Towards the NNNLO pressure of cold and dense QCD
Matias Säppi, University of Helsinki
Collaborators: Gorda, Kurkela, Romatschke, Vuorinen
XIIIth Quark Confinement and the Hadron Spectrum
Maynooth University, Ireland. August 1 – 6 2018
Outline

1 Introduction
2 NNLO Logarithm
3 Double-log at NNNLO
4 Conclusions
Introduction
Goal: Describe how strongly interacting matter behaves under different conditions

- Corresponds to computing the QCD pressure

\[p (\{\mu_i\}_i; \{m_i\}_i; T, \ldots) = T \log \int D\psi D\bar{\psi} D\phi Dc D\bar{c} \exp(-S)/V \]
Motivation

- **Goal:** Describe how strongly interacting matter behaves under different conditions

 - Corresponds to computing the QCD pressure
 \[p (\{\mu_i\}_i; \{m_i\}_i; T, \ldots) = T \log \int D\psi \bar{D}\psi D\bar{A} Dc D\bar{c} \exp(-S)/V \]

- **Plenty of applications:** Early universe, heavy-ion collisions, **neutron stars**...

 - I’ll concentrate on the last one: Cold & Dense Matter,
 \[p (\{\mu_i\}_i; \{m_i\}_i; T, \ldots) \rightarrow p (\mu_B) \]
Computing the pressure at large density presents challenges

- Lattice methods are non-perturbative and use first-principles theory, but suffer from the sign problem
Methodology – Problems With a Large Density

- Computing the pressure at large density presents challenges
 - Lattice methods are non-perturbative and use first-principles theory, but suffer from the sign problem
 - Traditional EFTs (eg. \(\chi\)PT) are applicable at lower densities, but suffer from inaccuracies at larger densities, and aren’t based on first principles
 - No suitable DR-framework
For the purposes of this talk, focus is on standard perturbation theory

- pQCD is based on first principles\(^1\), expansion in \(\alpha_s\) is possible at asymptotically large \(\mu_B\)

\(^1\)...We do use some HTL, but only to get rid of terms that are of higher order in the coupling itself
Methodology – Using pQCD at Large Density

- For the purposes of this talk, focus is on standard perturbation theory
 - pQCD is based on first principles\(^1\), expansion in \(\alpha_s\) is possible at asymptotically large \(\mu_B\)
 - Convergence is bad at physical densities, high-order corrections are required (hence NNNLO)
 - Suffers from IR-ambiguities, resummation needed

\(^1\)...We do use some HTL, but only to get rid of terms that are of higher order in the coupling itself
In systems like the early universe & heavy-ion collisions, μ_B often fairly small

Some of the problems plaguing large μ_B disappear

- Lattice methods work if the sign problem is at most mild or can be circumvented
- pQCD admits a dimensionally reduced framework when T/μ_B is large and is understood better

Plenty of accurate results and experiments!
NNLO Logarithm
Thermal pQCD History Lesson pt. I

\[p = c_0 + c_1 \alpha_s + c_{2,1} \alpha_s^2 \log \alpha_s + c_{2,0} \alpha_s^2 \]
\[+ c_{3,2} \alpha_s^3 \log^2 \alpha_s + c_{3,1} \alpha_s^3 \log \alpha_s + c_{3,0} \alpha_s^3 + \ldots \]

- Simplest case for dense matter: massless quarks and zero temperature
- \(c_0, c_1 \) easy to compute
- NNLO factors \(c_{2,1}, c_{2,0} \) calculated already in the 70s (!) \(^2\)

\(^2\) Freedman & McLerran, Phys. Rev. D 16 1977
THERMAL pQCD HISTORY LESSON pt. I

\[p = c_0 + c_1 \alpha_s + c_{2,1} \alpha_s^2 \log \alpha_s + c_{2,0} \alpha_s^2 \]
\[+ c_{3,2} \alpha_s^3 \log^2 \alpha_s + c_{3,1} \alpha_s^3 \log \alpha_s + c_{3,0} \alpha_s^3 + \ldots \]

- Simplest case for dense matter: massless quarks and zero temperature
- \(c_0 \), \(c_1 \) easy to compute
- NNLO factors \(c_{2,1}, c_{2,0} \) calculated already in the 70s (!) \(^2\)
- Assumptions later relaxed to e.g. \(m \neq 0 \) \(^3\) and small but finite \(T \) \(^4\), but no previous NNNLO calculations

