated by ms . It will also be shown that σ8 it-
self, and thus σ̂ , has a natural low energy expansion and therefore 
the origin of the puzzle resides in the large non-analytic correction 
to the mass combination 1

3 (2mN − m# − m$). In fact, a big part 
of that large correction stems from the contribution of decuplet 
baryons in the loop, as it was found in Refs. [13,23]. By analyzing 
LQCD baryon masses [24], it is found that as expected σπ N ∼ σ̂ , 
with the results σπ N = 69(8)(6) MeV, where the errors are respec-
tively the statistical and theoretical (expected NNNLO corrections) 
ones, and | σs |! 50 MeV. The connection between the devia-
tion from the GMO relation, "GM O ≡ 3m& + m# − 2(mN + m$), 
and "σ8, both calculable at NNLO and given solely in terms of 
non-analytic loop contributions, is of particular importance in the 
present work.

2. BChPT × 1/Nc analysis of masses and σ terms

The combined BChPT × 1/Nc [25–29] implements the consis-
tency of the effective theory with both the approximate chiral 
symmetry and the expansion in 1/Nc of QCD. The expansion re-
quires a link between the chiral and the 1/Nc expansions: in prac-
tice the natural link is the ξ expansion where O (p) = O (1/Nc) =
O (ξ), which is closely related to the so called small scale expan-
sion [30,31] even when that one did not strictly implement the 
constraints of the 1/Nc expansion. Consistency with 1/Nc power 
counting demands the imposition of a dynamical SU(6) spin-flavor 
symmetry, which is broken by sub-leading corrections in 1/Nc and 
requires the inclusion of the higher spin baryons (the decuplet in 
the case Nc = 3) and relates low energy constants (LECs) in the 
chiral Lagrangian. The details on the calculations of baryon masses 
concerning the present work can be found in [29].

The chiral Lagrangian to O
(
ξ3), including electromagnetic cor-

rections to the baryon masses is given by [29]:

LB = B†
(

iD0 + g̊ AuiaGia − C H F

Nc
Ŝ2 − 1

2&
c2χ̂+ + c3

Nc &3 χ̂2
+

+ h1

N3
c

Ŝ4 + h2

N2
c &

χ̂+ Ŝ2 + h3

Nc&
χ0

+ Ŝ2 + h4

Nc &
χa

+{Si, Gia}

+ α Q̂ + β Q̂ 2
)

B, (1)

where terms not directly relevant to the baryon masses have been 
omitted. The spin-flavor singlet piece of the baryon masses, M0 =
O (Nc), provides the large mass expansion parameter for HBChPT. 
In addition to the well known chiral building blocks, B repre-
sents the baryon spin-flavor multiplet field, Ŝ2 is the square of the 
baryon spin operator, Gia are the spin-flavor generators of SU(6), 
and Q̂ is the electric charge operator. No baryon-spin dependent 
electromagnetic effects are included. The term proportional to C H F

gives the leading order mass splitting between the spin 1/2 and 
3/2 baryons. g̊ A is identified with 6

5 gN
A at the LO, whose physical 

value is gN
A = 1.2723(23). The term h1 is only relevant if baryons 

with higher spin than 3/2 appear, which requires Nc ≥ 5. The rest 
of the terms describe the quark mass effects. The combination 
χ̂+ = Nc χ0

+ + χ̃+ , where χ0
+ = 1

3 Tr χ+ and χ̃+ is the traceless 

piece of χ+ , assures that the nucleon mass dependency on ms is 
at most O

(
N0

c
)

(OZI). & is an arbitrary scale, which is conveniently 
chosen to be mρ . The baryon mass formula then reads (neglecting 
isospin breaking for now) [29]:

mB = M0 + C H F

Nc
Ŝ2 − c1

&
2B0(

√
3m8Y + Ncm0) − c2

&
4B0m0

− c3

Nc&3

(
4B0(

√
3m8Y + Ncm0)

)2

− h1

N2
c &

Ŝ4 − h2

Nc&
4B0(

√
3m8Y + Ncm0) Ŝ2 − h3

Nc&
4B0m0 Ŝ2

− h4

Nc&

4B0m8√
3

(
3 Î2 − Ŝ2 − 1

12
Nc(Nc + 6)

+ 1
2
(Nc + 3)Y − 3

4
Y 2

)
+ δmloop

B , (2)

where δmloop
B can be obtained with some work using the results 

in [29], where the details on the mass renormalization and results 
for general Nc can be found.

Setting c3 = 0,2 the terms analytic in quark masses in Eqn. (2)
lead to the exact GMO and Equal Spacing mass relations, which 
are unchanged at generic Nc . On the other hand at generic Nc the 
mass relation for σ8 at tree level reads:

"σ8 = σ8 − 1
9

(
5Nc − 3

2
mN − (2Nc − 3)m# − Nc + 3

2
m$

)
.

(3)

The dominant contributions to "GM O and "σ8 are calculable non-
analytic contributions. "GM O is O

(
ξ4) and in large Nc limit it is 

O (1/Nc). On the other hand, σ8 is O (ξ) and it has a prefactor Nc , 
and "σ8 is O

(
ξ2) also with a prefactor Nc . c3 gives a contribu-

tion to the "GMO which is O
(
ξ5), and to "σ8 at O

(
ξ4), both 

being beyond the accuracy of the present work. "GMO
3 and "σ8

are thus determined by the meson masses and by the LECs g̊ A/Fπ , 
and C H F . "GMO depends rather smoothly on C H F , and drives to a 
large extent the determination of g̊ A/Fπ . One finds the interest-
ing fact that the ratio "σ8/"GMO, which is independent of g̊ A/Fπ , 
is also almost entirely independent of the value of C H F in a very 
wide range around its actual value. For Nc = 3, σ8/"GMO ∼ −13.5, 
which translates into "σ̂ /"GMO ∼ 1.68.

The analysis of the physical octet and decuplet baryon masses 
suffice to make the main point of this work. In this case, the 
LECs c2, c3 and h1 are set to vanish, because at the order of 
the calculation they are redundant. A fit is carried out including 
strong and electromagnetic isospin breaking. This requires using 
the meson masses with isospin breaking, which include η–π0 mix-
ing (required to have a consistent renormalization of the baryon 
masses) and the electromagnetic mass shifts where Dashen’s theo-
rem is used, which should be sufficient for the current application. 
The electromagnetic addition to "GMO is equal to − 4

3 β , while the 
strong isospin breaking has negligible effect, and the electromag-
netic contribution to the p–n mass difference is equal to α + β . 
The result of the fit to physical masses is shown in Table 1, Fit 1.

The information given by LQCD, where the baryon masses 
have been obtained with MK approximately constant and varying 
mu = md in a range where 213 MeV < Mπ < 430 MeV [24], is very 

2 The 27-plet SU(3) breaking produced by this term is O (
ξ5)

, and thus for the 
current purposes it can be neglected.

3 "GMO corresponds to having removed the EM corrections, otherwise it is de-

noted by "phys
GMO.

�8 itself, and thus �̂, has a natural expansion and therefore the culprit in the puzzle is the large
non-analytic correction to the mass combination 1

3(2mN �m⌃�m⌅) [22]. find if there is some more
references where this claim has been made (Jose Manuel?)

this goes later after we obtain our results for �s While for �s one finds an nice agreement
between phenomenological determinations [22] and LQCD calculations at the physical point [12;
13; 14; 15], the situation for �⇡N is much more involved.

Since phenomenological extractions and LQCD determinations point to a small value of �s,
�s ⇠ 40 MeV [15], this contribution to �⇡N through (??) is negligible, and one expects to have
�⇡N ⇡ �̂.

perhaps discuss this later after we give the results We show that at O((ms� m̂)3/2), �̂ comes out
larger than the old results of Ref. [23; 24], and consistent with the recent evaluation of Ref. [22].
These findings imply a value of the pion-nucleon sigma term, �⇡N =??(??) MeV, and favors a large
value of �⇡N .

2. Baryon masses in BChPT ⇥ 1/Nc

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of an SU(6) dynamical
spin-flavor symmetry, broken by sub-leading corrections in 1/Nc and which requires the inclusion
of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants
(LECs) in the chiral Lagrangian. The details on the calculations of baryon masses concerning the
present work can be found in [29].

The chiral Lagrangian to O(⇠3), including electromagnetic corrections to the baryon masses is
given by [29]:

LB = B†
 
iD0 + g̊AuiaGia � CHF

Nc
Ŝ 2 � 1

2⇤
c2�̂+ +

c3

Nc⇤3 �̂
2
+

+
h1

N3
c

Ŝ 4 +
h2

N2
c⇤
�̂+Ŝ 2 +

h3

Nc⇤
�0
+Ŝ

2 +
h4

Nc⇤
�a
+{S i,Gia} + ↵Q̂ + �Q̂2

!
B, (1)

where terms not directly relevant to the baryon masses have been omitted. In addition to the well
known chiral building blocks, B represents the baryon spin-flavor multiplet field, Ŝ 2 is the square
of the baryon spin operator, Gia are the spin-flavor generators of SU(6), and Q̂ is the electric
charge operator. No baryon-spin dependent electromagnetic e↵ects are included. M0 = O(Nc) is
the spin-flavor singlet piece of the baryon mass and provides the large mass expansion parameter
for HBChPT. The term proportional to CHF gives the leading order mass splitting between the spin
1/2 and 3/2 baryons. g̊A is identified with 6

5gN
A at the LO. The rest of the terms describe the quark

mass e↵ects. The combination �̂+ = Nc �0
+ + �̃+, where �0

+ =
1
3Tr �+ and �̃+ is the traceless piece

of �+, assures that the nucleon mass dependency on ms is at most O(N0
c ) (OZI). ⇤ is an arbitrary
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σNms
¼ ms

8m̂
ð−4ðNc − 1ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΛms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc − 5ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΣms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ ð3Nc − 11ÞσΣm̂Þ

σΔms
¼ ms

8m̂
ð−4ðNc − 1ÞσΔm̂ − 5ðNc − 3ÞðσΛm̂ − σΣm̂Þ þ 4NcσΣ%m̂Þ

σΣ%ms
¼ ms

8m̂
ð−ðNc − 3Þð4σΔm̂ þ 5σΛm̂ − 5σΣm̂Þ þ 4ðNc − 2ÞσΣ%m̂Þ: ð28Þ

Several of these relations are poorly satisfied. The
deviations are calculable and given by the nonanalytic
contributions to one-loop. In the physical case Nc ¼ 3,
those deviations are numerically large for the first, third,
and fourth relations above. This in particular affects the
nucleon strangeness σ term, and thus indicates that its
estimation from arguments based on tree level relations is
subject to important corrections [63]. In terms of the octet
components of the quark masses, in addition to GMO
and ES relations one finds:

σNm8 ¼ ðNc þ 3ÞσΛm8 þ 3ðNc − 1ÞσΣm8

4ðNc − 3Þ
ð29Þ

σΔm8 ¼ −5ðNc − 3ÞσΛm8 þ 5ðNc − 3ÞσΣm8 þ 4NcσΣ%m8

4ðNc − 3Þ
;

ð30Þ

where it can be readily checked that they are well
defined for Nc → 3 as the numerators on the RHS are
proportional to ðNc − 3Þ. These relations are violated at
large Nc as Oðp3N0

cÞ. For both relations in the limit

Nc → ∞, one finds LHS − RHS ¼ Nc
128π ð

g∘A
Fπ
Þ2ðMK −MπÞ×

ðM2
K −M2

πÞ þOð1=NcÞ. Thus they are not as precise as
the GMO and ES relations.
Finally, if the LEC constant h3 vanishes, one extra tree-

level relation related to Eq. (26) follows, namely,

σΞ%m8 − σΣ%m8 − ðσΞm8 − σΣm8Þ ¼ 0 ð31Þ

which is only violated at large Nc as Oð1=N2
cÞ, and thus

expected to be very good.

To complete this section, fits to the octet and decuplet
baryon masses including results from LQCD are presented.
This in particular allows for exploring the range of validity
of the calculation as the quark masses are increased. The
mass formula for the fit is4:

mB ¼ Ncm0 þ
CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ −
c2
Λ
χ0þ −

c3
NcΛ3

χ̂2þ

− h2
N2

cΛ
χ̂þŜ

2 − h3
NcΛ

χ0þŜ
2 − 2

h4
NcΛ

χ̃aþSiGia

þ δm1−loop
B ; ð32Þ

where, in the isospin symmetry limit, χ0þ → 4B0m0;
χ̃aþ → 8B0δa8m8, and χ̂þ → 4B0ðm8T8 þ Ncm0Þ. The fits
at Nc ¼ 3 cannot obviously give the Nc dependence of
LECs. LECs of terms that depend on quark masses can be
more completely determined by fits that include the LQCD
results for different quark masses, e.g., c2 and the various
h0s. For this reason, such combined fits are presented here,
in Table II and in Fig. 4. Also, some LECs are redundant at
Nc ¼ 3, and are thus set to vanish for the fit. The constant
c3 is also set to vanish as it turns out to be of marginal
importance for the fit. A test of mass relations is shown in
Table III.
The study of the fits show that at fixed MK ∼ 500 MeV,

the physical plus LQCD results up to Mπ ∼ 300 MeV can

TABLE II. Results for LECs: the ratio g
∘
A=Fπ ¼ 0.0122 MeV−1 is fixed by using ΔGMO. The first row is the fit to

LQCD octet and decuplet baryon masses [48] including results for Mπ ≤ 303 MeV (dof ¼ 50), and second row is
the fit including also the physical masses (dof ¼ 58). Throughout the μ ¼ Λ ¼ mρ.

