Baryon masses and σ terms in SU(3) BChPT × 1/Nc

Physics Letters B 781 (2018) 719–722

Ishara Fernando

Collaborators José Goity, José Manuel Alarcón

> Confinement 2018 August 02, 2018 Maynooth University Dublin, Ireland

Outline

- 1) Motivation
- 2) Introduction to combined approach : BChPT x 1/Nc expansion
- 3) Baryon masses
- 4) Gell-Mann-Okubo (GMO) Relation violation
- 5) Fit results to Baryon Masses
- 6) Sigma terms
- 7) Observations
- 8) Summay

1) The value of the pion-Nucleon sigma term ranges from 45 MeV to 64 MeV

2) There is a long lasting "puzzle" associated with a combination of baryon masses (in SU(3)) in the iso-spin symmetric limit, to obtain the pion-Nucleon sigma term, assuming the contribution by strange quark mass to the nucleon mass is negligible (OZI).

3) The connection between the pion-Nucleon sigma term and size of the correction to the Gell-Mann-Okubo relation

Can one explain these from the ChPT point of view ?

Non relativistic version of the BChPT or HBChPT is based on the expansion in terms of the "baryon mass"

The issue of experiencing a slower rate of convergence compare to the Goldstone Boson Sector

$$p_{\mu} = m_{\mathcal{B}} v_{\mu} + k_{\mu} \qquad v^{\mu} v_{\mu} = 1$$
$$v.k \ll m_{\mathcal{B}}$$
$$\frac{1}{p^2 - m_{\mathcal{B}}^2} \rightarrow \frac{1}{2m_{\mathcal{B}}} \frac{1}{(v.k)} + \mathcal{O}\left(1/m_{\mathcal{B}}^2\right)$$

Solution : Inclusion of the decuplet baryons in one-loop corrections to physical observables, has been showing a great improvement!

On the other hand, studying the baryons in the large Nc limit of QCD emerges a dynamical symmetry called "spin-flavor symmetry" which requires the possibility of having degenerate baryon multiplets of higher spin in the intermediate state/s.

Spin-flavor symmetry of Baryons in large Nc

Gervais & Sakita; Dashen & Manohar

Since, πN amplitude is $\mathcal{O}(N_c^0)$ $A = -i \frac{k^i k^j}{k_0} \frac{N_c^2 g^2}{f_\pi^2} [X^{ia}, X^{ib}] \Rightarrow [X^{ia}, X^{ib}] \leqslant \mathcal{O}(1/N_c)$ $\begin{bmatrix} \text{Large } N_c \text{ consistency condition} \\ [X_0^{ia}, X_0^{ib}] = 0 \end{bmatrix} \Rightarrow \begin{bmatrix} X^{ia}, X^{ib} \end{bmatrix} \leqslant \mathcal{O}(1/N_c)$ At large Nc, QCD has contracted spin-flavor symmetry $SU_c(2N_f)$ in baryon sector

This spin-flavor symmetry requires the existence of degenerate baryon multiplets with different spins (a dynamical symmetry) : leads to the consideration of both octet and decuplet contributions in the intermediate state

This symmetry is broken at sub-leading orders in

1/**Nc**

Leading order Lagrangian

$$\mathcal{L}_{\mathbf{B}}^{(1)} = \mathbf{B}^{\dagger} \left(iD_0 + \mathring{g}_A u^{ia} G^{ia} - \frac{C_{\mathrm{HF}}}{N_c} \hat{\vec{S}}^2 + \frac{c_1}{2\Lambda} \hat{\chi}_+ \right) \mathbf{B}$$