\(^2\) Freedman & McLerran, Phys. Rev. D 16 1977

\(^3\) Kurkela et al., hep-ph/0912.1856

\(^4\) Kurkela & Vuorinen, hep-ph/1603.00750
Thermal pQCD History Lesson pt. II

\[p = c_0 + c_1 \alpha_s + c_{2,1} \alpha_s^2 \log \alpha_s + c_{2,0} \alpha_s^2 \]
\[+ c_{3,2} \alpha_s^3 \log^2 \alpha_s + c_{3,1} \alpha_s^3 \log \alpha_s + c_{3,0} \alpha_s^3 + \ldots \]

■ Compare with ”hot” QCD (large-\(T\) limit)
■ Partial NNNLO results: \(c_{3,2} = 0\) and \(c_{3,1}\) is known \(^5\)

\(^5\)Kajantie et al. hep-ph/0211321
Thermal pQCD History Lesson pt. II

\[p = c_0 + c_1 \alpha_s + c_{2,1} \alpha_s^2 \log \alpha_s + c_{2,0} \alpha_s^2 \]
\[+ c_{3,2} \alpha_s^3 \log^2 \alpha_s + c_{3,1} \alpha_s^3 \log \alpha_s + c_{3,0} \alpha_s^3 + \ldots \]

- Compare with ”hot” QCD (large-\(T\) limit)
- Partial NNNLO results: \(c_{3,2} = 0\) and \(c_{3,1}\) is known \(^5\)
- Theory fundamentally different:
 - A 3d DR description is available
 - Notably, the theory has a magnetic scale, \(\alpha_s T\), which is absent at \(T = 0\)
 - As a consequence, the ”hard” contribution \(c_{3,0}\) cannot be computed in pure perturbation theory!

\(^5\)Kajantie et al. hep-ph/0211321
Scale Hierarchy at Finite μ_B & $T = 0$

- Naïve diagrammatic expansion valid close to vacuum, where the fields are not screened

- Hard Scale $P \sim \mu_B$:
 - Energetic excitations \rightarrow medium effects suppressed
 - Standard Feynman graph expansion OK
Scale Hierarchy at Finite μ_B & $T = 0$

- Naïve diagrammatic expansion valid close to vacuum, where the fields are not screened.
- In a dense medium, medium effects break the formalism → Resummation of diagram classes required.

- Hard Scale $P \sim \mu_B$:
 - Energetic excitations → medium effects suppressed
 - Standard Feynman graph expansion OK

- Soft Scale $P \sim \alpha_s^{1/2} \mu_B$:
 - Low-energy excitations → medium effects significant
 - Resum IR-sensitive objects (gluons) to all orders
Scale Hierarchy at Finite μ_B & $T = 0$

- Naïve diagrammatic expansion valid close to vacuum, where the fields are not screened
- In a dense medium, medium effects break the formalism
 → Resummation of diagram classes required
- In the intermediate region, when ratios of scales are involved, nonanalytic terms $\mathcal{O}(\alpha_s^m \log^n \alpha_s)$ are generated from resummed diagrams

- Hard Scale $P \sim \mu_B$:
 - Energetic excitations
 → medium effects suppressed
 - Standard Feynman graph expansion OK

- Semisoft Scale $\alpha_s^{1/2} \mu_B \ll P \ll \mu_B$:
 - ”Somewhat” energetic excitations
 → medium effects present
 - Corrections to naïve diagrams not suppressed enough, but approximations possible

- Soft Scale $P \sim \alpha_s^{1/2} \mu_B$:
 - Low-energy excitations
 → medium effects significant
 - Resum IR-sensitive objects (gluons) to all orders
First logs at $\mathcal{O}(\alpha_s^2)$: The gluonic ring sum
1-loop Ring Sum

- First logs at $\Theta(\alpha_s^2)$: The gluonic ring sum

- Well-known: Contributes a non-analytic term at NNLO: $c_{2,1} \neq 0$
Even the 1-loop self-energy is complicated.

