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The anomalous magnetic moment of muon

We only understand roughly 5% of the energy in the Universe.
However, there are very few experiments which disagree with
the prediction of the standard model.
The magnetic moment of the muon aµ governs the interaction
of it with a magnetic field. There is a long standing deviation
between the theory and experiment for aµ.

This talk is about a lattice QCD calculation of some of the
hadronic contribution to aµ.
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aµ experiment versus theory

The 2017 PDG review quotes:

aexptµ − aSMµ = 268(63)(43)10−11

where the first error is from the last experiment at Brookhaven. A
3.5σ deviation! Is this caused by BSM physics (but no BSM has
seen at the LHC) or are the QCD contributions not under control?

There is a new experiment at Fermilab.

This talk is about the leading order (LO) hadronic
contributions.
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Current state of leading order hadronic contributions

Nf = 2 + 1 + 1 BMW 17

HPQCD 16

ETMC 13

Nf = 2 + 1 RBC/UKQCD 18

Nf = 2 Mainz/CLS 17
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Figure: Plot from 1807.09370 Harvey B. Meyer, Hartmut Wittig.

The difference between the red (theory) and green (derived
from expt.) section ”could be” caused by new BSM particles.

Small errors are good! Large errors are bad!
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Motivation

The goal of calculating the leading order hadronic contribution to
the muon anomalous magnetic moment using lattice QCD, with an
error under 1%, requires:

Computation of disconnected diagrams.

The reduction of the statistical errors in the “large” time part
of the vector correlator.

isospin violating terms (see 1710.11212)

non-perturbative QED + hadronic

This talk is about computing the disconnected contributions. This
is part of a much bigger calculation by the FNAL/HPQCD/MILC
collaborations to improve the result from the HPQCD
collaboration.
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Some background to lattice QCD

To solve QCD for bound state properties “all” that is required is to
compute

cii (t) =
1

Z

∫
du

∫
dψdψV (t)iV (0)†i e

−SF−SG

The path integral is regulated by the introduction of a space-time
lattice.

The integral is computed in Euclidean space using Monte
Carlo techniques on the computer.

The Monte Carlo process produces an ensemble of gauge
configurations (“ snapshot of the vacuum.”)

Our lattice version of the Dirac operator is the Highly
Improved Staggered Quark (HISQ).

Taste singlet vector (one link) operator measured.
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Disconnected diagrams µ

f

µ

f f 0

1

Disconnected diagrams are OZI suppressed, but they still need
to be calculated. (The disconnected diagrams in this
calculation are zero in the SU(3) limit).

The main difference between the calculation of the masses of
the ω meson and ρ meson are disconnected diagrams.

The executive summary is that we are computing the trace of the
inverse of a matrix (with order 20× 106) inside a Monte Carlo
lattice QCD calculation.
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Computing with noise

〈η†i ηj〉 = δij

The matrix equation is solved for the noise vector ηi for i running
from 1 to the number of samples Nsamp.

Mχi = ηi

The trace of the inverse of the M matrix, at time t, is estimated
from

trace(M−1)t ≈
1

Nsamp

Nsamp∑
i=1

(η†i χi )t

≈ 1

Nsamp

Nsamp∑
i=1

(η†i M
−1ηi )t
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Algorithmic improvements

It is expensive to reduce the error

error ∼ A

(Nsamp)1/2

where Nsamp is the number of stochastic sources.

Choice of noise Z2 versus Gaussian

Variance reduction (eg. hopping parameter)

dilution/partition

distillation

Use eigenvalues, eigenvectors

hierarchical probing (1611.01193)

Use a fast inverter, such as Multigrid

There are many choices of different algorithms, so much tuning is
required.
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Disconnected diagrams from eigenvalues

The vector space can be broken down into the space spanned by
the first Neig eigenvectors and the orthogonal space to that.

PL + PH = 1

Trace
(
ΓM−1

)
= Trace

(
PLΓM−1

)
+ Trace

(
PHΓM−1

)
Use the ARPACK eigensolver library with polynomial
acceleration to estimate up to 2000 eigenvectors (eigenvalues
µi ).

Trace
(
PLΓM−1

)
=

Neig∑
i=1

(
〈vi , Γvi 〉(

1

µi
)

)

Use random sources to estimate Trace
(
PHΓM−1

)
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Correlators from loops

Form a correlator from two loops separated by t in time.

d(t) =
1

3V

∑
j=0,1,2

∑
t′

Vj(t + t ′)Vj(t ′)

where Vj(t) is vector loop with component i at time t and V is the
space-time volume.
Vector current in SU(3) limit.

Vj =
1

3
(Vu/dj − Vsj )

This really helps reduce the errors.
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Computing a
HVP(LO)DISC
µ

Method introduced by Mainz group and used by RBC/UKQCD
collaboration.

aHVP(LO)DISC
µ =

∞∑
t=0

w(t)d(t)

where d(t)is the strange-light disconnected correlator, measured in
the simulation. Also some analysis with
https://github.com/gplepage/g2tools

w(t) = 4α2

∫ ∞
0

dq2f (q2)

(
cos(qt)− 1

q2
+

1

2
t2
)

where f (q2) is a kinematic factor derived by Blum and α is the
QED coupling.

aHVP(LO)DISC
µ (T ) ≈

T∑
t=0

w(t)d(t) + corrections
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Preliminary measurement tests

Low statistics analysis to try to optimize the measurements.