χ2dof m0 [MeV] CHF [MeV] c1 c2 h2 h3 h4

0.47 221(26) 215(46) −1.49ð1Þ −0.83ð5Þ 0.03(3) 0.61(8) 0.59(1)
0.64 191(5) 242(20) −1.47ð1Þ −0.99ð3Þ 0.01(1) 0.73(3) 0.56(1)

4A useful formula for the term proportional to h4 is [64]:
SiGi8 ¼ 1ffiffi

3
p ð34 Î

2 − 1
4 Ŝ

2 − 1
48NcðNc þ 6Þ þ 1

8 ðNc þ 3ÞY − 3
16Y

2Þ ¼
1

16
ffiffi
3

p ð12Î2 − 4Ŝ2 þ 3Sð2− SÞÞ, where S is the strangeness.
This term is responsible for the tree-level mass splitting between
Λ and Σ.
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¼ ms

8m̂
ð−4ðNc − 1ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΛms
¼ ms

8m̂
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¼ ms
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ð−ðNc − 3Þð4σΔm̂ þ 5σΛm̂ − 5σΣm̂Þ þ 4ðNc − 2ÞσΣ%m̂Þ: ð28Þ

Several of these relations are poorly satisfied. The
deviations are calculable and given by the nonanalytic
contributions to one-loop. In the physical case Nc ¼ 3,
those deviations are numerically large for the first, third,
and fourth relations above. This in particular affects the
nucleon strangeness σ term, and thus indicates that its
estimation from arguments based on tree level relations is
subject to important corrections [63]. In terms of the octet
components of the quark masses, in addition to GMO
and ES relations one finds:

σNm8 ¼ ðNc þ 3ÞσΛm8 þ 3ðNc − 1ÞσΣm8

4ðNc − 3Þ
ð29Þ

σΔm8 ¼ −5ðNc − 3ÞσΛm8 þ 5ðNc − 3ÞσΣm8 þ 4NcσΣ%m8

4ðNc − 3Þ
;

ð30Þ

where it can be readily checked that they are well
defined for Nc → 3 as the numerators on the RHS are
proportional to ðNc − 3Þ. These relations are violated at
large Nc as Oðp3N0

cÞ. For both relations in the limit

Nc → ∞, one finds LHS − RHS ¼ Nc
128π ð

g∘A
Fπ
Þ2ðMK −MπÞ×

ðM2
K −M2

πÞ þOð1=NcÞ. Thus they are not as precise as
the GMO and ES relations.
Finally, if the LEC constant h3 vanishes, one extra tree-

level relation related to Eq. (26) follows, namely,

σΞ%m8 − σΣ%m8 − ðσΞm8 − σΣm8Þ ¼ 0 ð31Þ

which is only violated at large Nc as Oð1=N2
cÞ, and thus

expected to be very good.

To complete this section, fits to the octet and decuplet
baryon masses including results from LQCD are presented.
This in particular allows for exploring the range of validity
of the calculation as the quark masses are increased. The
mass formula for the fit is4:

mB ¼ Ncm0 þ
CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ −
c2
Λ
χ0þ −

c3
NcΛ3

χ̂2þ

− h2
N2

cΛ
χ̂þŜ

2 − h3
NcΛ

χ0þŜ
2 − 2

h4
NcΛ

χ̃aþSiGia

þ δm1−loop
B ; ð32Þ

where, in the isospin symmetry limit, χ0þ → 4B0m0;
χ̃aþ → 8B0δa8m8, and χ̂þ → 4B0ðm8T8 þ Ncm0Þ. The fits
at Nc ¼ 3 cannot obviously give the Nc dependence of
LECs. LECs of terms that depend on quark masses can be
more completely determined by fits that include the LQCD
results for different quark masses, e.g., c2 and the various
h0s. For this reason, such combined fits are presented here,
in Table II and in Fig. 4. Also, some LECs are redundant at
Nc ¼ 3, and are thus set to vanish for the fit. The constant
c3 is also set to vanish as it turns out to be of marginal
importance for the fit. A test of mass relations is shown in
Table III.
The study of the fits show that at fixed MK ∼ 500 MeV,

the physical plus LQCD results up to Mπ ∼ 300 MeV can

TABLE II. Results for LECs: the ratio g
∘
A=Fπ ¼ 0.0122 MeV−1 is fixed by using ΔGMO. The first row is the fit to

LQCD octet and decuplet baryon masses [48] including results for Mπ ≤ 303 MeV (dof ¼ 50), and second row is
the fit including also the physical masses (dof ¼ 58). Throughout the μ ¼ Λ ¼ mρ.

χ2dof m0 [MeV] CHF [MeV] c1 c2 h2 h3 h4

0.47 221(26) 215(46) −1.49ð1Þ −0.83ð5Þ 0.03(3) 0.61(8) 0.59(1)
0.64 191(5) 242(20) −1.47ð1Þ −0.99ð3Þ 0.01(1) 0.73(3) 0.56(1)

4A useful formula for the term proportional to h4 is [64]:
SiGi8 ¼ 1ffiffi

3
p ð34 Î

2 − 1
4 Ŝ

2 − 1
48NcðNc þ 6Þ þ 1

8 ðNc þ 3ÞY − 3
16Y

2Þ ¼
1

16
ffiffi
3

p ð12Î2 − 4Ŝ2 þ 3Sð2− SÞÞ, where S is the strangeness.
This term is responsible for the tree-level mass splitting between
Λ and Σ.
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ð30Þ
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Nc → ∞, one finds LHS − RHS ¼ Nc
128π ð

g∘A
Fπ
Þ2ðMK −MπÞ×

ðM2
K −M2

πÞ þOð1=NcÞ. Thus they are not as precise as
the GMO and ES relations.
Finally, if the LEC constant h3 vanishes, one extra tree-

level relation related to Eq. (26) follows, namely,

σΞ%m8 − σΣ%m8 − ðσΞm8 − σΣm8Þ ¼ 0 ð31Þ

which is only violated at large Nc as Oð1=N2
cÞ, and thus

expected to be very good.

To complete this section, fits to the octet and decuplet
baryon masses including results from LQCD are presented.
This in particular allows for exploring the range of validity
of the calculation as the quark masses are increased. The
mass formula for the fit is4:
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where, in the isospin symmetry limit, χ0þ → 4B0m0;
χ̃aþ → 8B0δa8m8, and χ̂þ → 4B0ðm8T8 þ Ncm0Þ. The fits
at Nc ¼ 3 cannot obviously give the Nc dependence of
LECs. LECs of terms that depend on quark masses can be
more completely determined by fits that include the LQCD
results for different quark masses, e.g., c2 and the various
h0s. For this reason, such combined fits are presented here,
in Table II and in Fig. 4. Also, some LECs are redundant at
Nc ¼ 3, and are thus set to vanish for the fit. The constant
c3 is also set to vanish as it turns out to be of marginal
importance for the fit. A test of mass relations is shown in
Table III.
The study of the fits show that at fixed MK ∼ 500 MeV,

the physical plus LQCD results up to Mπ ∼ 300 MeV can

TABLE II. Results for LECs: the ratio g
∘
A=Fπ ¼ 0.0122 MeV−1 is fixed by using ΔGMO. The first row is the fit to

LQCD octet and decuplet baryon masses [48] including results for Mπ ≤ 303 MeV (dof ¼ 50), and second row is
the fit including also the physical masses (dof ¼ 58). Throughout the μ ¼ Λ ¼ mρ.

χ2dof m0 [MeV] CHF [MeV] c1 c2 h2 h3 h4

0.47 221(26) 215(46) −1.49ð1Þ −0.83ð5Þ 0.03(3) 0.61(8) 0.59(1)
0.64 191(5) 242(20) −1.47ð1Þ −0.99ð3Þ 0.01(1) 0.73(3) 0.56(1)

4A useful formula for the term proportional to h4 is [64]:
SiGi8 ¼ 1ffiffi

3
p ð34 Î
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This term is responsible for the tree-level mass splitting between
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ΔGMO ¼ −
!

g
∘
A

4πFπ

"2!
2π
3

!
M3

K −
1

4
M3

π −
2ffiffiffi
3

p
!
M2

K −
1

4
M2

π

"3
2

"

þ CHF

2Nc

!
4M2

K log
!
4M2

K −M2
π

3M2
K

"
−M2

π log
!
4M2

K − 1
3M

2
π

3M2
π

"""

þOð1=N3
cÞ: ð25Þ

For the physicalMK andMπ , the shown expansion is within
30% of the exact result, and the expansion gives a good
approximation for Nc > 5. Note the large cancellations that
appear within the first line and within the second line of the
equation, and also the tendency to cancel between the first
and second lines. In the physical case and not expanding in
1=Nc, it is found that the numerical dependency of ΔGMO
on CHF is not very significant. One also observes that only
43% of ΔGMO is contributed by the octet baryons in the
loop, and thus the decuplet contribution is very important.
ΔGMO is therefore an important observable for assessing
whether the decuplet baryons ought to be included or not in
the effective theory; as indicated earlier, this however
depends on the value the LO g

∘
A, which to be independently

determined requires the analysis of other observables,
namely the axial currents. Along the same lines ΔES can
be analyzed, although in this case the experimental un-
certainty is rather large.

Disregarding the term proportional to h2 in L
ð3Þ
B Eq. (13),

which gives SUð3Þ breaking in the hyperfine splittings, one
additional relation follows, first found by Gürsey and
Radicati [62], namely:

ΔGR ¼ mΞ% −mΣ% − ðmΞ −mΣÞ ¼ 0;

Exp∶ 21& 7 MeV; ð26Þ

which relates SUð3Þ breaking in the octet and decuplet, and
which is valid for arbitrary Nc. The deviation from that
relation (26) is due to SUð3Þ breaking effects in the
hyperfine interaction that splits 8 and 10 baryons, and
such deviation starts with the term proportional to h2 which
is Oðp2=NcÞ. In addition, the one-loop contributions to it
are free of UV divergencies and the nonanalytic terms when
expanded in the large Nc limit give contributionsOð1=N2

cÞ.
To one-loop:

ΔGR ¼ h2
Λ

12

Nc
M2

K þ
!

g
∘
A

4πFπ

"2!
2π
9
M3

K þ ð9Nc − 43Þπ
72

!
M2

K −
!
3CHF

Nc

"
2
"3

2

−
Nc − 3

24

2

643
!
M2

K −
!
5CHF

Nc

"
2
"3

2

0

B@π − 2 arctan
5CHF

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

K − ð5CHF
Nc

Þ2
q

1

CA

þ 10

0

B@M2
K −

!
3CHF

Nc

"
2
"3

2

arctan
3CHF

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

K − ð3CHF
Nc

Þ2
q þ 240

N3
c
C3
HF logM

2
K

3

75

1

CA − ðMK → MπÞ

¼ h2
Λ

12

Nc
ðM2

K −M2
πÞ þ

3π
Nc

!
g
∘
ACHF

4πFπ

"2

ðMK −MπÞ þO
!
logðMK=MπÞ

N3
c

"
; ð27Þ

where the last line corresponds to strictly expanding in the
large Nc limit. For the physicalMπ,MK , andCHF, the 1=Nc
expansion of ΔGR is, however, only reasonable for Nc > 8:
clearly the nonanalytic dependency in 1=Nc is important,
showing the need for the combined ξ expansion in the
physical case, similarly to what occurs for ΔGMO. Still, the
understanding of the smallness of the deviation is con-
nected with the 1=Nc expansion. Finally, it is important to
emphasize, as indicated earlier, that all the relations are not
explicitly dependent on Nc, and their deviations are sup-
pressed by powers of 1=Nc at large Nc.

The σ-terms are obtained following the Hellman-
Feynman theorem, σBmq

≡mq∂mB=∂mq, where mq can
be taken to be m̂;ms, or the SUð3Þ singlet and octet com-
ponents of the quark masses, namely m0 ¼ ð2m̂þmsÞ=3
and m8 ¼ 2=

ffiffiffi
3

p
ðm̂ −msÞ. Naturally they will satisfy the

same relations discussed above for the masses. In par-
ticular, σ terms associated with the same mq are related
via those relations and their deviations are calculable as
described before for the masses. In addition to the GMO and
ES relations, the following tree level Oðξ3Þ relations hold,
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For the physicalMK andMπ , the shown expansion is within
30% of the exact result, and the expansion gives a good
approximation for Nc > 5. Note the large cancellations that
appear within the first line and within the second line of the
equation, and also the tendency to cancel between the first
and second lines. In the physical case and not expanding in
1=Nc, it is found that the numerical dependency of ΔGMO
on CHF is not very significant. One also observes that only
43% of ΔGMO is contributed by the octet baryons in the
loop, and thus the decuplet contribution is very important.
ΔGMO is therefore an important observable for assessing
whether the decuplet baryons ought to be included or not in
the effective theory; as indicated earlier, this however
depends on the value the LO g

∘
A, which to be independently

determined requires the analysis of other observables,
namely the axial currents. Along the same lines ΔES can
be analyzed, although in this case the experimental un-
certainty is rather large.

