Radiative corrections in Dalitz decays of π^0, η and η' mesons

We briefly summarize current experimental and theoretical results on the two important processes of the low energy hadron physics involving neutral pions: the Dalitz decay of π^0 and the rare decay $\pi^0 \to e^+e^-$. As novel results we present the complete set of radiative corrections to the Dalitz decays $\eta'(\to \ell^+\ell^-\gamma)$ beyond the soft-photon approximation, i.e. over the whole range of the Dalitz plot and with no restrictions on the energy of a radiative photon. The corrections inevitably depend on the $\eta'(\to \gamma\gamma^*(\to \gamma))$ transition form factors. For the singly virtual transition form factor appearing e.g. in the bremsstrahlung correction, recent dispersive calculations are used. For the one-photon-irreducible contribution at the one-loop level (for the doubly virtual form factor), we use a vector-meson-dominance-inspired model while taking into account the $\eta-\eta'$ mixing.

Primary author: Dr HUSEK, Tomáš (IFIC, Universitat de València-CSIC (ES))
Co-authors: KAMPF, Karol (Charles University, Prague (CZ)); NOVOTNÝ, Jiří (Charles University, Prague (CZ)); LEUPOLD, Stefan (Uppsala University (SE))
Presenter: Dr HUSEK, Tomáš (IFIC, Universitat de València-CSIC (ES))
Session Classification: Light quarks
Track Classification: B: Light quarks