IR DoFs admit an effective description, and only they require resummation!
HTL Approximation

- Even the 1-loop self-energy is complicated
- IR DoFs admit an effective description, and only they require resummation!
- Hard Thermal Loops\(^6\) suitable since hard modes dominate the self-energies

Physical motivation: Accounts for the medium

\(^6\)Hard Dense Loops, really, but abbreviated HTL here
Approximating the Ring Sum

Applying the HTL approximation leads to the following:

\[\begin{align*}
& \Pi + \Pi + \Pi + \Pi + \ldots \\
= & \left(\begin{array}{c}
\Pi \\
_{\text{HTL,}} \\
_{P < \Lambda}
\end{array} \right) + \left(\begin{array}{c}
\Pi \\
_{P > \Lambda}
\end{array} \right) + \mathcal{O}(\alpha_s^3)
\end{align*} \]

- The logarithms, that is, the semisoft region, can be taken to come from the UV-limit of the first term or the IR-limit of the second one, we choose the first.
- Using HTL gives the correct \(c_{2,1}\) : There is a Logarithmic enhancement at NNLO from the semisoft modes.
HTL Propagators & m_E

- After scalarisation, transversal and longitudinal gluons:

$$G_T(P) = \frac{-1}{P^2 + \frac{m_E^2}{d-1} - \frac{p^2}{p^2} \Pi_{HTL}(P)}, \quad G_L(P) = \frac{1}{p^2 + \Pi_{HTL}(P)}$$

- HTL structure is given by the function

$$\Pi_{HTL}(P) = m_E^2 \left(1 - \int_{S^{d-1}} \Omega_v \frac{iP_0}{iP_0 - p \cdot v} \right)$$

- Details unimportant, point is that the propagators are nontrivial
After scalarisation, transversal and longitudinal gluons:

\[G_T(P) = \frac{-1}{P^2 + \frac{m_E^2}{d-1} - \frac{p^2}{p^2} \Pi_{HTL}(P)}, \quad G_L(P) = \frac{1}{p^2 + \Pi_{HTL}(P)} \]

HTL structure is given by the function

\[\Pi_{HTL}(P) = m_E^2 \left(1 - \int_{S^{d-1}} \Omega_v \frac{iP_0}{iP_0 - p \cdot v} \right) \]

Details unimportant, point is that the propagators are nontrivial

Without quark masses, the only scale is the effective mass

\[m_E^2 \equiv \text{Tr} \Pi \overset{T \to 0}{\sim} \alpha_s \mu^2 \]
Double-log at NNNLO
The next order is $\mathcal{O}(\alpha_s^3)$, NNNLO. How do we get there?

Calculating everything up to $c_{3,0}$ is daunting, but...

Gorda, Kurkela, Romatschke, MS, Vuorinen, hep-ph/1807.04120
The next order is $\mathcal{O}(\alpha_s^3)$, NNNLO. How do we get there?

Calculating everything up to $c_{3,0}$ is daunting, but...

...At $\mathcal{O}(\alpha_s^2)$ the ring sum contribution was separate from everything else

\implies Try to compute the non-analytic terms $c_{3,1}, c_{3,2}$ first

Gorda, Kurkela, Romatschke, MS, Vuorinen, hep-ph/1807.04120
The next order is $\mathcal{O}(\alpha_s^3)$, NNNLO. How do we get there?

Calculating everything up to $c_{3,0}$ is daunting, but...

...At $\mathcal{O}(\alpha_s^2)$ the ring sum contribution was separate from everything else

\Rightarrow Try to compute the non-analytic terms $c_{3,1}, c_{3,2}$ first

- Again, non-hard modes require establishing a suitable resummation scheme
- Analogous with hot QCD development

Computation of $c_{3,2}$ is complete 7

7Gorda, Kurkela, Romatschke, MS, Vuorinen, hep-ph/1807.04120
Finding the Logarithms

- There are now generally double logarithms $c_{3,2} \neq 0$, and single logarithms $c_{3,1} \neq 0$.
- Two sources of logs:
 - Corrections to the one-loop ring sum that require non-HTL corrections ($c_{3,1}$ only)
 - Two-loop resummations analogous to the NNLO case ($c_{3,1}$ and $c_{3,2}$, focus on these)
We can again split between naively loop-expanded hard contributions and resummed soft contributions, and we choose to compute the logarithm as the UV-limit of the soft contribution like in the NNNLO case.