Disregarding the term proportional to h2 in L
ð3Þ
B Eq. (13),

which gives SUð3Þ breaking in the hyperfine splittings, one
additional relation follows, first found by Gürsey and
Radicati [62], namely:

ΔGR ¼ mΞ% −mΣ% − ðmΞ −mΣÞ ¼ 0;

Exp∶ 21& 7 MeV; ð26Þ

which relates SUð3Þ breaking in the octet and decuplet, and
which is valid for arbitrary Nc. The deviation from that
relation (26) is due to SUð3Þ breaking effects in the
hyperfine interaction that splits 8 and 10 baryons, and
such deviation starts with the term proportional to h2 which
is Oðp2=NcÞ. In addition, the one-loop contributions to it
are free of UV divergencies and the nonanalytic terms when
expanded in the large Nc limit give contributionsOð1=N2

cÞ.
To one-loop:
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where the last line corresponds to strictly expanding in the
large Nc limit. For the physicalMπ,MK , andCHF, the 1=Nc
expansion of ΔGR is, however, only reasonable for Nc > 8:
clearly the nonanalytic dependency in 1=Nc is important,
showing the need for the combined ξ expansion in the
physical case, similarly to what occurs for ΔGMO. Still, the
understanding of the smallness of the deviation is con-
nected with the 1=Nc expansion. Finally, it is important to
emphasize, as indicated earlier, that all the relations are not
explicitly dependent on Nc, and their deviations are sup-
pressed by powers of 1=Nc at large Nc.

The σ-terms are obtained following the Hellman-
Feynman theorem, σBmq

≡mq∂mB=∂mq, where mq can
be taken to be m̂;ms, or the SUð3Þ singlet and octet com-
ponents of the quark masses, namely m0 ¼ ð2m̂þmsÞ=3
and m8 ¼ 2=

ffiffiffi
3

p
ðm̂ −msÞ. Naturally they will satisfy the

same relations discussed above for the masses. In par-
ticular, σ terms associated with the same mq are related
via those relations and their deviations are calculable as
described before for the masses. In addition to the GMO and
ES relations, the following tree level Oðξ3Þ relations hold,
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43% of ΔGMO is contributed by the octet baryons in the
loop, and thus the decuplet contribution is very important.
ΔGMO is therefore an important observable for assessing
whether the decuplet baryons ought to be included or not in
the effective theory; as indicated earlier, this however
depends on the value the LO g
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A, which to be independently

determined requires the analysis of other observables,
namely the axial currents. Along the same lines ΔES can
be analyzed, although in this case the experimental un-
certainty is rather large.

Disregarding the term proportional to h2 in L
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B Eq. (13),

which gives SUð3Þ breaking in the hyperfine splittings, one
additional relation follows, first found by Gürsey and
Radicati [62], namely:

ΔGR ¼ mΞ% −mΣ% − ðmΞ −mΣÞ ¼ 0;
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which relates SUð3Þ breaking in the octet and decuplet, and
which is valid for arbitrary Nc. The deviation from that
relation (26) is due to SUð3Þ breaking effects in the
hyperfine interaction that splits 8 and 10 baryons, and
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where the last line corresponds to strictly expanding in the
large Nc limit. For the physicalMπ,MK , andCHF, the 1=Nc
expansion of ΔGR is, however, only reasonable for Nc > 8:
clearly the nonanalytic dependency in 1=Nc is important,
showing the need for the combined ξ expansion in the
physical case, similarly to what occurs for ΔGMO. Still, the
understanding of the smallness of the deviation is con-
nected with the 1=Nc expansion. Finally, it is important to
emphasize, as indicated earlier, that all the relations are not
explicitly dependent on Nc, and their deviations are sup-
pressed by powers of 1=Nc at large Nc.

The σ-terms are obtained following the Hellman-
Feynman theorem, σBmq

≡mq∂mB=∂mq, where mq can
be taken to be m̂;ms, or the SUð3Þ singlet and octet com-
ponents of the quark masses, namely m0 ¼ ð2m̂þmsÞ=3
and m8 ¼ 2=

ffiffiffi
3

p
ðm̂ −msÞ. Naturally they will satisfy the

same relations discussed above for the masses. In par-
ticular, σ terms associated with the same mq are related
via those relations and their deviations are calculable as
described before for the masses. In addition to the GMO and
ES relations, the following tree level Oðξ3Þ relations hold,
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Violation of the GMO relation

The breaking / violation to the GMO relation is only coming through the 
loop corrections and it behaves like 1/Nc with Nc

GMO relation violation vs Nc
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σNms
¼ ms

8m̂
ð−4ðNc − 1ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΛms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc − 5ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΣms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ ð3Nc − 11ÞσΣm̂Þ

σΔms
¼ ms

8m̂
ð−4ðNc − 1ÞσΔm̂ − 5ðNc − 3ÞðσΛm̂ − σΣm̂Þ þ 4NcσΣ%m̂Þ

σΣ%ms
¼ ms

8m̂
ð−ðNc − 3Þð4σΔm̂ þ 5σΛm̂ − 5σΣm̂Þ þ 4ðNc − 2ÞσΣ%m̂Þ: ð28Þ

Several of these relations are poorly satisfied. The
deviations are calculable and given by the nonanalytic
contributions to one-loop. In the physical case Nc ¼ 3,
those deviations are numerically large for the first, third,
and fourth relations above. This in particular affects the
nucleon strangeness σ term, and thus indicates that its
estimation from arguments based on tree level relations is
subject to important corrections [63]. In terms of the octet
components of the quark masses, in addition to GMO
and ES relations one finds:

σNm8 ¼ ðNc þ 3ÞσΛm8 þ 3ðNc − 1ÞσΣm8

4ðNc − 3Þ
ð29Þ

σΔm8 ¼ −5ðNc − 3ÞσΛm8 þ 5ðNc − 3ÞσΣm8 þ 4NcσΣ%m8

4ðNc − 3Þ
;

ð30Þ

where it can be readily checked that they are well
defined for Nc → 3 as the numerators on the RHS are
proportional to ðNc − 3Þ. These relations are violated at
large Nc as Oðp3N0

cÞ. For both relations in the limit

Nc → ∞, one finds LHS − RHS ¼ Nc
128π ð

g∘A
Fπ
Þ2ðMK −MπÞ×

ðM2
K −M2

πÞ þOð1=NcÞ. Thus they are not as precise as
the GMO and ES relations.
Finally, if the LEC constant h3 vanishes, one extra tree-

level relation related to Eq. (26) follows, namely,

σΞ%m8 − σΣ%m8 − ðσΞm8 − σΣm8Þ ¼ 0 ð31Þ

which is only violated at large Nc as Oð1=N2
cÞ, and thus

expected to be very good.

To complete this section, fits to the octet and decuplet
baryon masses including results from LQCD are presented.
This in particular allows for exploring the range of validity
of the calculation as the quark masses are increased. The
mass formula for the fit is4:

mB ¼ Ncm0 þ
CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ −
c2
Λ
χ0þ −

c3
NcΛ3

χ̂2þ

− h2
N2

cΛ
χ̂þŜ

2 − h3
NcΛ

χ0þŜ
2 − 2

h4
NcΛ

χ̃aþSiGia

þ δm1−loop
B ; ð32Þ

where, in the isospin symmetry limit, χ0þ → 4B0m0;
χ̃aþ → 8B0δa8m8, and χ̂þ → 4B0ðm8T8 þ Ncm0Þ. The fits
at Nc ¼ 3 cannot obviously give the Nc dependence of
LECs. LECs of terms that depend on quark masses can be
more completely determined by fits that include the LQCD
results for different quark masses, e.g., c2 and the various
h0s. For this reason, such combined fits are presented here,
in Table II and in Fig. 4. Also, some LECs are redundant at
Nc ¼ 3, and are thus set to vanish for the fit. The constant
c3 is also set to vanish as it turns out to be of marginal
importance for the fit. A test of mass relations is shown in
Table III.
The study of the fits show that at fixed MK ∼ 500 MeV,

the physical plus LQCD results up to Mπ ∼ 300 MeV can

TABLE II. Results for LECs: the ratio g
∘
A=Fπ ¼ 0.0122 MeV−1 is fixed by using ΔGMO. The first row is the fit to

LQCD octet and decuplet baryon masses [48] including results for Mπ ≤ 303 MeV (dof ¼ 50), and second row is
the fit including also the physical masses (dof ¼ 58). Throughout the μ ¼ Λ ¼ mρ.

χ2dof m0 [MeV] CHF [MeV] c1 c2 h2 h3 h4

0.47 221(26) 215(46) −1.49ð1Þ −0.83ð5Þ 0.03(3) 0.61(8) 0.59(1)
0.64 191(5) 242(20) −1.47ð1Þ −0.99ð3Þ 0.01(1) 0.73(3) 0.56(1)

4A useful formula for the term proportional to h4 is [64]:
SiGi8 ¼ 1ffiffi

3
p ð34 Î

2 − 1
4 Ŝ

2 − 1
48NcðNc þ 6Þ þ 1

8 ðNc þ 3ÞY − 3
16Y

2Þ ¼
1

16
ffiffi
3

p ð12Î2 − 4Ŝ2 þ 3Sð2− SÞÞ, where S is the strangeness.
This term is responsible for the tree-level mass splitting between
Λ and Σ.
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be fitted with natural size LECs. The LEC h2 which enters
in ΔGR is best determined by fixing it using ΔGR in the
physical case, and then the rest of the LECs are determined
by the overall fit. In this way, the deviations of the
mass relations are one of the predictions of the effective
theory, and can therefore be used as a test of LQCD
calculations. At present the errors in the LQCD calculations
are relatively large, and thus such a test is not yet very
significant.

IV. VECTOR CURRENTS: CHARGES

In this section, the one-loop corrections to the vector
current charges are calculated. The analysis is similar to
that carried out in [65], except that in that reference
higher-order terms in 1=Nc in the GB-baryon vertices
were included. In the ξ expansion and the order consid-
ered here, such higher-order terms are not required. At
lowest order the charges are simply given by the
generators Ta, the one-loop corrections are UV finite,

TABLE III. Deviations from mass relations in MeV. Here ΔES1 ¼ mΞ" − 2mΣ" þmΔ and ΔES2 ¼
mΩ− − 2mΞ" þmΣ" .

Mπ MK ΔGMO ΔGR ΔES1 ΔES2

[MeV] Exp/LQCD Th Exp/LQCD Th Exp/LQCD Th Exp/LQCD Th

139 497 31$ 42 46 23$ 30 38 −6$ 30 −14 −9$ 30 −14
213 489 75$ 70 33 0$ 72 29 −40$ 97 −11 9.2$ 83 −11
246 499 124$ 77 30 −7$ 75 25 −46$ 101 −11 23$ 86 −11
255 528 133$ 89 37 −12$ 94 26 −32$ 125 −14 29$ 108 −14
261 524 139$ 99 35 24$ 103 25 −29$ 138 −13 −3$ 119 −13
302 541 77$ 87 32 −14$ 94 23 −30$ 125 −13 46$ 108 −13

FIG. 4. Baryon masses vs Mπ obtained from the combined fit (second row of Table II). The bands correspond to the 67% and
95% confidence intervals. The red points with error bars are from the LQCD calculations [48], and the squares are the theoretical values
for the values of Mπ and MK of the corresponding data point.
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Baryon masses and � terms in SU(3) BChPT ⇥ 1/Nc
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Abstract

Baryon masses and nucleon � terms are studied with the e↵ective theory that combines the chiral
and 1/Nc expansions for three flavors. In particular the connection between the deviation of the
Gell-Mann-Okubo relation and the � term associated with the scalar density ūu + d̄d � 2s̄s is
emphasized. The latter is at lowest order related to a mass combination whose low value has
given rise to a � term puzzle. It is shown that while the nucleon � terms have a well behaved
low energy expansion, that mass combination is a↵ected by large higher order corrections non-
analytic in quark masses. Adding to the analysis lattice QCD baryon masses, it is found that
�⇡N = 69(10) MeV and �s has natural magnitude within its relative large uncertainty.