Only the hyperfine mass splitting term breaks symmetry at

$$-\frac{C_{HF}}{N_c}\mathbf{B}^{\dagger}\hat{S}^2\mathbf{B}$$

 $\mathcal{O}(\frac{1}{N_c})$

$$\begin{aligned} \mathcal{L}_{\mathbf{B}}^{(2)} &= \mathbf{B}^{\dagger} \left(-\frac{1}{2m} D^{2} + \frac{c_{2}}{\Lambda} \chi_{+}^{0} \frac{C_{1}^{A}}{N_{c}} u^{ia} S^{i} I^{a} + \frac{C_{2}^{A}}{N_{c}} \epsilon^{ijk} u^{ia} \{S^{j}, G^{ka}\} + \frac{1}{m} (\vec{B}_{+}^{0} + \vec{B}_{+}^{a} I^{a}) \cdot \vec{S} \right. \\ &+ \frac{1}{2m} (2(\kappa_{0} \ \vec{B}_{+}^{0} + \kappa_{1} \ \vec{B}^{a} I^{a}) \cdot \vec{S} + \frac{6}{5} \kappa_{2} \ B_{+}^{ia} G^{ia}) + \rho_{0} \vec{E_{-}^{0}} \cdot \vec{S} + \rho_{1} E_{-}^{ia} G^{ia} \\ &+ i \frac{\tau_{1+}}{N_{c}} (u_{0}^{a} G^{ia} D_{i} + D_{i} u_{0}^{a} G^{ia}) + \frac{\tau_{1-}}{N_{c}} [D_{i}, u_{0}]^{a} G^{ia} \right) \mathbf{B} \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{\mathbf{B}}^{(3)} &= \mathbf{B}^{\dagger} \bigg(\frac{c_{3}}{N_{c}\Lambda^{3}} \hat{\chi}_{+}^{2} + \frac{h_{1}\Lambda}{N_{c}^{3}} \hat{S}^{4} + \frac{h_{2}}{N_{c}^{2}\Lambda} \hat{\chi}_{+}^{2} \hat{S}^{2} + \frac{h_{3}}{N_{c}\Lambda} \chi_{+}^{0} \hat{S}^{2} + \frac{h_{4}}{N_{c}\Lambda} \chi_{+}^{a} \{S^{i}, G^{ia}\} \\ &+ \frac{C_{3}^{A}}{N_{c}^{2}} u^{ia} \{\hat{S}^{2}, G^{ia}\} + \frac{C_{4}^{A}}{N_{c}^{2}} u^{ia} S^{i} S^{j} G^{ja} \\ &+ \frac{D_{1}^{A}}{\Lambda^{2}} \chi_{+}^{0} u^{ia} G^{ia} + \frac{D_{2}^{A}}{\Lambda^{2}} \chi_{+}^{a} u^{ia} S^{i} + \frac{D_{3}^{A}(d)}{\Lambda^{2}} d^{abc} \chi_{+}^{a} u^{ib} G^{ic} + \frac{D_{3}^{A}(f)}{\Lambda^{2}} f^{abc} \chi_{+}^{a} u^{ib} G^{ic} \\ &+ g_{E}[D_{i}, F_{+i0}] + \alpha_{1} \frac{i}{N_{c}} \epsilon^{ijk} F_{+0i}^{a} G^{ia} D_{k} + \beta_{1} \frac{i}{N_{c}} F_{-ij}^{a} G^{ia} D_{j} + \cdots \bigg) \mathbf{B} \end{aligned}$$

Chiral Symmetry + Spin-flavor Symmetry

$$\int \frac{d^d k}{(2\pi)^d} \frac{i}{k^2 - M_\pi^2} \frac{i}{p^0 + k^0 - (m_{B'} - m_B)} \times \text{vertex factors}$$
Intermediate Octet and Decuplet
baryon contributions are included
$$\xi - \text{expansion}: 1/N_c = \mathcal{O}(p)$$

$$I_{1-loop}(Q, M_{\pi}) = \int \frac{d^{d}k}{(2\pi)^{d}} \frac{\vec{k}^{2}}{k^{2} - M_{\pi}^{2} + i\epsilon} \frac{1}{k^{0} - Q + i\epsilon}$$

$$= \frac{i}{16\pi^{2}} \left\{ Q \left((3M_{\pi}^{2} - 2Q^{2})(\lambda_{\epsilon} - \log \frac{M_{\pi}^{2}}{\mu^{2}}) + (5M_{\pi}^{2} - 4Q^{2}) \right) + 2\pi (M_{\pi}^{2} - Q^{2})^{3/2} + 4(Q^{2} - M_{\pi}^{2})^{3/2} \tanh^{-1} \frac{Q}{\sqrt{Q^{2} - M_{\pi}^{2}}} \right\},$$

 $Q = \delta m_n - p^0, \ \lambda_{\epsilon} = \frac{1}{\epsilon} - \gamma + \log 4\pi$