There are four classes of IR-sensitive two-loop diagrams. They must be resummed by dressing the gluonic lines:
Each logarithm arises from an integral $\int \frac{dP}{P}$, hence each resummed gluon line can yield at most a single log.

Consequently only two diagram classes contribute to the double log.
Each logarithm arises from an integral $\int \frac{dP}{P}$, hence each resummed gluon line can yield at most a single log.

Consequently only two diagram classes contribute to the double log.

For dimensional reasons, in fact only the "double-blob insertions" pictured above contribute.
The remaining resummed diagrams contribute only at $\mathcal{O}(\alpha_s^3 \log \alpha_s)$:
The remaining resummed diagrams contribute only at $\mathcal{O}(\alpha_s^3 \log \alpha_s)$:

They, and the subleading logs from the gluonic diagrams, can be handled with a similar expansion with the following prescription:

- Gluons IR-sensitive \implies resummed, but HTL-approximated
- Fermions IR-insensitive \implies not resummed, but loop-corrected
Wrap-up of the NNNLO Logarithms

- Double log $c_{3,2}$ was reasonably simple to extract
- One needs two resummed gluon lines, so only the first two diagram classes contribute
Wrap-up of the NNNLO Logarithms

- Double log $c_{3,2}$ was reasonably simple to extract
- One needs two resummed gluon lines, so only the first two diagram classes contribute
- The HTL corrections to the ggg and $gggg$ vertices are required
- For the leading log only one-loop (HTL) self-energies and vertices are required...
 - ...But for the subleading log $c_{3,1}$ this will not be enough
 - ...And more diagram classes need to be considered
 - There is some effort involved in making sure that double counting etc. is avoided
Our Calculation of $c_{3,2}$

- Relevant HTL diagrams appear in the literature \(^8\)
- One can extract the coefficient of the double-log (but not the constant under the log) from the semisoft regime
- We ended up with lengthy angular integrals and obtained the $\mathcal{O}(\alpha_s^3 \log^2 \alpha_s)$-term...

\(^8\) Andersen et al., hep-ph/0205085
The Result

...Which is surprisingly simple:

\[
c_{3,2} \alpha_s^3 \log^2 \alpha_s = -\frac{11}{48} \frac{N_c d_A}{(2\pi)^3} \alpha_s m_\infty^4 \log^2 \alpha_s, \quad m_\infty = \frac{N_f}{9\pi} \mu_B^2 \alpha_s
\]
The Result

- Which is surprisingly simple:

\[c_{3,2} \alpha_s^3 \log^2 \alpha_s = -\frac{11}{48} \frac{N_c d_A}{(2\pi)^3} \alpha_s m_\infty^4 \log^2 \alpha_s, \quad m_\infty^2 = \frac{N_f}{9\pi} \mu_B^2 \alpha_s \]

- No renormalisation scale dependence \(\Rightarrow \) error bands still large ...

- But nothing blows up \(\Rightarrow \) seems like pQCD still works!
m_∞-TRICK

- Physical intuition: In the semisoft region transverse gluons massive with mass m^2_∞, longitudinal gluons massless

- Makes sense, because this is the UV limit of HTL, and the semisoft regime is the UV limit of the soft contribution (or the IR limit of the hard contribution)
Physical intuition: In the semisoft region transverse gluons massive with mass m^2_∞, longitudinal gluons massless

Makes sense, because this is the UV limit of HTL, and the semisoft regime is the UV limit of the soft contribution (or the IR limit of the hard contribution)

This is a sufficient approximation for the $\log^2 \alpha_s$! Can remove complicated Π_{HTL} leaving just a constant mass

Much easier to compute, we verified that it gives the same $\log^2 \alpha_s$
Conclusions
Conclusions

- Resummation in the IR-sector allowed us to go beyond the well-understood NNLO order of dense pQCD
- $O(\alpha_s^3 \log^2 \alpha_s)$ done!
- $O(\alpha_s^3 \log \alpha_s)$ in progress, will require eg. higher order HTL-corrections, but might help constrain the error bands more
- The full $O(\alpha_s^3)$ might also be possible (??)
- Resummation schemes, small-T corrections etc. also under consideration...