Keywords: Sigma terms, nucleon mass, baryon masses, Gell-Mann-Okubo mass formula

1. Introduction

Baryon mass dependencies on quark masses, quantified by the di↵erent �-terms, are among
the fundamental observables in baryon chiral dynamics. In particular, they give information on the
baryon matrix elements of scalar quark densities, for which there is no alternative way for their
determination. The definition of � terms is through the Feynman-Hellmann theorem1, which,
for three flavors, through the physical baryon masses gives access to only two such terms, namely
those associated with the SU(3) octet quark mass combinations m3 = mu�md and m8 =

1p
3
(m̂�ms),

where m̂ is the average of the u and d quark masses. The � terms associated with the singlet
component m0 =

1
3 (2m̂ + ms) require knowledge of baryon masses for unphysical quark masses,

which is made possible through lattice QCD (LQCD) calculations. On the other hand, the pion-
nucleon � term �⇡N ⌘ m̂

2mN
hN | ūu + d̄d | Ni is accessible through its connection to pion-nucleon

scattering via a low energy theorem [1; 2; 3]. Such a determination of �⇡N had a long evolution
through the availability of increasingly accurate data and the development of combined methods
of dispersion theory and chiral perturbation theory [4; 5; 6; 7; 8; 9; 10; 11]. The values obtained
for �⇡N range from ⇠ 45 MeV [4; 5; 6] to & 58 MeV [7; 8; 9; 10; 11; 12], where the di↵erence
between the results of the di↵erent dispersive analyses resides mostly in the di↵erent values of
the S-wave ⇡N scattering lengths a1/2,3/2 used in the subtractions, cf. [12]. In addition to the

1The following notation will be used: �i(B) = mi
@
@mi

mB, where mi indicates a quark mass (i = u, d, s) or combina-
tion thereof (0, 3, 8), and B is a given baryon. When B is not explicitly indicated it is assumed to be a nucleon.
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results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
isospin symmetry limit and the nucleon’s �̂ ⌘ p3 m̂

m8
�8, namely �⇡N = �̂ + 2 m̂

ms
�s, which for

a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants

2

S U(3) breaking corrections to the Gell-Mann-Okubo mass formula
and the ūu + d̄d � 2s̄s contribution to the nucleon mass

aTheory Center, Je↵erson Lab, Newport News, VA 23606, USA

Abstract

We studied the Gell-Mann-Okubo mass formula (�GMO) and �̂ = m̂hN |ūu+ d̄d�2s̄s|Ni/2mN in large Nc chiral e↵ective field theory
up to order (ms � m̂)3/2. We generalize the known O(ms � m̂) results to arbitrary number of colors and calculate the (ms � m̂)3/2

correction for both. The magnitude of the latter provides definitive answers to the current discrepancy between phenomenological
and lattice determinations of the pion-nucleon sigma term. We observe that the convergence pattern of both, �GMO and �̂, are
extremely similar. For both, the (ms � m̂)3/2 corrections have the expected size. We show that in the case of the Gell-Mann-
Okubo mass formula, it is a contribution needed to agree with the experimental value. We also observe that the contribution of
the decuplet of resonances is essential for an accurate determination of the higher order corrections in both cases. We finally
find �GMO = 38(??) MeV and �̂ = 57(??) MeV up to order (ms � m̂)3/2. The latter, together with the value of �s, can be used
to determine the pion-nucleon sigma term. Using the lattice determinations of �s at the physical point, we obtain a value of
�⇡N = 60(??) MeV. This result gives a strong support to the phenomenological determinations of �⇡N versus the LQCD ones, and
constitutes an important progress in the resolution of the sigma term puzzle.

Keywords: Sigma terms, nucleon mass, baryon masses, Gell-Mann-Okubo mass formula

1. Introduction

Matrix elements of scalar operators between nucleon states
are important hadronic input in current searches of physics be-
yond the standard model. A prominent example are the pion-
nucleon sigma term (�⇡N), and sigma strange (�s),

�⇡N =
m̂

2mN
hN |ūu + d̄d|Ni (1)

�s =
ms

2mN
hN |s̄s|Ni, (2)

where m̂ = (mu +md)/2 . These quantities are essential input
in studies of direct dark matter detection [1, 2, 3], CP-violation
[4] and lepton flavor violation [5]. While for �s one finds an
nice agreement between phenomenological determinations [6]
and LQCD calculations at the physical point [7, 8, 9, 10], the
situation for �⇡N is much more involved. On the one hand,
LQCD points to a small value, �⇡N ⇡ 40 MeV [7, 8, 9, 10],
while phenomenological extractions based on modern ⇡N-
scattering data and pionic atoms spectroscopy agree on a value
around 60 MeV [11, 12].

Matrix elements of octet operators can provide definitive in-
formation for the resolution of this puzzle. Defining,

�̂ =
m̂

2mN
hN |ūu + d̄d � 2s̄s|Ni, (3)

one finds a simple relation between �⇡N , �̂ and �s,

�⇡N = �̂ +
2m̂
ms
�s. (4)

Since �s ⇠ 40 MeV, the contribution of �s in (4) is negligi-
ble, and therefore �⇡N ⇡ �̂. The value of �̂ can be estimated at
O(ms � m̂) from the octet mass breaking [13]

�̂ =
m̂

ms � m̂
(m⌅ + m⌃ � 2mN) = 24 MeV. (5)

However, O((ms � m̂)3/2) corrections may be important. In
Ref. [6] an O((ms�m̂)3/2) calculation in relativistic chiral e↵ec-
tive field theory (Chiral EFT) with the explicit inclusion of the
decuplet found �̂ = 58(8) MeV, which indicates the necessity of
this correction for a reliable extraction of �̂. However, the mag-
nitude of the higher order corrections found there seem to con-
tradict the apparent success of the Gell-Mann-Okubo (GMO)
mass formula [? ], which at O(ms � m̂) apparently gives an ac-
curate value for the octet masses. This argument has been used
to challenge the large value of �̂ obtained in [6] and ultimately
the phenomenological value of �⇡N , see Ref. [14]. Therefore,
the solution of the sigma term puzzle requires the understand-
ing of both, the success of the GMO relation and the expected
size of the higher order corrections to octet matrix elements.

In this paper we study the higher order corrections to the
Gell-Mann-Okubo mass formula and �̂ with the large-Nc for-
mulation of Chiral EFT. We generalize the result of Eq. (5)
for an arbitrary number of colors. Then, we show that for
both, O((ms � m̂)3/2) corrections are of natural size and, in
the case of GMO, necessary to recover the experimental value.
With this corrections �̂ comes out larger than the old results of
Ref. [15, 16] and in excellent agreement with the recent eval-
uation of Ref. [6]. These findings imply a value of the pion-
nucleon sigma term, �⇡N = 60(??) MeV. This result gives a
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1. Introduction

Matrix elements of scalar operators between nucleon states
are important hadronic input in current searches of physics be-
yond the standard model. A prominent example are the pion-
nucleon sigma term (�⇡N), and sigma strange (�s),

�⇡N =
m̂

2mN
hN |ūu + d̄d|Ni (1)

�s =
ms

2mN
hN |s̄s|Ni, (2)

where m̂ = (mu +md)/2 . These quantities are essential input
in studies of direct dark matter detection [1, 2, 3], CP-violation
[4] and lepton flavor violation [5]. While for �s one finds an
nice agreement between phenomenological determinations [6]
and LQCD calculations at the physical point [7, 8, 9, 10], the
situation for �⇡N is much more involved. On the one hand,
LQCD points to a small value, �⇡N ⇡ 40 MeV [7, 8, 9, 10],
while phenomenological extractions based on modern ⇡N-
scattering data and pionic atoms spectroscopy agree on a value
around 60 MeV [11, 12].

Matrix elements of octet operators can provide definitive in-
formation for the resolution of this puzzle. Defining,

�̂ =
m̂

2mN
hN |ūu + d̄d � 2s̄s|Ni, (3)

one finds a simple relation between �⇡N , �̂ and �s,

�⇡N = �̂ +
2m̂
ms
�s. (4)

Since �s ⇠ 40 MeV, the contribution of �s in (4) is negligi-
ble, and therefore �⇡N ⇡ �̂. The value of �̂ can be estimated at
O(ms � m̂) from the octet mass breaking [13]

�̂ =
m̂

ms � m̂
(m⌅ + m⌃ � 2mN) = 24 MeV. (5)

However, O((ms � m̂)3/2) corrections may be important. In
Ref. [6] an O((ms�m̂)3/2) calculation in relativistic chiral e↵ec-
tive field theory (Chiral EFT) with the explicit inclusion of the
decuplet found �̂ = 58(8) MeV, which indicates the necessity of
this correction for a reliable extraction of �̂. However, the mag-
nitude of the higher order corrections found there seem to con-
tradict the apparent success of the Gell-Mann-Okubo (GMO)
mass formula [? ], which at O(ms � m̂) apparently gives an ac-
curate value for the octet masses. This argument has been used
to challenge the large value of �̂ obtained in [6] and ultimately
the phenomenological value of �⇡N , see Ref. [14]. Therefore,
the solution of the sigma term puzzle requires the understand-
ing of both, the success of the GMO relation and the expected
size of the higher order corrections to octet matrix elements.

In this paper we study the higher order corrections to the
Gell-Mann-Okubo mass formula and �̂ with the large-Nc for-
mulation of Chiral EFT. We generalize the result of Eq. (5)
for an arbitrary number of colors. Then, we show that for
both, O((ms � m̂)3/2) corrections are of natural size and, in
the case of GMO, necessary to recover the experimental value.
With this corrections �̂ comes out larger than the old results of
Ref. [15, 16] and in excellent agreement with the recent eval-
uation of Ref. [6]. These findings imply a value of the pion-
nucleon sigma term, �⇡N = 60(??) MeV. This result gives a
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Keywords: Sigma terms, nucleon mass, baryon masses, Gell-Mann-Okubo mass formula

1. Introduction

Baryon mass dependencies on quark masses, quantified by the di↵erent �-terms, are among
the fundamental observables in baryon chiral dynamics. In particular, they give information on the
baryon matrix elements of scalar quark densities, for which there is no alternative way for their
determination. The definition of � terms is through the Feynman-Hellmann theorem1, which,
for three flavors, through the physical baryon masses gives access to only two such terms, namely
those associated with the SU(3) octet quark mass combinations m3 = mu�md and m8 =

1p
3
(m̂�ms),

where m̂ is the average of the u and d quark masses. The � terms associated with the singlet
component m0 =

1
3 (2m̂ + ms) require knowledge of baryon masses for unphysical quark masses,

which is made possible through lattice QCD (LQCD) calculations. On the other hand, the pion-
nucleon � term �⇡N ⌘ m̂

2mN
hN | ūu + d̄d | Ni is accessible through its connection to pion-nucleon

scattering via a low energy theorem [1; 2; 3]. Such a determination of �⇡N had a long evolution
through the availability of increasingly accurate data and the development of combined methods
of dispersion theory and chiral perturbation theory [4; 5; 6; 7; 8; 9; 10; 11]. The values obtained
for �⇡N range from ⇠ 45 MeV [4; 5; 6] to & 58 MeV [7; 8; 9; 10; 11; 12], where the di↵erence
between the results of the di↵erent dispersive analyses resides mostly in the di↵erent values of
the S-wave ⇡N scattering lengths a1/2,3/2 used in the subtractions, cf. [12]. In addition to the

1The following notation will be used: �i(B) = mi
@
@mi

mB, where mi indicates a quark mass (i = u, d, s) or combina-
tion thereof (0, 3, 8), and B is a given baryon. When B is not explicitly indicated it is assumed to be a nucleon.
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1. Introduction

Matrix elements of scalar operators between nucleon states
are important hadronic input in current searches of physics be-
yond the standard model. A prominent example are the pion-
nucleon sigma term (�⇡N), and sigma strange (�s),

�⇡N =
m̂

2mN
hN |ūu + d̄d|Ni (1)

�s =
ms

2mN
hN |s̄s|Ni, (2)

where m̂ = (mu +md)/2 . These quantities are essential input
in studies of direct dark matter detection [1, 2, 3], CP-violation
[4] and lepton flavor violation [5]. While for �s one finds an
nice agreement between phenomenological determinations [6]
and LQCD calculations at the physical point [7, 8, 9, 10], the
situation for �⇡N is much more involved. On the one hand,
LQCD points to a small value, �⇡N ⇡ 40 MeV [7, 8, 9, 10],
while phenomenological extractions based on modern ⇡N-
scattering data and pionic atoms spectroscopy agree on a value
around 60 MeV [11, 12].

Matrix elements of octet operators can provide definitive in-
formation for the resolution of this puzzle. Defining,

�̂ =
m̂

2mN
hN |ūu + d̄d � 2s̄s|Ni, (3)

one finds a simple relation between �⇡N , �̂ and �s,

�⇡N = �̂ +
2m̂
ms
�s. (4)

Since �s ⇠ 40 MeV, the contribution of �s in (4) is negligi-
ble, and therefore �⇡N ⇡ �̂. The value of �̂ can be estimated at
O(ms � m̂) from the octet mass breaking [13]

�̂ =
m̂

ms � m̂
(m⌅ + m⌃ � 2mN) = 24 MeV. (5)

However, O((ms � m̂)3/2) corrections may be important. In
Ref. [6] an O((ms�m̂)3/2) calculation in relativistic chiral e↵ec-
tive field theory (Chiral EFT) with the explicit inclusion of the
decuplet found �̂ = 58(8) MeV, which indicates the necessity of
this correction for a reliable extraction of �̂. However, the mag-
nitude of the higher order corrections found there seem to con-
tradict the apparent success of the Gell-Mann-Okubo (GMO)
mass formula [? ], which at O(ms � m̂) apparently gives an ac-
curate value for the octet masses. This argument has been used
to challenge the large value of �̂ obtained in [6] and ultimately
the phenomenological value of �⇡N , see Ref. [14]. Therefore,
the solution of the sigma term puzzle requires the understand-
ing of both, the success of the GMO relation and the expected
size of the higher order corrections to octet matrix elements.