• ' C

Baryon Masses to $O(\xi^3)$ **in SU(3)**

$$\mathcal{L}_{B} = \mathbf{B}^{\dagger} \left(iD_{0} + \mathring{g}_{A} u^{ia} G^{ia} - \frac{C_{HF}}{N_{c}} \hat{S}^{2} - \frac{1}{2\Lambda} c_{2} \hat{\chi}_{+} + \frac{c_{3}}{N_{c} \Lambda^{3}} \hat{\chi}_{+}^{2} \right. \\ \left. + \frac{h_{1}}{N_{c}^{3}} \hat{S}^{4} + \frac{h_{2}}{N_{c}^{2} \Lambda} \hat{\chi}_{+} \hat{S}^{2} + \frac{h_{3}}{N_{c} \Lambda} \chi_{+}^{0} \hat{S}^{2} + \frac{h_{4}}{N_{c} \Lambda} \chi_{+}^{a} \{S^{i}, G^{ia}\} + \alpha \hat{Q} + \beta \hat{Q}^{2} \right) \mathbf{B}$$

$$\begin{split} m_{B} &= M_{0} + \frac{C_{HF}}{N_{c}}\hat{S}^{2} - \frac{c_{1}}{\Lambda}2B_{0}(\sqrt{3}m_{8}Y + N_{c}m_{0}) - \frac{c_{2}}{\Lambda}4B_{0}m_{0} \\ &- \frac{c_{3}}{N_{c}\Lambda^{3}}\left(4B_{0}(\sqrt{3}m_{8}Y + N_{c}m_{0})\right)^{2} \\ &- \frac{h_{1}}{N_{c}^{2}\Lambda}\hat{S}^{4} - \frac{h_{2}}{N_{c}\Lambda}4B_{0}(\sqrt{3}m_{8}Y + N_{c}m_{0})\hat{S}^{2} - \frac{h_{3}}{N_{c}\Lambda}4B_{0}m_{0}\hat{S}^{2} \\ &- \frac{h_{4}}{N_{c}\Lambda}\frac{4B_{0}m_{8}}{\sqrt{3}}\left(3\hat{I}^{2} - \hat{S}^{2} - \frac{1}{12}N_{c}(N_{c} + 6) \right) \\ &+ \frac{1}{2}(N_{c} + 3)Y - \frac{3}{4}Y^{2}\right) + \delta m_{B}^{\text{loop}}, \end{split}$$

$$\delta m_B^{1-loop} = i \frac{\mathring{g}_A^2}{F_\pi^2} \frac{1}{d-1} \sum_n G^{ia} \mathcal{P}_n G^{ia} I_{1-loop}(\delta m_n - p^0, M_\pi)$$

At tree level the GMO relation is exact for any Nc $\,$ up to $\,\mathcal{O}(\xi^3)$

$$\begin{split} \Delta_{\rm GMO} &= -\left(\frac{\overset{\circ}{g}_A}{4\pi F_{\pi}}\right)^2 \left(\frac{2\pi}{3} \left(M_K^3 - \frac{1}{4}M_{\pi}^3 - \frac{2}{\sqrt{3}} \left(M_K^2 - \frac{1}{4}M_{\pi}^2\right)^{\frac{3}{2}}\right) \\ &+ \frac{C_{\rm HF}}{2N_c} \left(4M_K^2 \log\left(\frac{4M_K^2 - M_{\pi}^2}{3M_K^2}\right) - M_{\pi}^2 \log\left(\frac{4M_K^2 - \frac{1}{3}M_{\pi}^2}{3M_{\pi}^2}\right)\right)\right) \\ &+ \mathcal{O}(1/N_c^3). \end{split}$$

The breaking / violation to the GMO relation is only coming through the loop corrections and it behaves like 1/Nc with Nc

Fit results to Experimental & Lattice QCD masses

I. P. FERNANDO and J. L. GOITY

PHYS. REV. D 97, 054010 (2018)

TABLE II. Results for LECs: the ratio $\mathring{g}_A/F_{\pi} = 0.0122 \text{ MeV}^{-1}$ is fixed by using Δ_{GMO} . The first row is the fit to LQCD octet and decuplet baryon masses [48] including results for $M_{\pi} \leq 303 \text{ MeV}$ (dof = 50), and second row is the fit including also the physical masses (dof = 58). Throughout the $\mu = \Lambda = m_{\rho}$.