Ensemble parameters: a=0.15 fm, pion mass 300 MeV,
163 × 48 volume.

Correlator has similar shape to that published by
RBC/UKQCD.
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Disconnected vector correlator (1648f211b580m013m065m838a)
vy, ns=64 (time dilution), 2000 eigen + stoch, 14 latt
vy, ns=64 (time dilution),0 eigen, 16 latt
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Preliminary results at the physical point

We are running an ensemble with a = 0.12 fm, mπ ∼ 135
MeV, with volume 323 × 64.
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Ensemble l4864f211b600m00184m0507m628

a=0.12 fm, m 135 MeV, volume = 483 × 64

Disconnected vector (<ll - ss> <ll - ss>) 
vy, ns=128 (volume),  101 latt
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Preliminary results at the physical point

Renormalization ZV = 1.0/0.852(2) (1511.07382)

Need higher statistics, but the numbers for a
HVP(LO)DISC
µ (T )

looks reasonable for this ensemble.
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Comparison to other results

From BMW arXiv:1711.04980 also used staggered fermions.
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FIG. S4. Continuum extrapolation of the various flavor contributions to aLO-HVP
` (Q2 GeV) obtained using tc = (3.000 ±

0.134) fm for the ud contribution and tc = (2.600 ± 0.134) fm for the disconnected one. From left to right, ` = e, µ, ⌧ . From
top to bottom, the connected light, strange, charm, and disconnected contributions. The red open circles with errors are the
results from our 15 simulations for the ud and s, 13 for the charm and 12 for the disconnected contributions, with statistical
uncertainties. These points have been interpolated to the physical mass point using the fits to all lattice spacings (solid lines).
The di↵erent lines represent the fits obtained by imposing cuts in a (solid for no cut, dashed for a  0.118 fm, dotted for
a  0.111 fm, dot-dashed for a  0.095 fm). The fact that a few of the lines do not appear to fit the red points is due to the
dependence on other lattice parameters in those fits, which is slightly di↵erent from the one corresponding to the solid line. The
green squares are the continuum extrapolated results for the given Qmax and tc, with statistical and continuum extrapolation
errors only.

all of these situations in the same way and discuss them
together.

For the light-quark contribution to
aLO-HVP
` (Q2 GeV), the dependence on meson masses

is not significant statistically and the terms associated
with this dependence can be ignored. However, as can be
seen in the upper panels of Fig. S4, the dependence on
a2 is strong, due to the sensitivity of this contribution to
low-energy, two-pion states which, in turn, are sensitive
to taste splittings. The fact that the anomalous moment
of the lighter e is more sensitive to these states than
that of the µ that is, in turn, more sensitive than that
of the ⌧ , explains the fact that aLO-HVP

e (Q2 GeV) has
the strongest a2 dependence while aLO-HVP

⌧ (Q2 GeV)
has the weakest.

The situation is di↵erent for the strange contribution,
much less a↵ected by taste violations. As the second pan-
els of Fig. S4 show, the continuum limits are very mild.
They are much less so for the charm, as shown in the
third panels, due to the large value of mc in lattice units.
Here it is the magnetic moments of the more massive lep-
tons which are steeper, due to their sensitivity to larger
Q. In addition to the dependence on a2, a linear depen-
dence on M2

K� is needed for both contributions and one
on M⌘c

is required to correct a slight mistuning of the
charm mass in that quark’s contribution.

Our results for aLO-HVP
`,disc,lat(Q2 GeV) have large lattice

artefacts, as shown in the bottom panels of Fig. S4. This
is because the taste violations of the ud contribution en-
hance the SU(3)-flavor cancellation against the s contri-
bution in aLO-HVP

µ,disc,lat, as a2 is increased. In these results we
neglect the charm contribution which we find to be less
than 1% of the total disconnected contribution on our
coarsest lattice, i.e. much smaller than the disconnected,
statistical error. In addition, because statistical errors
are quite large, no dependence on quark mass is required
to describe the lattice data.

As explained in the main text, the systematic error as-
sociated with these continuum limits and physical-point
interpolations are obtained by imposing four cuts on the
lattice spacing in the quark-connected case and three for
the disconnected contributions. The results of these cuts
are then combined, as detailed in the main text, to give a
central value and statistical and systematic errors. The
results for the various contributions to the magnetic mo-
ments of all three leptons with the four values of the
momentum cut Qmax considered are summarized in Ta-
ble S2.

Strong lattice spacing dependence. (UKQCD/RBC also found
strong quark mass dependence).

14 12 10 8 6 4 2 0
aLHO; DIS 1010

RBC/UKQCD 

BMW 
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Conclusions

I have described a technical lattice QCD calculation to reduce
the error on a

HVP(LO)
µ . Ongoing runs to reduce errors.

Option O

In 2021 the FNAL experiment reports reduced experimental
errors on aHVP

µ and the central value doesn’t change.

If the hadronic contribution are reliably calculated, the the
deviation between experiment and standard model is 7.5σ and
this gives us the first indication of the scale of new physics.

Option P

The new FNAL experimental result is consistent with the
standard model. Or the standard model predictions move
towards the experimental numbers.

Both options require reduced errors from lattice QCD calculations.
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