In this paper we study the higher order corrections to the
Gell-Mann-Okubo mass formula and �̂ with the large-Nc for-
mulation of Chiral EFT. We generalize the result of Eq. (5)
for an arbitrary number of colors. Then, we show that for
both, O((ms � m̂)3/2) corrections are of natural size and, in
the case of GMO, necessary to recover the experimental value.
With this corrections �̂ comes out larger than the old results of
Ref. [15, 16] and in excellent agreement with the recent eval-
uation of Ref. [6]. These findings imply a value of the pion-
nucleon sigma term, �⇡N = 60(??) MeV. This result gives a
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results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
isospin symmetry limit and the nucleon’s �̂ ⌘ p3 m̂

m8
�8, namely �⇡N = �̂ + 2 m̂

ms
�s, which for

a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants

2
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1. Introduction

Baryon mass dependencies on quark masses, quantified by the di↵erent �-terms, are among
the fundamental observables in baryon chiral dynamics. In particular, they give information on the
baryon matrix elements of scalar quark densities, for which there is no alternative way for their
determination. The definition of � terms is through the Feynman-Hellmann theorem1, which,
for three flavors, through the physical baryon masses gives access to only two such terms, namely
those associated with the SU(3) octet quark mass combinations m3 = mu�md and m8 =

1p
3
(m̂�ms),

where m̂ is the average of the u and d quark masses. The � terms associated with the singlet
component m0 =

1
3(2m̂ + ms) require knowledge of baryon masses for unphysical quark masses,

which is made possible through lattice QCD (LQCD) calculations. On the other hand, the pion-
nucleon � term �⇡N ⌘ m̂

2mN
hN | ūu + d̄d | Ni is accessible through its connection to pion-nucleon

scattering via a low energy theorem [1; 2; 3]. Such a determination of �⇡N had a long evolution
through the availability of increasingly accurate data and the development of combined methods
of dispersion theory and chiral perturbation theory [4; 5; 6; 7; 8; 9; 10; 11]. The values obtained
for �⇡N range from ⇠ 45 MeV [4; 5; 6] to & 58 MeV [7; 8; 9; 10; 11; 12], where the di↵erence
between the results of the di↵erent dispersive analyses resides mostly in the di↵erent values of
the S-wave ⇡N scattering lengths a1/2,3/2 used in the subtractions, cf. [12]. In addition to the

1The following notation will be used: �i(B) = mi
@
@mi

mB, where mi indicates a quark mass (i = u, d, s) or combina-
tion thereof (0, 3, 8), and B is a given baryon. When B is not explicitly indicated it is assumed to be a nucleon.
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A long lasting puzzle !

(LECs) in the chiral Lagrangian. The details on the calculations of baryon masses concerning the
present work can be found in [29].

The chiral Lagrangian to O(⇠3), including electromagnetic corrections to the baryon masses is
given by [29]:

LB = B

†
 
iD0 + g̊AuiaGia � CHF

Nc
Ŝ 2 � 1

2⇤
c2�̂+ +

c3

Nc⇤3 �̂
2
+

+
h1

N3
c

Ŝ 4 +
h2

N2
c⇤
�̂+Ŝ 2 +

h3

Nc⇤
�0
+Ŝ

2 +
h4

Nc⇤
�a
+{S i,Gia} + ↵Q̂ + �Q̂2

!
B. (1)

where terms not directly relevant to the baryon masses have been omitted. M0 = O(Nc) is the
spin-flavor singlet piece of the baryon mass that provides the large mass expansion parameter for
HBChPT. In addition to the well known chiral building blocks, B represents the baryon spin-flavor
multiplet field, Ŝ 2 is the square of the baryon spin operator, Gia are the spin-flavor generators of
SU(6), and Q̂ is the electric charge operator. No baryon-spin dependent electromagnetic e↵ects
are included. The term proportional to CHF gives the leading order mass splitting between the spin
1/2 and 3/2 baryons. g̊A is identified with 6

5gN
A at the LO, whose physical value is 1.2723± 0.0023.

The term h1 is only relevant if baryons with higher spin than 3/2 appear, which requires Nc � 5.
The rest of the terms describe the quark mass e↵ects. The combination �̂+ = Nc �0
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The dominant contributions to �GMO and ��8 are calculable non-analytic contributions. �GMO is
O(⇠4) and in large Nc limit it is O(1/Nc). On the other hand, �8 is O(⇠) and it has a prefactor Nc,

2The 27-plet SU(3) breaking produced by this term is O(⇠5), and thus for the current purposes it can be neglected
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results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
isospin symmetry limit and the nucleon’s �̂ ⌘ p3 m̂

m8
�8, namely �⇡N = �̂ + 2 m̂

ms
�s, which for

a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants
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(LECs) in the chiral Lagrangian. The details on the calculations of baryon masses concerning the
present work can be found in [29].

The chiral Lagrangian to O(⇠3), including electromagnetic corrections to the baryon masses is
given by [29]:
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where terms not directly relevant to the baryon masses have been omitted. M0 = O(Nc) is the
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1/2 and 3/2 baryons. g̊A is identified with 6
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A at the LO, whose physical value is 1.2723± 0.0023.
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Ŝ 4 � h2

Nc⇤
4B0(

p
3m8Y + Ncm0)Ŝ 2 � h3
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S U(3) breaking corrections to the Gell-Mann-Okubo mass formula
and the ūu + d̄d � 2s̄s contribution to the nucleon mass

aTheory Center, Je↵erson Lab, Newport News, VA 23606, USA

Abstract

We studied the Gell-Mann-Okubo mass formula (�GMO) and �̂ = m̂hN |ūu+ d̄d�2s̄s|Ni/2mN in large Nc chiral e↵ective field theory
up to order (ms � m̂)3/2. We generalize the known O(ms � m̂) results to arbitrary number of colors and calculate the (ms � m̂)3/2

correction for both. The magnitude of the latter provides definitive answers to the current discrepancy between phenomenological
and lattice determinations of the pion-nucleon sigma term. We observe that the convergence pattern of both, �GMO and �̂, are
extremely similar. For both, the (ms � m̂)3/2 corrections have the expected size. We show that in the case of the Gell-Mann-
Okubo mass formula, it is a contribution needed to agree with the experimental value. We also observe that the contribution of
the decuplet of resonances is essential for an accurate determination of the higher order corrections in both cases. We finally
find �GMO = 38(??) MeV and �̂ = 57(??) MeV up to order (ms � m̂)3/2. The latter, together with the value of �s, can be used
to determine the pion-nucleon sigma term. Using the lattice determinations of �s at the physical point, we obtain a value of
�⇡N = 60(??) MeV. This result gives a strong support to the phenomenological determinations of �⇡N versus the LQCD ones, and
constitutes an important progress in the resolution of the sigma term puzzle.

Keywords: Sigma terms, nucleon mass, baryon masses, Gell-Mann-Okubo mass formula

1. Introduction

Matrix elements of scalar operators between nucleon states
are important hadronic input in current searches of physics be-
yond the standard model. A prominent example are the pion-
nucleon sigma term (�⇡N), and sigma strange (�s),

�⇡N =
m̂

2mN
hN |ūu + d̄d|Ni (1)

�s =
ms

2mN
hN |s̄s|Ni, (2)

where m̂ = (mu +md)/2 . These quantities are essential input
in studies of direct dark matter detection [1, 2, 3], CP-violation
[4] and lepton flavor violation [5]. While for �s one finds an
nice agreement between phenomenological determinations [6]
and LQCD calculations at the physical point [7, 8, 9, 10], the
situation for �⇡N is much more involved. On the one hand,
LQCD points to a small value, �⇡N ⇡ 40 MeV [7, 8, 9, 10],
while phenomenological extractions based on modern ⇡N-
scattering data and pionic atoms spectroscopy agree on a value
around 60 MeV [11, 12].

Matrix elements of octet operators can provide definitive in-
formation for the resolution of this puzzle. Defining,

�̂ =
m̂

2mN
hN |ūu + d̄d � 2s̄s|Ni, (3)

one finds a simple relation between �⇡N , �̂ and �s,

�⇡N = �̂ +
2m̂
ms
�s. (4)

Since �s ⇠ 40 MeV, the contribution of �s in (4) is negligi-
ble, and therefore �⇡N ⇡ �̂. The value of �̂ can be estimated at
O(ms � m̂) from the octet mass breaking [13]

�̂ =
m̂

ms � m̂
(m⌅ + m⌃ � 2mN) = 24 MeV. (5)

However, O((ms � m̂)3/2) corrections may be important. In
Ref. [6] an O((ms�m̂)3/2) calculation in relativistic chiral e↵ec-
tive field theory (Chiral EFT) with the explicit inclusion of the
decuplet found �̂ = 58(8) MeV, which indicates the necessity of
this correction for a reliable extraction of �̂. However, the mag-
nitude of the higher order corrections found there seem to con-
tradict the apparent success of the Gell-Mann-Okubo (GMO)
mass formula [? ], which at O(ms � m̂) apparently gives an ac-
curate value for the octet masses. This argument has been used
to challenge the large value of �̂ obtained in [6] and ultimately
the phenomenological value of �⇡N , see Ref. [14]. Therefore,
the solution of the sigma term puzzle requires the understand-
ing of both, the success of the GMO relation and the expected
size of the higher order corrections to octet matrix elements.

In this paper we study the higher order corrections to the
Gell-Mann-Okubo mass formula and �̂ with the large-Nc for-
mulation of Chiral EFT. We generalize the result of Eq. (5)
for an arbitrary number of colors. Then, we show that for
both, O((ms � m̂)3/2) corrections are of natural size and, in
the case of GMO, necessary to recover the experimental value.
With this corrections �̂ comes out larger than the old results of
Ref. [15, 16] and in excellent agreement with the recent eval-
uation of Ref. [6]. These findings imply a value of the pion-
nucleon sigma term, �⇡N = 60(??) MeV. This result gives a
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results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
isospin symmetry limit and the nucleon’s �̂ ⌘ p3 m̂
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�s, which for

a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

x) The results obtained for �⇡N are consistent with the larger values obtained from ⇡N analyses
[7; 8; 9; 10; 11]. Note however that a more reliable value would require some more accurate and
extensive LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with
other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
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xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
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seems to be unlikely within the present framework.
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particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1
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at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1
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receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1
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big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.
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analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc
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and the ūu + d̄d � 2s̄s contribution to the nucleon mass
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Abstract

We studied the Gell-Mann-Okubo mass formula (�GMO) and �̂ = m̂hN |ūu+ d̄d�2s̄s|Ni/2mN in large Nc chiral e↵ective field theory
up to order (ms � m̂)3/2. We generalize the known O(ms � m̂) results to arbitrary number of colors and calculate the (ms � m̂)3/2

correction for both. The magnitude of the latter provides definitive answers to the current discrepancy between phenomenological
and lattice determinations of the pion-nucleon sigma term. We observe that the convergence pattern of both, �GMO and �̂, are
extremely similar. For both, the (ms � m̂)3/2 corrections have the expected size. We show that in the case of the Gell-Mann-
Okubo mass formula, it is a contribution needed to agree with the experimental value. We also observe that the contribution of
the decuplet of resonances is essential for an accurate determination of the higher order corrections in both cases. We finally
find �GMO = 38(??) MeV and �̂ = 57(??) MeV up to order (ms � m̂)3/2. The latter, together with the value of �s, can be used
to determine the pion-nucleon sigma term. Using the lattice determinations of �s at the physical point, we obtain a value of
�⇡N = 60(??) MeV. This result gives a strong support to the phenomenological determinations of �⇡N versus the LQCD ones, and
constitutes an important progress in the resolution of the sigma term puzzle.

Keywords: Sigma terms, nucleon mass, baryon masses, Gell-Mann-Okubo mass formula

1. Introduction

Matrix elements of scalar operators between nucleon states
are important hadronic input in current searches of physics be-
yond the standard model. A prominent example are the pion-
nucleon sigma term (�⇡N), and sigma strange (�s),

�⇡N =
m̂

2mN
hN |ūu + d̄d|Ni (1)

�s =
ms

2mN
hN |s̄s|Ni, (2)

where m̂ = (mu +md)/2 . These quantities are essential input
in studies of direct dark matter detection [1, 2, 3], CP-violation
[4] and lepton flavor violation [5]. While for �s one finds an
nice agreement between phenomenological determinations [6]
and LQCD calculations at the physical point [7, 8, 9, 10], the
situation for �⇡N is much more involved. On the one hand,
LQCD points to a small value, �⇡N ⇡ 40 MeV [7, 8, 9, 10],
while phenomenological extractions based on modern ⇡N-
scattering data and pionic atoms spectroscopy agree on a value
around 60 MeV [11, 12].

Matrix elements of octet operators can provide definitive in-
formation for the resolution of this puzzle. Defining,

�̂ =
m̂

2mN
hN |ūu + d̄d � 2s̄s|Ni, (3)

one finds a simple relation between �⇡N , �̂ and �s,

�⇡N = �̂ +
2m̂
ms
�s. (4)

Since �s ⇠ 40 MeV, the contribution of �s in (4) is negligi-
ble, and therefore �⇡N ⇡ �̂. The value of �̂ can be estimated at
O(ms � m̂) from the octet mass breaking [13]

�̂ =
m̂

ms � m̂
(m⌅ + m⌃ � 2mN) = 24 MeV. (5)

However, O((ms � m̂)3/2) corrections may be important. In
Ref. [6] an O((ms�m̂)3/2) calculation in relativistic chiral e↵ec-
tive field theory (Chiral EFT) with the explicit inclusion of the
decuplet found �̂ = 58(8) MeV, which indicates the necessity of
this correction for a reliable extraction of �̂. However, the mag-
nitude of the higher order corrections found there seem to con-
tradict the apparent success of the Gell-Mann-Okubo (GMO)
mass formula [? ], which at O(ms � m̂) apparently gives an ac-
curate value for the octet masses. This argument has been used
to challenge the large value of �̂ obtained in [6] and ultimately
the phenomenological value of �⇡N , see Ref. [14]. Therefore,
the solution of the sigma term puzzle requires the understand-
ing of both, the success of the GMO relation and the expected
size of the higher order corrections to octet matrix elements.

