
Studying running coupling e�ects on the numerical

solutions of the JIMWLK equation

Piotr Korcyl

in collaboration with Krzysztof Cichy, Piotr Kotko, Krzysztof Kutak

XIIIth Quark Con�nement and the Hadron Spectrum, August 5, 2018

Piotr Korcyl 1/ 17



Hadrons' internal structure

Standard Model of elementary particles: electrons, muons, quarks,
gluons, photons, W±, Z , Higgs, . . .

Credit: Brookhaven National Lab website

Experiment: HERA, LHC, BNL, JLab, SLAC, Fermilab, Electron-Ion
Collider study hadron structure functions and try to discover the origin of
mass,
Theory: Quantum Chromodynamics (QCD) is the theory describing the
interactions of quarks and gluons.Piotr Korcyl 2/ 17



Proton structure function

Large x

Lattice QCD is able to provide x-dependent structure functions, such as
the PDFs. The method seems to be applicable for large x > 0.1.
Reaching smaller values of x would require lattices large lattices.

Small x

At small x where gluons dominate one introduces CGC - e�ective theory
which can be used among other applications to describe the structure of
hadrons. The basic equations are B-JIMWLK and BK. In the dilute
region - i.e. x is moderate and kt is large enough one can formally
neglect nonlinearities and use BFKL. The initial conditions can be
obtained for instance from McLerran-Venugopalan model.

Check

As for �nding the signatures of nonlinearities of CGC type one �rst needs
to �t total cross section like F2 to extract the parameters of the initial
condition. Before this can be achieved, several systematic e�ects need to
be taken into account.
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Proton structure function

Fit to the HERA F2 data: Mäntysaari, Schenke, arxiv:1806.06783
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Solving numerically the JIMWLK equation

Parallel code

Following the works by Rummukainen, Weigert, Lappi, Mäntysaari,
Marquet, Petreska, Roiesnel we wrote a highly parallel implementation of
the stochastic approach to the JIMWLK equation:

Fourier acceleration: as many parts as possible in momentum space

parallel FFTW library

MPI parallelization in one dimension

openmp parallelization of the volume loops

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  2  4  6  8  10  12  14  16  18  20

sp
ee

d 
up

 fa
ct

or

#processors * 12

Speed up factor on 128x128 lattice

perfect scaling

Piotr Korcyl 5/ 17



Initial condition

McLerran-Venugopalan model

We generate the initial condition following Rummukainen and Weigert:

dipole correlation function C (x−y) = 〈TrU†
xUy〉

light-cone Y-M equations Ux = exp
(
− i gρ(x)

∇2

)
random gaussian sources 〈ρa(x)ρ

b(y)〉= δ
a,b

δ (x−y)g2
µ
2

lattice discretization 〈ρa
k (x)ρ

b
l (y)〉= δ

a,b
δ
k,l

δ (x−y)
g2µ2

Ny
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Initial condition

Example
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JIMWLK equation as a stochastic process

Langevin equation

We implement the stochastic process following Lappi, Mäntysaari (Eur.
Phys. J. C 73 (2013) 2307), Marquet, Petreska and Roiesnel (JHEP
1610 (2016) 065)

Ux(s + δ s) = exp
[
−
√

δ s∑
y

Uy(s)
(
~K (x−y)~ξ (y)

)
U†
y (s)

]
×

×Ux(s)×

× exp
[√

δ s∑
y

~K (x−y)~ξ (y)
]

where
s =

αs

π2
y , y = ln

x0

x2

The noise vectors ξ are uncorrelated, gaussian random variables with
σ = 1 variance.
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JIMWLK equation as a stochastic process

Including the running coupling

The running of the coupling can be included in the "square root"
prescription

Ux(s + δ s) = exp
[
−
√

δy∑
y

Uy(s)
(

αs(|x−y |)~K (x−y)~ξ (y)
)
U†
y (s)

]
×

×Ux(s)×

× exp
[√

δy∑
y

αs(|x−y |)~K (x−y)~ξ (y)
]
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JIMWLK equation as a stochastic process

Including the running coupling

Alternatively the running of the coupling can be included as a
modi�cation of the ξ vectors (Lappi, Mäntysaari, Eur. Phys. J. C (2013)
73)

Ux(s + δ s) = exp
[
−
√

δ s∑
y

Uy(s)
(
~K (x−y)~η(y)

)
U†
y (s)

]
×

×Ux(s)×

× exp
[√

δ s∑
y

~K (x−y)~η(y)
]

where now

〈ηa,i
x η

b,j
y 〉= δ

a,b
δ
i ,j
∫

d2k

(2π)2
e ik(x−y)

αs(k)
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Adding the running coupling to the JIMWLK equation

Including the running coupling

Two possibilities:

momentum space

〈ηa,i
p η

b,j
q 〉= δ

a,b
δ
i ,j

δ (q−p)αs(p)

⇒ diagonal in momentum space: for each p generate uncorrelated
gaussian variable with variance σ = αs(p)

position space

〈ηa,i
x η

b,j
y 〉= δ

a,b
δ
i ,j

αs(x−y)

⇒ correlated random variables for each x and y: generate the
correlation matrix Σ, use Cholesky decomposition to get A such that
AAT = Σ, transform uncorrelated gaussian variables: η = Aξ
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Adding the running coupling to the JIMWLK equation

αs(k) and αs(r)

αs(k) =
4π

β ln
{[( µ2

0

Λ2QCD

) 1
c +

(
k2

Λ2QCD

) 1
c
]c}

αs(r) =
4π

β ln
{[( µ2

0

Λ2QCD

) 1
c +

(
4e−2γ

E

r2Λ2QCD

) 1
c
]c}

Following Lappi and Mäntysaari we use (Eur. Phys. J. C (2013) 73):

β = 11−2Nf /3, Nf = 3,

c = 0.2, µ0L = 15, ΛQCDL = 6

the running coupling freezes at the value α0 = 0.76

we regularize r = 0 case by setting αs(0) = 0.0001

They have shown that both de�nitions give compatible results for the BK
equation using the "square root" prescription.
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Adding the running couling to the JIMWLK equation

Evolution with constant coupling constant
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Adding the running couling to the JIMWLK equation

Constant coupling vs. running coupling in momentum space
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Adding the running couling to the JIMWLK equation

"Square root" vs. Lappi's prescription
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Adding the running couling to the JIMWLK equation

Running coupling in momentum vs. position space
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Connection with observations at NLO BK (Ducloue et al.,
arXiv:1807.04971) ?
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Conclusions

Summary

we have implemented the numerical framework for solving the
JIMWLK equation expressed as a Langevin equation

we implemented both the "square root" and Lappi's prescription to
include the e�ects of the running coupling

both prescriptions can be implemented either in position or
momentum space

we �nd that for the same evolution parameters, each prescription
gives di�erent evolution speeds

Outlook

study other remaining systematics

reconstruct cross-section from the correlation function

implement and perform the �t to experimental data
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Fourier transforms

〈η(x)η(y)〉= δ (x−y)

η(p) = η(p)η(p) = ∑
x,y

e ip(x+y)
η(x)η(y)

C (z) = ∑
p

e−ipzC (p) =

= ∑
p

∑
x,y

e ip(z−x−y)
η(x)η(y) =

= ∑
x,y

δ (z−x−y)η(x)η(y) =

= ∑
x

η(x)η(z−x)

〈C (z)〉= ∑
x

〈η(x)η(z−x)〉= ∑
x

δ (2x−z)
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