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Aim: determine the valence quark distribution of pion
q(x) = qu(x) — qq(x) from lattice QCD using large momentum effective theory
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From parton distributions to quasi parton distribution

X. Ji 2013 calculable in perturbation theory
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calculable on the lattice, A ~ 1/a
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Challenges for lattice calculations:

e Small lattice spacings to make perturbative matching possible
= HYP smeared Wilson valence quarks on HISQ sea:
241 flavor HISQ, 483 x 64, a = 0.06 fm, m** = 300 MeV,
m:;°* =161 MeV

e Need large P, which makes the correlators noisy
= momentum smearing

e Need to match the lattice scheme to M S scheme
= use RI/MOM as an intermediate renormalization scheme



Calculating correlators at large momenta

Gaussian sources via Wuppertal smearing for the moving pion,
Gisken et al, 1989

effective masses (50 configs, 32 sources)

—— dispersion
0.38 [P"Z = 0.00 GeVJ &~ wupx40
60 :
0.36 4, i AMA with 32 sloppy propagators

0.30 & & wupx90 Izubuchi, Shintani, 2011

t Wuppertal smearing works fine for P, = 0
YA\ and the ground energy is approached for

1.6 1

141 t = 8, but for effective masses are too noisy

already for P, = 0.86 GeV

1.2 %

1.0 A

0.8 A

—— dispersion
—— wupx40
0.4 1 —$— wupx60
0.2 - —&— wupx140
—— wupx90

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

0.6 -

0.0




Calculating correlators at large momenta (cont’d)

Modify the Gaussian smearing such that quarks inside the source have non-zero
momenta k, = (P,, Bali 2016

We use momentum boosted Coulomb gauge fixed Gaussian sources
(cheaper computationally)

effective masses (50 configs, 32 sources)

Merr GeV vs C at Pz 1.72 GeV
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Calculating correlators at large momenta (cont’d)

Modify the Gaussian smearing such that quarks inside the source have non-zero
momenta k, = (P,, Bali 2016

We use momentum boosted Coulomb gauge fixed Gaussian sources
(cheaper computationally)
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effective masses (168 configs, 32 sources)

Merr GeV vs € at Pz = 1.29 GeV
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Renormalization and matching of gPDF

Workflow:

Qb<Z, PZ7a) — qR<Z7 PZ7p,]z%7 ,MR) — QR(xa PZ7pf7,uR)

Perform matching from RI/MOM to M S
Stewart, Zhao, 2017
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For Wilson fermions v, operator mixes with unit operator = to be considered
in the renormalization
Constantinou, Panagopoulos, 2017, Alexandrou et al, 2017, Chen et al, 2017

Non-perturbative RI/MOM: fix Landau gauge on the lattice, calculate the am-
putated 3-point function on quark states at momentum p and require that for

P, = pZR and p? + p2T = ,u%z it is equal to the tree level result
Stewart, Zhao, 2017, Chen et al 2017
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Renormalization constants in non-perturbative RI/MOM

plt =1.28 GeV, pf =1.48 GeV
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How well the 1-loop result describes the quark 3-pt function ?

Non-perturbative RI/MOM renormalization removes some of the lattice arti-
facts and the self-energy divergence = the renormalized quark 3-pt function
should agree to some extent with 1-loop result of Stewart and Zhao, 2017

plt =1.28 GeV, pi = 1.48 GeV
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Pion 3-point functions at different momenta

Ratio vs Operator Insertion: pz4 y, 1HYP
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it is sufficient to take 7 = At/2
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Pion 3-point functions at different momenta (cont’d)

qPDF vs z: Pz1.72 GeV: y,: T=At/2
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At = 10 and At = 12 results agree within errors
— take At = 10 results for extracting qPDF.
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From coordinate space qPDF to momentum space qPDF
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Pion PDF and comparison to extraction from experiments

plt =1.28 GeV, p =1.48 GeV 1 =3.2 GeV
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comparison to pion PDF from data on mA DY and neutron electro-production
at HERA: Barry et al (JAM), 2018
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Pion PDF and comparison to extraction from experiments

plt =1.28 GeV, p =1.48 GeV p=32 GeV
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at HERA: Barry et al (JAM), 2018
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r q(z, 1)

Dependence of Pion PDF on RI/MOM scales
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Summary

The valence quark distribution have been calculated on fine lattice (a =

0.06 fm) using partially quenched calculations (HYP smeared Wilson on
HISQ)

Non-perturbative RI/MOM renormalization has been implemented and it
seems to follow the expectations from perturbation theory =- matching
from qPDF to PDF is meaningful

The lattice result on valence pion PDF agree with phenomenological de-
termination for large momenta, P, = 1.72 GeV within (large) errors

Obtaining a good signal is challenging, especially at large z
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