In this paper we study the higher order corrections to the
Gell-Mann-Okubo mass formula and �̂ with the large-Nc for-
mulation of Chiral EFT. We generalize the result of Eq. (5)
for an arbitrary number of colors. Then, we show that for
both, O((ms � m̂)3/2) corrections are of natural size and, in
the case of GMO, necessary to recover the experimental value.
With this corrections �̂ comes out larger than the old results of
Ref. [15, 16] and in excellent agreement with the recent eval-
uation of Ref. [6]. These findings imply a value of the pion-
nucleon sigma term, �⇡N = 60(??) MeV. This result gives a
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1. Introduction

Baryon mass dependencies on quark masses, quantified by the di↵erent �-terms, are among
the fundamental observables in baryon chiral dynamics. In particular, they give information on the
baryon matrix elements of scalar quark densities, for which there is no alternative way for their
determination. The definition of � terms is through the Feynman-Hellmann theorem1, which,
for three flavors, through the physical baryon masses gives access to only two such terms, namely
those associated with the SU(3) octet quark mass combinations m3 = mu�md and m8 =

1p
3
(m̂�ms),

where m̂ is the average of the u and d quark masses. The � terms associated with the singlet
component m0 =

1
3 (2m̂ + ms) require knowledge of baryon masses for unphysical quark masses,

which is made possible through lattice QCD (LQCD) calculations. On the other hand, the pion-
nucleon � term �⇡N ⌘ m̂

2mN
hN | ūu + d̄d | Ni is accessible through its connection to pion-nucleon

scattering via a low energy theorem [1; 2; 3]. Such a determination of �⇡N had a long evolution
through the availability of increasingly accurate data and the development of combined methods
of dispersion theory and chiral perturbation theory [4; 5; 6; 7; 8; 9; 10; 11]. The values obtained
for �⇡N range from ⇠ 45 MeV [4; 5; 6] to & 58 MeV [7; 8; 9; 10; 11; 12], where the di↵erence
between the results of the di↵erent dispersive analyses resides mostly in the di↵erent values of
the S-wave ⇡N scattering lengths a1/2,3/2 used in the subtractions, cf. [12]. In addition to the

1The following notation will be used: �i(B) = mi
@
@mi

mB, where mi indicates a quark mass (i = u, d, s) or combina-
tion thereof (0, 3, 8), and B is a given baryon. When B is not explicitly indicated it is assumed to be a nucleon.
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(LECs) in the chiral Lagrangian. The details on the calculations of baryon masses concerning the
present work can be found in [29].

The chiral Lagrangian to O(⇠3), including electromagnetic corrections to the baryon masses is
given by [29]:

LB = B

†
 
iD0 + g̊AuiaGia � CHF

Nc
Ŝ 2 � 1

2⇤
c2�̂+ +

c3

Nc⇤3 �̂
2
+

+
h1

N3
c

Ŝ 4 +
h2

N2
c⇤
�̂+Ŝ 2 +

h3

Nc⇤
�0
+Ŝ

2 +
h4

Nc⇤
�a
+{S i,Gia} + ↵Q̂ + �Q̂2

!
B. (1)

where terms not directly relevant to the baryon masses have been omitted. M0 = O(Nc) is the
spin-flavor singlet piece of the baryon mass that provides the large mass expansion parameter for
HBChPT. In addition to the well known chiral building blocks, B represents the baryon spin-flavor
multiplet field, Ŝ 2 is the square of the baryon spin operator, Gia are the spin-flavor generators of
SU(6), and Q̂ is the electric charge operator. No baryon-spin dependent electromagnetic e↵ects
are included. The term proportional to CHF gives the leading order mass splitting between the spin
1/2 and 3/2 baryons. g̊A is identified with 6

5gN
A at the LO, whose physical value is 1.2723± 0.0023.

The term h1 is only relevant if baryons with higher spin than 3/2 appear, which requires Nc � 5.
The rest of the terms describe the quark mass e↵ects. The combination �̂+ = Nc �0

+ + �̃+, where
�0
+ =

1
3Tr �+ and �̃+ is the traceless piece of �+, assures that the nucleon mass dependency on ms

is at most O(N0
c ) (OZI). ⇤ is an arbitrary scale, which is conveniently chosen to be m⇢. The baryon

mass formula then reads (neglecting isospin breaking for now)[29]:

mB = M0 +
CHF

Nc
Ŝ 2 � c1

⇤
2B0(

p
3m8Y + Ncm0) � c2

⇤
4B0m0 � c3

Nc⇤3

⇣
4B0(

p
3m8Y + Ncm0)

⌘2

� h1

N2
c⇤

Ŝ 4 � h2

Nc⇤
4B0(

p
3m8Y + Ncm0)Ŝ 2 � h3

Nc⇤
4B0m0Ŝ 2

� h4

Nc⇤

4B0m8p
3

 
3Î2 � Ŝ 2 � 1

12
Nc(Nc + 6) +

1
2

(Nc + 3)Y � 3
4

Y2
!
+ �mloop

B , (2)

where �mloop
B can be obtained with some work using the results in [29], where the details on the

mass renormalization and results for general Nc can be found.
Setting c3 = 0 2, the terms analytic in quark masses in Eqn. (2) lead to the exact GMO and

Equal Spacing mass relations, which are unchanged at generic Nc. On the other hand at generic
Nc the mass relation for �8 at tree level reads:

��8 = �8 � 1
9

 
5Nc � 3

2
mN � (2Nc � 3)m⌃ � Nc + 3

2
m⌅

!
, (3)

The dominant contributions to �GMO and ��8 are calculable non-analytic contributions. �GMO is
O(⇠4) and in large Nc limit it is O(1/Nc). On the other hand, �8 is O(⇠) and it has a prefactor Nc,

2The 27-plet SU(3) breaking produced by this term is O(⇠5), and thus for the current purposes it can be neglected

3

and ��8 is O(⇠2) also with a prefactor Nc. c3 gives a contribution to the �GMO which is O(⇠5),
and to ��8 at O(⇠4), both being beyond the accuracy of the present work. �GMO

3 and ��8 are thus
determined by the meson masses and by the LECs g̊A/F⇡, and CHF . �GMO depends rather smoothly
on CHF , and drives to a large extent the determination of g̊A/F⇡. One finds the interesting fact that
the ratio ��8/�GMO (⇠ �13.5 for Nc = 3), which is independent of g̊A/F⇡, is also almost entirely
independent of the value of CHF in a very wide range around its actual value.

The analysis of the physical octet and decuplet baryon masses su�ce to make the main point
of this work. In this case, the LECs c2, c3 and h1 are set to vanish, because at the order of the
calculation they are redundant (actually h1 is altogether irrelevant unless Nc � 5). A fit is carried
out including strong and electromagnetic isospin breaking. This requires using the meson masses
with isospin breaking, which include ⌘ � ⇡0 mixing (required to have a consistent renormalization
of the baryon masses) and the electromagnetic mass shifts where Dashen’s theorem is used, which
should be su�cient for the current application. The electromagnetic addition to �GMO is equal to
�4

3�, while the strong isospin breaking has negligible e↵ect, and the electromagnetic contribution
to the p-n mass di↵erence is equal to ↵ + �. The result of the fit to physical masses is shown in
Table (1), Fit 1.

g̊A
F⇡

M0
Nc

CHF c1 c2 h2 h3 h4 ↵ �

Fit MeV�1 MeV MeV MeV MeV

1 0.0126(2) 364(1) 166(23) �1.48(4) 0 0 0.67(9) 0.56(2) �1.63(24) 2.16(22)
2 0.0126(3) 213(1) 179(20) �1.49(4) �1.02(5) �0.018(20) 0.69(7) 0.56(2) �1.62(24) 2.14(22)
3 0.0126⇤ 262(30) 147(52) �1.55(3) �0.67(8) 0 0.64(3) 0.63(3) �1.63⇤ 2.14⇤

�
phys
GMO �8 ��8 �̂ �⇡N �s �3 �u+d(p � n)

MeV MeV MeV MeV MeV MeV MeV MeV

1 25.6(1.1) �583(24)�382(13) 70(3)(6) � � �1.0(3) �1.6(6)
2 25.5(1.5) �582(55)�381(20) 70(7)(6) 69(8)(6) �3(32) �1.0(4) �1.6(8)
3 25.8⇤ �615(80) �384(2) 74(1)(6) 65(15)(6) �121(15) � �

Table 1: Results from fits to baryon masses. Fit 1 uses only the physical octet and decuplet masses, Fit 2 uses the
physical and the LQCD masses from Ref. [24] with M⇡ . 300 MeV, and Fit 3 uses only those LQCD masses and
imposes the value of �phys

GMO determined by the physical masses. The renormalization scale µ and the scale ⇤ are taken
to be equal to m⇢. ⇤ indicates an input. An estimated theoretical error of 6 MeV is indicated for �̂ and �⇡N .

The information given by LQCD, where the baryon masses have been obtained with MK ap-
proximately constant and varying mu = md in a range where 213 MeV < M⇡ < 430 MeV [24], is
very useful for testing the e↵ective theory, and necessary for calculating�⇡N . Two di↵erent fits that
include LQCD baryon masses were performed, shown in Table (1). One fit combines the physical
and LQCD masses, up to M⇡ ⇠ 300 MeV, and the other uses only LQCD and the physical value of

3�GMO corresponds to having removed the EM corrections, otherwise it is denoted by �phys
GMO

4

:

results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
isospin symmetry limit and the nucleon’s �̂ ⌘ p3 m̂

m8
�8, namely �⇡N = �̂ + 2 m̂

ms
�s, which for

a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD evaluations at the
physical point (red), and from this work. Right panel: N and � masses: Fit 2 of Table (1).

finds a range of values for �⇡N , namely .............. where the value for g̊A/F⇡ used in the calculation
is that obtained from �GMO.

3. Conclusions

• If MK is too large for a valid application of BChPT ⇥ 1/Nc, one should entirely dismiss
the discussion of the sigma terms in that framework. This is probably a very pessimistic
possibility, as the e↵ective theory does not evidence di�culties in describing LQCD along
with the physical ones. However, if that would be the case, then one needs to work with two
flavors and use LQCD to be able to extract the nucleon � terms from the FH theorem.

•

We studied the S U(3) breaking corrections to the octet matrix element related to the GMO
mass formula for baryons and the ūu+d̄d�2s̄s contribution to the nucleon mass in large Nc ChEFT
up to O(⇠3) in the ⇠-counting. We generalize the well known tree level results for Nc = 3 to an
arbitrary number of colors. We calculate the O((ms � m̂)3/2) corrections to the tree level formulas
and find them to be of the expected size for an NLO correction to an octet matrix element.

In the case of the GMO mass formula we show that the order (ms � m̂)3/2 contribution is nec-
essary to achieve a good agreement with the experimental value. We find this correction to be
�NLO

GMO =??(??) MeV. The apparent success of the tree level formula is due to the singlet contribu-
tion, included in the baryon masses along with the octet one. However, the former should not be
considered when estimating the accuracy of an octet matrix element.

We applied the same logic to �̂. We observe that the O((ms � m̂)3/2) corrections are of the
same size as ones we found for the GMO mass formula, ��̂NLO = 39.0(0.2)stat.(3)syst. with ⌫ = 1 MeV.
As happened with �NLO

GMO, we find that the contribution of the decuplet is necessary for a reliable
estimation of �̂. Our final result, �̂ = 62.13(0.2)stat.(3)syst. with ⌫ = 1 MeV 70(5)stat.(6)syst. MeV agrees
with the previous calculation including the decuplet of Ref. [22]. As in the GMO case, we expect
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flavors and use LQCD to be able to extract the nucleon � terms from the FH theorem.

•

We studied the S U(3) breaking corrections to the octet matrix element related to the GMO
mass formula for baryons and the ūu+d̄d�2s̄s contribution to the nucleon mass in large Nc ChEFT
up to O(⇠3) in the ⇠-counting. We generalize the well known tree level results for Nc = 3 to an
arbitrary number of colors. We calculate the O((ms � m̂)3/2) corrections to the tree level formulas
and find them to be of the expected size for an NLO correction to an octet matrix element.

In the case of the GMO mass formula we show that the order (ms � m̂)3/2 contribution is nec-
essary to achieve a good agreement with the experimental value. We find this correction to be
�NLO

GMO =??(??) MeV. The apparent success of the tree level formula is due to the singlet contribu-
tion, included in the baryon masses along with the octet one. However, the former should not be
considered when estimating the accuracy of an octet matrix element.

We applied the same logic to �̂. We observe that the O((ms � m̂)3/2) corrections are of the
same size as ones we found for the GMO mass formula, ��̂NLO = 39.0(0.2)stat.(3)syst. with ⌫ = 1 MeV.
As happened with �NLO

GMO, we find that the contribution of the decuplet is necessary for a reliable
estimation of �̂. Our final result, �̂ = 62.13(0.2)stat.(3)syst. with ⌫ = 1 MeV 70(5)stat.(6)syst. MeV agrees
with the previous calculation including the decuplet of Ref. [22]. As in the GMO case, we expect
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

x) The results obtained for �⇡N are consistent with the larger values obtained from ⇡N analyses
[7; 8; 9; 10; 11]. Note however that a more reliable value would require some more accurate and
extensive LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with
other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.

6

( )

Alarcón et al. (2011)

(

�
�

� ��
���

�
�

� ��
���

!"# $## $"# %##
&##

!###

!!##

!$##

!%##

!'##

!"##

!(##

!� !)*+"

!
!
!!

�
!!
"#

"

Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.