$\chi^2_{ m dof}$	m_0 [MeV]	$C_{\rm HF}$ [MeV]	c_1	<i>c</i> ₂	h_2	h_3	h_4
0.47	221(26)	215(46)	-1.49(1)	-0.83(5)	0.03(3)	0.61(8)	0.59(1)
0.64	191(5)	242(20)	-1.47(1)	-0.99(3)	0.01(1)	0.73(3)	0.56(1)

Baryon matrix elements of scalar quark densities give us the information on the amount of baryon mass originates from the quark masses

Baryon masses and σ terms in SU(3) BChPT × 1/N_c

I. P. Fernando^{**}, J. M. Alarcón^{*}, J. L. Goity^{*,**} * Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA. ** Department of Physics, Hampton University, Hampton, VA 23668, USA. Physics Letters B 781 (2018) 719–722

Feynman-Hellman theorem

$$\sigma_i(B) = m_i \frac{\partial}{\partial m_i} m_B$$

Baryon mass dependencies on quark masses

$$\sigma_{\pi N} = \hat{\sigma} + 2\frac{\hat{m}}{m_s}\sigma_s$$

 m_i indicates a quark mass

$$\sigma_{\pi N} \equiv \frac{\hat{m}}{2m_N} \langle N \mid \bar{u}u + \bar{d}d \mid N \rangle \qquad \hat{\sigma} = \frac{\hat{m}}{2m_N} \langle N \mid \bar{u}u + \bar{d}d - 2\bar{s}s \mid N \rangle \qquad \sigma_s = \frac{m_s}{2m_N} \langle N \mid \bar{s}s \mid N \rangle \\ \sigma_{\pi N} \sim \hat{\sigma} \qquad |\sigma_s| \lesssim 50 \text{ MeV}$$

0

$$\sigma_{8} = \frac{1}{2m_{N}} \langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle \qquad \Delta \sigma_{8} \equiv \sigma_{8} - \frac{1}{3} (2m_{N} - m_{\Sigma} - m_{\Xi}) \\ \Delta \sigma_{8} = \sigma_{8} - \frac{1}{9} \left(\frac{5N_{c} - 3}{2} m_{N} - (2N_{c} - 3)m_{\Sigma} - \frac{N_{c} + 3}{2} m_{\Xi} \right)$$

$$\Delta_{GMO} \equiv 3m_{\Lambda} + m_{\Sigma} - 2(m_N + m_{\Xi}) \sim 25 \text{ MeV}$$

The dominant contributions to Δ_{GMO} and $\Delta \sigma_8$ are calculable non-analytic contributions: $\Delta \sigma_8 / \Delta_{GMO}$ (~ -13.5 for $N_c = 3$)

Fit	$\frac{\frac{\mathring{g}_A}{F_\pi}}{MeV^{-1}}$	$\frac{\frac{M_0}{N_c}}{\text{MeV}}$	C _{HF} MeV	<i>c</i> ₁	C ₂	h ₂	h ₃	h_4	α MeV	β MeV
1	0.0126(2)	364(1)	166(23)	-1.48(4)	0	0	0.67(9)	0.56(2)	-1.63(24)	2.16(22)
2	0.0126(3)	213(1)	179(20)	-1.49(4)	-1.02(5)	-0.018(20)	0.69(7)	0.56(2)	-1.62(24)	2.14(22)
3	0.0126*	262(30)	147(52)	-1.55(3)	-0.67(8)	0	0.64(3)	0.63(3)	-1.63*	2.14*
Fit	$\Delta^{ m phys}_{GMO}$ MeV	σ_8 MeV		$\Delta \sigma_8$ MeV	$\hat{\sigma}$ MeV	$\sigma_{\pi N}$ MeV	σ_s MeV		σ ₃ MeV	$\sigma_{u+d}(p-n)$ MeV
1	25.6(1.1)	-583((24)	-382(13)	70(3)(6)	_	_		-1.0(3)	-1.6(6)
2	25.5(1.5)	-582((55)	-381(20)	70(7)(6)	69(8)(6)	-3(32)		-1.0(4)	-1.6(8)
3	25.8*	-615((80)	-384(2)	74(1)(6)	65(15)(6)	-121(1	5)	_	_

LQCD data from : ALEXANDROU et al. (**PRD 90, 074501 (2014**))

