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Hadrons' internal structure

Standard Model of elementary particles: electrons, muons, quarks,
gluons, photons, W*, Z, Higgs, ...

dow quark

up quark

Credit: Brookhaven National Lab website

Experiment: HERA, LHC, BNL, JLab, SLAC, Fermilab, Electron-lon
Collider study hadron structure functions and try to discover the origin of

mass,
Theory: Quantum Chromodynamics (QCD) is the theory describing the
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Proton structure function

Large x

Lattice QCD is able to provide x-dependent structure functions, such as
the PDFs. The method seems to be applicable for large x > 0.1.
Reaching smaller values of x would require lattices large lattices.

Small x

| A

At small x where gluons dominate one introduces CGC - effective theory
which can be used among other applications to describe the structure of
hadrons. The basic equations are B-JIMWLK and BK. In the dilute
region - i.e. x is moderate and k; is large enough one can formally
neglect nonlinearities and use BFKL. The initial conditions can be
obtained for instance from McLerran-Venugopalan model.

Check

As for finding the signatures of nonlinearities of CGC type one first needs
to fit total cross section like F2 to extract the parameters of the initial
condition. Before this can be achieved, several systematic effects need to
be taken into account.
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-ucture function
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Fit to the HERA F2 data: Mantysaari, Schenke, arxiv:1806.06783
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Solving numerically the JIMWLK equation

Parallel code

Following the works by Rummukainen, Weigert, Lappi, Mantysaari,
Marquet, Petreska, Roiesnel we wrote a highly parallel implementation of
the stochastic approach to the JIMWLK equation:

o Fourier acceleration: as many parts as possible in momentum space
o parallel FFTW library
@ MPI parallelization in one dimension

@ openmp parallelization of the volume loops

‘Speed up factor on 128x128 lattice

perfect scaling —— | ) ) ) ) ) %

peed up facts




-I condition

McLerran-Venugopalan model

We generate the initial condition following Rummukainen and Weigert:

dipole correlation function C(x—y) = (TrU; Uy)
light-cone Y-M equations Uy = exp ( = g%(;())

random gaussian sources (P2(x)pP(y)) = 82b5(x —y)g?u?

lattice discretization (PE(x)pP(y)) = 82b5%I5(x —y)
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lJIMWLK equation as a stochastic process

Langevin equation

We implement the stochastic process following Lappi, Mantysaari (Eur.
Phys. J. C 73 (2013) 2307), Marquet, Petreska and Roiesnel (JHEP
1610 (2016) 065)

Us(s+85) = exp |~ V35 Y Uy(s) (R (x —)E()) Uj (s)] %
x Uy (s) %
xexp [VEs L K(x—y)E(y)]

y

where
Xo

w2’ Xo

The noise vectors & are uncorrelated, gaussian random variables with
o =1 variance.
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-K equation as a stochastic process

Including the running coupling

The running of the coupling can be included in the "square root"
prescription

Ui(s+85) = exp | = /By L Uy(s) (sl =y DR (x 1)) U (5)]
x Uy (s) %
xexp |y ¥ as(lx—y K (x=y)E(y)]
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-’IWLK equation as a stochastic process

Including the running coupling

Alternatively the running of the coupling can be included as a
modification of the & vectors (Lappi, Mantysaari, Eur. Phys. J. C (2013)
73)

Us(s+85) = exp |~ V35 Y Uy (5) (R (x = y)ii(y) ) Uy (5)] x

y
x Uy (s) %

xexp[ Z x—y)ni(y }
y
where now

5! 1 dk TK(X—
(ngng) = 57087 [ e el
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lAdding the running coupling to the JIMWLK equation

Including the running coupling

Two possibilities:

@ momentum space

(n'ng’) = 6*°6"5(q —p)as(p)
= diagonal in momentum space: for each p generate uncorrelated
gaussian variable with variance ¢ = a(p)

@ position space

(3 ngh) = 545" os(x~y)

= correlated random variables for each x and y: generate the
correlation matrix X, use Cholesky decomposition to get A such that
AAT =¥ transform uncorrelated gaussian variables: 1 = A&
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lAdding the running coupling to the JIMWLK equation

os(k) and o(r)

Ots(k): | _”3_175 K2\ qc
B n{[(/%CD) +(’\6CD) ] }

os(r) = 12 1475 4e—2YEN\ Lqc
Bin{[(7z%)c + (Haz—)<]"}

QCD
Following Lappi and Méantysaari we use (Eur. Phys. J. C (2013) 73):
o B=11—2N;/3, Ny =3,
0 c=0.2, upL =15 AgcpL =6
@ the running coupling freezes at the value o = 0.76

QCD

e we regularize r = 0 case by setting o,5(0) = 0.0001

They have shown that both definitions give compatible results for the BK
equation using the "square root" prescription.

4
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‘ the running couling to the JIMWLK equation

Evolution with constant coupling constant
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‘ the running couling to the JIMWLK equation

Constant coupling vs. running coupling in momentum space

K2 C(k)
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-g the running couling to the JIMWLK equation
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-1g the running couling to the JIMWLK equation
Running coupling in momentum vs. position space
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Connection with observations at NLO BK (Ducloue et al.,

arXiv:1807.04971) ?




l:onclusions

@ we have implemented the numerical framework for solving the
JIMWLK equation expressed as a Langevin equation

@ we implemented both the "square root" and Lappi’s prescription to
include the effects of the running coupling

@ both prescriptions can be implemented either in position or
momentum space

o we find that for the same evolution parameters, each prescription
gives different evolution speeds

@ study other remaining systematics

@ reconstruct cross-section from the correlation function

o implement and perform the fit to experimental data
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me)n(y)) = d(x—-y)

n(p) =n(p)n(p) = Y ePMn(x)n(y)

X,y

C(z)=L e C(p) =
= E Y Inxn(y) =
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