6

results from the analyses of ⇡N scattering, LQCD calculations extrapolated to or at the physical
point obtain di↵erent results, with values consistent with the recent ⇡N results [13] and smaller,
�⇡N ⇡ 40 MeV [14; 15; 16; 17]. The relatively large range of values obtained for �⇡N keeps it
as an active topic of study, and in part motivates the present work. An additional motivation is
the relevance of scalar quark operator matrix elements, quantities that are relevant in studies of
direct dark matter detection [18; 19; 20], and of lepton flavor violation through µ � e conversion
in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between �⇡N in the
isospin symmetry limit and the nucleon’s �̂ ⌘ p3 m̂

m8
�8, namely �⇡N = �̂ + 2 m̂

ms
�s, which for

a natural size value of �s should give �⇡N ⇠ �̂. The origin of the puzzle is the relation: �8 =
1
3 (2mN � m⌃ � m⌅) (or other combinations related via the Gell-Mann-Okubo (GMO) relation)
valid at linear order in quark masses, which gives �̂ ⇠ 25 MeV. If that relation is a reasonable
approximation to the value of �̂, the implication is that, contrary to expectations, ms must give
a very large contribution to the nucleon mass even for the smaller values of �⇡N . The puzzle is
particularly striking for the larger values that have been obtained for �⇡N , which would imply
�s ⇠ 0.5 GeV!. Indeed, this is clearly impossible if one considers that �s = O( 1

Nc
)�⇡N .

This work analyzes the � terms through the octet and decuplet baryon masses in the combined
chiral and 1/Nc expansions BChPT ⇥ 1/Nc. The emphasis is in that the e↵ective theory can give
at NNLO (one chiral loop) a natural description of baryon masses, including LQCD results, along
with the axial couplings which have been obtained in LQCD at di↵erent quark masses. In particu-
lar, the resolution of the � term puzzle is explained by the fact that ��8 ⌘ �8 � 1

3 (2mN �m⌃ �m⌅)
receives large non-analytic in quark mass corrections dominated by ms. It will also be shown that
�8 itself, and thus �̂, has a natural low energy expansion and therefore the origin of the puzzle
resides in the large non-analytic correction to the mass combination 1

3(2mN � m⌃ � m⌅). In fact, a
big part of that large correction stems from the contribution of decuplet baryons in the loop, as it
was found in Refs. [13; 23]. By analyzing LQCD baryon masses [24], it is found that as expected
�⇡N ⇠ �̂, with the results �⇡N = 69(8)(6) MeV, where the errors are respectively the statistical and
theoretical (expected NNNLO corrections) ones, and | �s |. 50 MeV. The connection between
the deviation from the GMO relation, �GMO ⌘ 3m⇤ + m⌃ � 2(mN + m⌅), and ��8, both calculable
at NNLO and given solely in terms of non-analytic loop contributions, is of particular importance
in the present work.

2. BChPT ⇥ 1/N
c

analysis of masses ad � terms

The combined BChPT ⇥ 1/Nc [25; 26; 27; 28; 29] implements the consistency of the e↵ec-
tive theory with both the approximate chiral symmetry and the expansion in 1/Nc of QCD. The
expansion requires a link between the chiral and the 1/Nc expansions: in practice the natural link
is the ⇠ expansion where O(p) = O(1/Nc) = O(⇠), which is closely related to the so called small
scale expansion [30; 31] even when that one did not strictly implement the constraints of the 1/Nc

expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6)
spin-flavor symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclu-
sion of the higher spin baryons (the decuplet in the case Nc = 3) and relates low energy constants

2
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Table 1
Results from fits to baryon masses. Fit 1 uses only the physical octet and decuplet masses, Fit 2 uses the physical and the LQCD masses from Ref. [24]
with Mπ ! 300 MeV, and Fit 3 uses only those LQCD masses and imposes the value of "phys

GM O determined by the physical masses. The renormalization 
scale µ and the scale # are taken to be equal to mρ . ∗ indicates an input. An estimated theoretical error of 6 MeV is indicated for σ̂ and σπ N .

Fit g̊ A
Fπ

MeV−1

M0
Nc

MeV
C H F
MeV

c1 c2 h2 h3 h4 α
MeV

β

MeV

1 0.0126(2) 364(1) 166(23) −1.48(4) 0 0 0.67(9) 0.56(2) −1.63(24) 2.16(22)

2 0.0126(3) 213(1) 179(20) −1.49(4) −1.02(5) −0.018(20) 0.69(7) 0.56(2) −1.62(24) 2.14(22)

3 0.0126∗ 262(30) 147(52) −1.55(3) −0.67(8) 0 0.64(3) 0.63(3) −1.63∗ 2.14∗

Fit "
phys
GM O

MeV
σ8
MeV

"σ8
MeV

σ̂
MeV

σπ N
MeV

σs
MeV

σ3
MeV

σu+d(p −n)

MeV

1 25.6(1.1) −583(24) −382(13) 70(3)(6) – – −1.0(3) −1.6(6)

2 25.5(1.5) −582(55) −381(20) 70(7)(6) 69(8)(6) −3(32) −1.0(4) −1.6(8)

3 25.8∗ −615(80) −384(2) 74(1)(6) 65(15)(6) −121(15) – –

Fig. 1. Left panel: summary of the determinations of σπ N from π N scattering (blue), from LQCD (red), and from this work showing the combined fit and theoretical error. 
Right panel: N and " masses from Fit 2 of Table 1: physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68% 
confidence interval. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

useful for testing the effective theory, and necessary for calculat-
ing σπ N . Two different fits that include LQCD baryon masses were 
performed, shown in Table 1. One fit (Fit 2) combines the physical 
and LQCD masses, up to Mπ ∼ 300 MeV, and the other (Fit 3) uses 
only LQCD and the physical value of "GM O , which is important for 
controlling the value of g̊ A/Fπ . In these fits the LEC c2 which gives 
the baryon mass dependencies on the singlet quark mass compo-
nent m0 becomes significant, and its presence is responsible for 
the significant change in M0 compared to the physical fit. M0 is 
very precisely determined by the physical masses; Fit 3 shows that 
it is much less precise if only LQCD masses are used. The constant 
β can be estimated by the relation 2β = mp − mn − (m(0 − m(−), 
valid to LO in quark masses, which gives β = 2.78 ± 0.1 MeV. The 
fit indicates that higher order terms in quark masses affect the ex-
traction of β . The theoretical error for σ̂ and σπ N accounting for 
higher order corrections was estimated by explicitly expanding in 
ξ and identifying the size of the contributions; the magnitude of 
the theoretical error was then estimated to be ∼ 1/3 the size of 
the last term in the expansion.

The observations derived from the effective theory and from the 
fits are the following:

i) The value of g̊ A/Fπ is to a large extent fixed by "GM O , and it 
corresponds to a value of gN

A at LO which is roughly a factor 
0.75 of the physical one; this agrees with what is observed 
in the analysis of the axial vector couplings [29] provided by 
LQCD calculations at different values of quark masses [32].

ii) The octet baryons contribute 43% of "GM O , and 33% of "σ8, 
which shows the importance of the decuplet contributions.

iii) The first fit determines σ8. Using the natural renormalization 
scale µ = mρ , the different contributions to σ8 are primarily 

given by the terms c1 (∼ −870 MeV), h4 (∼ 110 MeV) and the 
loop contributions (∼ 190 MeV), where the latter two are the 
NLO contributions. This seems to be a well behaved expan-
sion. On the other hand the mass combination on the RHS of 
Eqn. (3) has the corresponding pattern −870 MeV, 110 MeV 
and 570 MeV, the latter loop contribution given by the addi-
tional contribution due to "σ8 ∼ −380 MeV. The NLO terms 
in the mass combination are very large and reduce the LO 
one.

iv) The correction "σ8 becomes quite large for MK > 350 MeV, 
being about 70% of σ8 for the physical MK . As mentioned ear-
lier, "σ8 and "GM O are determined only in terms of g̊ A/Fπ , 
C H F and the meson masses. The ratio "σ8/"GM O does not 
depend on g̊ A/Fπ , and has virtually no dependence on C H F . 
The ratio is also modestly dependent on MK , going from 
∼ −11 to ∼ −14 when MK is increased from 200 to 600 MeV.

v) The combined fit of physical and LQCD masses, Fit 2, is com-
patible with Fit 1; this implies that the chiral extrapolation of 
the LQCD results to the physical case is consistent.

vi) The fit to only LQCD masses and imposing the physical "GM O , 
Fit 3, serves for a consistency check, which turns out to be 
quite reasonable. The LQCD masses do not describe correctly 
the hyperfine mass shifts between the octet and decuplet, 
which is shown in Fig. 1 right panel, where the " mass is 
systematically large, and this is the reason the resulting C H F
has some difference with the other fits. The extrapolation to 
the physical case turns out to be from 20 to 50 MeV larger 
than the physical octet masses, but less accurate for the decu-
plet ones where the " mass, which is the worst case, comes 
out to be about 100 MeV larger than the physical one.

Sigma Terms (Results)

LQCD data from : ALEXANDROU et al. (PRD 90, 074501 (2014))
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1 Equations

L(2)
B = B†

✓
(� 1

2m
+

w1

⇤
) ~D2 + (

1

2m
� w2

⇤
)D̃2

0 +
c2
⇤

�0
+

+
CA

1

Nc
uiaSiIa +

CA
2

Nc
✏ijkuia{Sj , Gka} this terms is T odd

+
1

m
( ~B0

+ + ~Ba
+I

a) · ~S +
1

2m
(2(0

~B0
+ + 1

~BaIa) · ~S +
6

5
2 Bia

+Gia) + ⇢0 ~E0
� · ~S + ⇢1E

ia
�Gia these terms are T odd

+ i
⌧1+
Nc

(ua
0G

iaDi +Diu
a
0G

ia) +
⌧1�
Nc

[Di, u0]
aGia this term is T odd

+ i✏ijkuiaujaSk + uµaua
µ +

1

Nc
uµaua

µŜ
2O(⇠3) +

1

Nc
uiauja(SiSj)(`=2)O(⇠3) +

1

Nc
uµaub

µ{T a, T b}[I=2]O(⇠3)

+
1

Nc
uiaujb{Gia, Gjb}(`=2,I=2)O(⇠3)

◆
B, (1)

where m = Ncm0 is the spin-flavor singlet baryon mass in chiral limit, and the magnetic moment terms
consist of the one coming from the Dirac term 1

m ( ~B0
+ + ~Ba

+T
a) · ~S and the anomalous terms involving 0

(isoscalar) and 1,2 (isovector). Note that the magnetic transition between baryons of di↵erent spin are
meadited only by the term 2.Do we need w1,2 terms?

L(2)
B = B†

✓
� 1

2m
D2 +

c2
⇤

�0
+
CA

1

Nc
uiaSiIa +

CA
2

Nc
✏ijkuia{Sj , Gka}+ 1

m
( ~B0

+ + ~Ba
+I

a) · ~S

+
1

2m
(2(0

~B0
+ + 1

~BaIa) · ~S +
6

5
2 Bia

+Gia) + ⇢0 ~E0
� · ~S + ⇢1E

ia
�Gia

+ i
⌧1+
Nc

(ua
0G

iaDi +Diu
a
0G

ia) +
⌧1�
Nc

[Di, u0]
aGia

◆
B (2)

O(⇠3)

• The value of g̊A/F⇡ can be fixed by �GMO, and it is consistent with the other calculations.

• Octet baryons in the intermediate states contribute 43% to �GMO and 33% to ��8.

• One can realize that this is a well behaved expansion by considering the contribution to the baryon
mass from each LEC.

• �GMO and ��8 can be determined only by g̊A/F⇡, CHF and the meson masses, whereas the ratio
��8/�GMO doesn’t depend on g̊A/F⇡.

• Fit 2 is compatible with Fit 1: implies that the chiral extrapolation of the LQCD to the physical case
is consistent.

• LQCD baryon masses have an issue of describing the hyperfine mass shifts between the octet and
decuplet.

• Both �̂ and �⇡N has mild dependence on MK .

• Determination of �s was not precise because the LQCD results are at approximately fixed ms.

• Our result for �⇡N is consistent with the larger values obtained from ⇡ �N scattering analyses.

• Iso spin breaking sigma terms �3 and �(u+d) were estimated.

• With the information we have we can determine the contribution of Nucleon mass due to the mass
di↵erence of mu�d and therefore mProton and mNeutron di↵erence.

The intermediate spin 3/2 baryons play an important role in enhancing �̂ and thus �⇡N .