 $\sigma_{\pi N} \equiv \frac{\hat{m}}{2m_N} \langle N \mid \bar{u}u + \bar{d}d \mid N \rangle$

summary of the determinations of $\sigma_{\pi N}$ from πN scattering

N and Δ masses: Fit 2 of Table

$$\sigma_{\pi N} = 69(8)(6) \text{ MeV}$$

6

- The value of \mathring{g}_A/F_{π} can be fixed by Δ_{GMO} , and it is consistent with the other calculations.
- Octet baryons in the intermediate states contribute 43% to Δ_{GMO} and 33% to $\Delta \sigma_8$.
- One can realize that this is a well behaved expansion by considering the contribution to the baryon mass from each LEC.
- Δ_{GMO} and $\Delta \sigma_8$ can be determined only by \mathring{g}_A/F_{π} , C_{HF} and the meson masses, whereas the ratio $\Delta \sigma_8/\Delta_{\text{GMO}}$ doesn't depend on \mathring{g}_A/F_{π} .
- Fit 2 is compatible with Fit 1: implies that the chiral extrapolation of the LQCD to the physical case is consistent.
- LQCD baryon masses have an issue of describing the hyperfine mass shifts between the octet and decuplet.
- Both $\hat{\sigma}$ and $\sigma_{\pi N}$ has mild dependence on M_K .
- Determination of σ_s was not precise because the LQCD results are at approximately fixed m_s .
- Our result for $\sigma_{\pi N}$ is consistent with the larger values obtained from πN scattering analyses.
- Iso spin breaking sigma terms σ_3 and $\sigma_{(u+d)}$ were estimated.
- With the information we have we can determine the contribution of Nucleon mass due to the mass difference of m_{u-d} and therefore m_{Proton} and m_{Neutron} difference.

The discussion can be extended to the rest of the σ terms for the different baryons and their various relations (Tree level)

$$\begin{split} \sigma_{Nm_s} &= \frac{m_s}{8\hat{m}} \left(-4(N_c - 1)\sigma_{N\hat{m}} + (N_c + 3)\sigma_{\Lambda\hat{m}} + 3(N_c - 1)\sigma_{\Sigma\hat{m}} \right) \\ \sigma_{\Lambda m_s} &= \frac{m_s}{8\hat{m}} \left(-4(N_c - 3)\sigma_{N\hat{m}} + (N_c - 5)\sigma_{\Lambda\hat{m}} + 3(N_c - 1)\sigma_{\Sigma\hat{m}} \right) \\ \sigma_{\Sigma m_s} &= \frac{m_s}{8\hat{m}} \left(-4(N_c - 3)\sigma_{N\hat{m}} + (N_c + 3)\sigma_{\Lambda\hat{m}} + (3N_c - 11)\sigma_{\Sigma\hat{m}} \right) \\ \sigma_{\Delta m_s} &= \frac{m_s}{8\hat{m}} \left(-4(N_c - 1)\sigma_{\Delta\hat{m}} - 5(N_c - 3)(\sigma_{\Lambda\hat{m}} - \sigma_{\Sigma\hat{m}}) + 4N_c\sigma_{\Sigma^*\hat{m}} \right) \\ \sigma_{\Sigma^* m_s} &= \frac{m_s}{8\hat{m}} \left(-(N_c - 3)(4\sigma_{\Delta\hat{m}} + 5\sigma_{\Lambda\hat{m}} - 5\sigma_{\Sigma\hat{m}}) + 4(N_c - 2)\sigma_{\Sigma^*\hat{m}} \right). \end{split}$$

I.P. Fernando, J.L. Goity, Phys. Rev. D 97 (2018) 054010, arXiv:1712.01672.

The LO axial charge can be obtained by the fits to axial currents from LQCD, which is shown to have a value lower than 20% of the physical value.

More applications.....

- The σ terms of nucleons were calculated using SU(3) BChPT × 1/Nc
- Our value for sigma Pi-N is in agreement with similar determinations in calculations that included the decuplet baryons as explicit degrees of freedom
- The " σ term puzzle" is understood as the result of large non-analytic contributions to the mass combination, while the higher order corrections to the σ terms have natural magnitude.
- The intermediate spin 3/2 baryons play an important role in enhancing $\hat{\sigma}$ and thus $\sigma_{\pi N}$
- The analysis carried out here shows that there is compatibility in the description of *GMO* and the nucleon σ terms
- The value of $\sigma \pi N = 69 \pm 10$ MeV obtained here from fitting to Physical & LQCD baryon masses agrees with the more recent results from πN analyses