1



σNms
¼ ms

8m̂
ð−4ðNc − 1ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΛms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc − 5ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΣms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ ð3Nc − 11ÞσΣm̂Þ

σΔms
¼ ms

8m̂
ð−4ðNc − 1ÞσΔm̂ − 5ðNc − 3ÞðσΛm̂ − σΣm̂Þ þ 4NcσΣ%m̂Þ

σΣ%ms
¼ ms

8m̂
ð−ðNc − 3Þð4σΔm̂ þ 5σΛm̂ − 5σΣm̂Þ þ 4ðNc − 2ÞσΣ%m̂Þ: ð28Þ

Several of these relations are poorly satisfied. The
deviations are calculable and given by the nonanalytic
contributions to one-loop. In the physical case Nc ¼ 3,
those deviations are numerically large for the first, third,
and fourth relations above. This in particular affects the
nucleon strangeness σ term, and thus indicates that its
estimation from arguments based on tree level relations is
subject to important corrections [63]. In terms of the octet
components of the quark masses, in addition to GMO
and ES relations one finds:

σNm8 ¼ ðNc þ 3ÞσΛm8 þ 3ðNc − 1ÞσΣm8

4ðNc − 3Þ
ð29Þ

σΔm8 ¼ −5ðNc − 3ÞσΛm8 þ 5ðNc − 3ÞσΣm8 þ 4NcσΣ%m8

4ðNc − 3Þ
;

ð30Þ

where it can be readily checked that they are well
defined for Nc → 3 as the numerators on the RHS are
proportional to ðNc − 3Þ. These relations are violated at
large Nc as Oðp3N0

cÞ. For both relations in the limit

Nc → ∞, one finds LHS − RHS ¼ Nc
128π ð

g∘A
Fπ
Þ2ðMK −MπÞ×

ðM2
K −M2

πÞ þOð1=NcÞ. Thus they are not as precise as
the GMO and ES relations.
Finally, if the LEC constant h3 vanishes, one extra tree-

level relation related to Eq. (26) follows, namely,

σΞ%m8 − σΣ%m8 − ðσΞm8 − σΣm8Þ ¼ 0 ð31Þ

which is only violated at large Nc as Oð1=N2
cÞ, and thus

expected to be very good.

To complete this section, fits to the octet and decuplet
baryon masses including results from LQCD are presented.
This in particular allows for exploring the range of validity
of the calculation as the quark masses are increased. The
mass formula for the fit is4:

mB ¼ Ncm0 þ
CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ −
c2
Λ
χ0þ −

c3
NcΛ3

χ̂2þ

− h2
N2

cΛ
χ̂þŜ

2 − h3
NcΛ

χ0þŜ
2 − 2

h4
NcΛ

χ̃aþSiGia

þ δm1−loop
B ; ð32Þ

where, in the isospin symmetry limit, χ0þ → 4B0m0;
χ̃aþ → 8B0δa8m8, and χ̂þ → 4B0ðm8T8 þ Ncm0Þ. The fits
at Nc ¼ 3 cannot obviously give the Nc dependence of
LECs. LECs of terms that depend on quark masses can be
more completely determined by fits that include the LQCD
results for different quark masses, e.g., c2 and the various
h0s. For this reason, such combined fits are presented here,
in Table II and in Fig. 4. Also, some LECs are redundant at
Nc ¼ 3, and are thus set to vanish for the fit. The constant
c3 is also set to vanish as it turns out to be of marginal
importance for the fit. A test of mass relations is shown in
Table III.
The study of the fits show that at fixed MK ∼ 500 MeV,

the physical plus LQCD results up to Mπ ∼ 300 MeV can

TABLE II. Results for LECs: the ratio g
∘
A=Fπ ¼ 0.0122 MeV−1 is fixed by using ΔGMO. The first row is the fit to

LQCD octet and decuplet baryon masses [48] including results for Mπ ≤ 303 MeV (dof ¼ 50), and second row is
the fit including also the physical masses (dof ¼ 58). Throughout the μ ¼ Λ ¼ mρ.

χ2dof m0 [MeV] CHF [MeV] c1 c2 h2 h3 h4

0.47 221(26) 215(46) −1.49ð1Þ −0.83ð5Þ 0.03(3) 0.61(8) 0.59(1)
0.64 191(5) 242(20) −1.47ð1Þ −0.99ð3Þ 0.01(1) 0.73(3) 0.56(1)

4A useful formula for the term proportional to h4 is [64]:
SiGi8 ¼ 1ffiffi

3
p ð34 Î

2 − 1
4 Ŝ

2 − 1
48NcðNc þ 6Þ þ 1

8 ðNc þ 3ÞY − 3
16Y

2Þ ¼
1

16
ffiffi
3

p ð12Î2 − 4Ŝ2 þ 3Sð2− SÞÞ, where S is the strangeness.
This term is responsible for the tree-level mass splitting between
Λ and Σ.
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vii) It is observed that σ̂ and σπ N have both a small and approxi-
mately linear dependency on MK in a very wide range. This in 
particular indicates that m̂ σs/ms must remain relatively small 
throughout.

viii) σs is poorly determined in the present study because the 
LQCD results are at approximately fixed ms . Its range of val-
ues is however in line with the natural expectations. A LQCD 
calculation performed with smaller MK than the physical one 
is necessary to obtain σs with better precision and also for 
understanding the effective theory in general.

ix) The results obtained for σπ N are consistent with the larger 
values obtained from π N analyses [7–11]. Note however that 
a more reliable value would require some more accurate and 
extensive LQCD results. Fig. 1 depicts the result for σπ N from 
Fit 2 and its comparison with other results.

x) The analysis also gives an estimate of the isospin-breaking σ
terms σ3 and σu+d(p − n). In addition one can extract the 
separate contributions σq(N), q = u, d, N = p, n. The results 
are the following: σu(p) = 26.23 MeV, σd(p) = 42.42 MeV, 
σu(n) = 23.82 MeV, σd(n) = 46.48 MeV, which checks with 
σπ N = m̂(σu/mu + σd/md). The relation σu(p) = σd(n) in the 
isospin symmetry limit is of course satisfied, but the naive 
quark model relation in the isospin limit σu(p) = 2σd(p) is 
significantly violated due to contributions by the SU(2) singlet 
component of the quark masses.

xi) Obviously, the discussion can be extended to the rest of the 
σ terms for the different baryons and their various rela-
tions [29].

xii) One can compare with an analysis in ordinary HBChPT with-
out the decuplet. In that case #GM O requires g̊ A/Fπ to be 
significantly larger (corresponding to gN

A = 1.48 at LO), which 
despite the lack of the decuplet contributions leads to val-
ues of the σ terms which are not very different but some-
what larger than the ones obtained here (σ̂ ∼ 83 MeV, σπ N ∼
76 MeV). The difference lies in the fact that in ordinary 
HBChPT the corrections to the axial currents couplings have 
large Nc power violating contributions, which compounded 
with the larger value of g̊ A/Fπ required by #GM O lead to 
a failure in describing the axial couplings obtained in LQCD at 
different quark masses [32], in particular their observed small 
quark mass dependencies.

xiii) Although the approach followed in recent work [33] should be 
expected to give a result for σπ N similar to the one obtained 
here, it is actually much smaller. It is not clear to the au-
thors whether this may be entirely due to the different set of 
LQCD data. However, since σ̂ is accurately obtained with only 
the physical masses, the result of [33] would require a large 
negative σs , which seems to be unlikely within the present 
framework.

3. Summary

The σ terms of nucleons were calculated using SU(3) BChPT ×
1/Nc. From the physical octet and decuplet baryon masses a value 
of σ̂ is obtained which is much larger than the one predicted by 
a tree level baryon mass combination, in agreement with similar 
observations in calculations that included the decuplet baryons as 
explicit degrees of freedom. The “σ term puzzle” is understood as 
the result of large non-analytic contributions to that mass com-
bination, while the higher order corrections to the σ terms have 
natural magnitude. The intermediate spin 3/2 baryons play an im-
portant role in enhancing σ̂ and thus σπ N . The analysis carried out 
here shows that there is compatibility in the description of #GM O
and the nucleon σ terms. The value of σπ N = 69 ± 10 MeV ob-
tained here from including LQCD baryon masses agrees with the 
more recent results from π N analyses, where the increase in value 

with respect to previous analyses has been understood as a result 
of the values of the input scattering lengths, and strongly disfavor 
the values from recent LQCD evaluations. The tension between re-
sults, which includes LQCD, remains as an important problem to 
which the present approach can hopefully contribute with useful 
insights. The resolution of that tension will in turn provide a vali-
dation test of the approach.
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The discussion can be extended to the rest of the σ terms for the different baryons and their various relations 
(Tree level)

Observations (Continued…)

The LO axial charge can be obtained by the fits to axial currents from LQCD, which is shown 
to have a value lower than 20% of the physical value.

16

More applications…..

7



The σ terms of nucleons were calculated using SU(3) BChPT × 1/Nc

Our value for sigma Pi-N is in agreement with similar determinations in calculations that included the 
decuplet baryons as explicit degrees of freedom 

The “σ term puzzle” is understood as the result of large non-analytic contributions to the mass 
combination, while the higher order corrections to the σ terms have natural magnitude.

The analysis carried out here shows that there is compatibility in the description of GMO and the nucleon σ 
terms

The value of σπN = 69 ± 10 MeV obtained here from fitting to Physical & LQCD baryon masses agrees 
with the more recent results from πN analyses 

Gasser et al. [5]

Pavan et al. [7]

Alarcón et al. [8]

Hoferichter et al. [9]

Dürr et al. [14]

Yang et al. [15]

Abdel-Rehim et al. [16]

Bali et al. [17]

This work
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

x) The results obtained for �⇡N are consistent with the larger values obtained from ⇡N analyses
[7; 8; 9; 10; 11]. Note however that a more reliable value would require some more accurate and
extensive LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with
other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.

6

Gasser et al. (1991)

( )

�
�

� ��
���

�
�

� ��
���

!"# $## $"# %##
&##

!###

!!##

!$##

!%##

!'##

!"##

!(##

!� !)*+"

!
!!
!
�
!!
"#

"

Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.

6

( )

Hoferichter et al. (2015)

)

�
�

� ��
���

�
�

� ��
���

!"# $## $"# %##
&##

!###

!!##

!$##

!%##

!'##

!"##

!(##

!� !)*+"

!
!!
!
�
!!
"#

"

Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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Figure 1: Left panel: summary of the determinations of �⇡N from ⇡N scattering (blue), from LQCD (red), and from
this work showing the combined fit and theoretical error. Right panel: N and � masses from Fit 2 of Table (1):
physical and LQCD masses from [32]. The squares are the results from the fit and the error bands correspond to 68%
confidence interval.

[7–11]. Note however that a more reliable value would require some more accurate and extensive
LQCD results. Fig. (1) depicts the result for �⇡N from Fit 2 and its comparison with other results.
xi) The analysis also gives an estimate of the isospin-breaking � terms �3 and �u+d(p � n). In
addition one can extract the separate contributions �q(N), q = u, d, N = p, n. The results are the
following: �u(p) = 26.23 MeV, �d(p) = 42.42 MeV, �u(n) = 23.82 MeV, �d(n) = 46.48 MeV,
which checks with �⇡N = m̂(�u/mu+�d/md). The relation �u(p) = �d(n) in the isospin symmetry
limit is of course satisfied, but the naive quark model relation in the isospin limit �u(p) = 2�d(p)
is significantly violated due to contributions by the SU(2) singlet component of the quark masses.
xii) Obviously, the discussion can be extended to the rest of the � terms for the di↵erent baryons
and their various relations [29].
xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case
�GMO requires g̊A/F⇡ to be significantly larger (corresponding to gN

A = 1.48 at LO), which despite
the lack of the decuplet contributions leads to values of the � terms which are not very di↵erent
but somewhat larger than the ones obtained here (�̂ ⇠ 83 MeV, �⇡N ⇠ 76 MeV). So, where is
the di↵erence?. The answer is simple: in ordinary HBChPT the corrections to the axial currents
couplings have large Nc power violating contributions, which compounded with the larger value
of g̊A/F⇡ required by �GMO lead to a failure in describing the axial couplings obtained in LQCD at
di↵erent quark masses [32], in particular their observed small quark mass dependencies.
xiv) Although the approach followed in recent work [33] should be expected to give a result for
�⇡N similar to the one obtained here, it is actually much smaller. It is not clear to the authors
whether this may be entirely due to the di↵erent set of LQCD data. However, since �̂ is accurately
obtained with only the physical masses, the result of [33] would require a large negative �s, which
seems to be unlikely within the present framework.
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µŜ
2O(⇠3) +

1

Nc
uiauja(SiSj)(`=2)O(⇠3) +

1

Nc
uµaub

µ{T a, T b}[I=2]O(⇠3)

+
1

Nc
uiaujb{Gia, Gjb}(`=2,I=2)O(⇠3)

◆
B, (1)

where m = Ncm0 is the spin-flavor singlet baryon mass in chiral limit, and the magnetic moment terms
consist of the one coming from the Dirac term 1

m ( ~B0
+ + ~Ba

+T
a) · ~S and the anomalous terms involving 0

(isoscalar) and 1,2 (isovector). Note that the magnetic transition between baryons of di↵erent spin are
meadited only by the term 2.Do we need w1,2 terms?
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• The value of g̊A/F⇡ can be fixed by �GMO, and it is consistent with the other calculations.

• Octet baryons in the intermediate states contribute 43% to �GMO and 33% to �8.

• One can realize that this is a well behaved expansion by considering the contribution to the baryon
mass from each LEC.

• �GMO and delta ��8 can be determined only by g̊A/F⇡, CHF and the meson masses, where as the
ratio ��8/�GMO doesn’t depend on g̊A/F⇡.

• Fit 2 is compatible with Fit 1: implies that the chiral extrapolation of the LQCD to the physical case
is consistent.

• The LQCD masses do not describe correctly the hyperfine mass shifts between the octet and decuplet
.

• Both �̂ and �⇡N has mild dependence on MK .

• Determination of �s was not precise because the LQCD results are at approximately fixed ms.

• Our result for �⇡N is consistent with the larger values obtained from ⇡ �N analyses.

• Iso spin breaking sigma terms �3 and �(u+d) were estimated.

• With the information we have we can determine the contribution of Nucleon mass due to the mass
di↵erence o↵ mu�d and therefore mProton and mNeutron di↵erence.

The intermediate spin 3/2 baryons play an important role in enhancing �̂ and thus �⇡N .

1
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