Towards the NNNLO pressure of cold and dense QCD Matias Säppi, University of Helsinki Collaborators: Gorda, Kurkela, Romatschke, Vuorinen XIIIth Quark Confinement and the Hadron Spectrum Maynooth University, Ireland. August 1 – 6 2018

		00

OUTLINE

1 Introduction

2 NNLO Logarithm

3 Double-log at NNNLO

4 Conclusions

00000	0000000	0000000	0	00

INTRODUCTION

- Goal: Describe how strongly interacting matter behaves under different conditions
 - ► Corresponds to computing the QCD pressure $p(\{\mu_i\}_i; \{m_i\}_i; T, ...) = T \log \int \mathcal{D}\psi \mathcal{D}\overline{\psi}\mathcal{D}A\mathcal{D}c\mathcal{D}\overline{c} \exp(-S)/V$

Introduction NNLO Logaritim Double-log at NNNLO Conclusions 0●000 00000000 00 00

MOTIVATION

- Goal: Describe how strongly interacting matter behaves under different conditions
 - ► Corresponds to computing the QCD pressure $p(\{\mu_i\}_i; \{m_i\}_i; T, ...) = T \log \int \mathcal{D}\psi \mathcal{D}\overline{\psi}\mathcal{D}A\mathcal{D}c\mathcal{D}\overline{c} \exp(-S)/V$
- Plenty of applications: Early universe, heavy-ion collisions, neutron stars...
 - ▶ I'll concentrate on the last one: Cold & Dense Matter, $p(\{\mu_i\}_i; \{m_i\}_i; T, ...) \rightarrow p(\mu_B)$

Methodology – Problems With a Large Density

- Computing the pressure at large density presents challenges
 - Lattice methods are non-perturbative and use first-principles theory, but suffer from the sign problem

Methodology – Problems With a Large Density

- Computing the pressure at large density presents challenges
 - Lattice methods are non-perturbative and use first-principles theory, but suffer from the sign problem
 - Traditional EFTs (eg. χPT) are applicable at lower densities, but suffer from inaccuracies at larger densities, and aren't based on first principles
 - No suitable DR-framework

Methodology – Using pQCD at Large Density

- For the purposes of this talk, focus is on standard perturbation theory
 - pQCD is based on first principles¹, expansion in α_s is possible at asymptotically large μ_B

¹...We do use some HTL, but only to get rid of terms that are of higher order in the coupling itself

Methodology – Using pQCD at Large Density

- For the purposes of this talk, focus is on standard perturbation theory
 - ▶ pQCD is based on first principles¹, expansion in α_s is possible at asymptotically large μ_B
 - Convergence is bad at physical densities, high-order corrections are required (hence NNNLO)
 - ► Suffers from IR-ambiguities, resummation needed

¹...We do use some HTL, but only to get rid of terms that are of higher order in the coupling itself

COMPARISON WITH LARGE-T QCD

- In systems like the early universe & heavy-ion collisions, μ_B often fairly small
- Some of the problems plaguing large μ_B disappear
 - Lattice methods work if the sign problem is at most mild or can be circumvented
 - ▶ pQCD admits a dimensionally reduced framework when T/μ_B is large and is understood better
- Plenty of accurate results and experiments!

	NNLO Logarithm			
00000	0000000	000000000		00

NNLO LOGARITHM

THERMAL PQCD HISTORY LESSON PT. I

$$p = c_0 + c_1 \alpha_s + c_{2,1} \alpha_s^2 \log \alpha_s + c_{2,0} \alpha_s^2 + c_{3,2} \alpha_s^3 \log^2 \alpha_s + c_{3,1} \alpha_s^3 \log \alpha_s + c_{3,0} \alpha_s^3 + \dots$$

- Simplest case for dense matter: massless quarks and zero temperature
- c_0 , c_1 easy to compute
- NNLO factors $c_{2,1}$, $c_{2,0}$ calculated already in the 70s (!) ²

²Freedman & McLerran, Phys. Rev. D 16 1977

THERMAL PQCD HISTORY LESSON PT. I

$$p = c_0 + c_1 \alpha_s + c_{2,1} \alpha_s^2 \log \alpha_s + c_{2,0} \alpha_s^2 + c_{3,2} \alpha_s^3 \log^2 \alpha_s + c_{3,1} \alpha_s^3 \log \alpha_s + c_{3,0} \alpha_s^3 + \dots$$

- Simplest case for dense matter: massless quarks and zero temperature
- c_0 , c_1 easy to compute
- NNLO factors $c_{2,1}$, $c_{2,0}$ calculated already in the 70s (!) ²
- Assumptions later relaxed to e.g. $m \neq 0^{-3}$ and small but finite T^{-4} , but no previous NNNLO calculations

²Freedman & McLerran, Phys. Rev. D 16 1977

³Kurkela et al., hep-ph/0912.1856

⁴Kurkela & Vuorinen, hep-ph/1603.00750

THERMAL PQCD HISTORY LESSON PT. II

$$p = c_0 + c_1 \alpha_s + c_{2,1} \alpha_s^2 \log \alpha_s + c_{2,0} \alpha_s^2 + c_{3,2} \alpha_s^3 \log^2 \alpha_s + c_{3,1} \alpha_s^3 \log \alpha_s + c_{3,0} \alpha_s^3 + \dots$$

Compare with "hot" QCD (large-*T* limit)
 Partial NNNLO results: c_{3,2} = 0 and c_{3,1} is known ⁵

⁵Kajantie et al. hep-ph/0211321

THERMAL PQCD HISTORY LESSON PT. II

$$p = c_0 + c_1 \alpha_s + c_{2,1} \alpha_s^2 \log \alpha_s + c_{2,0} \alpha_s^2 + c_{3,2} \alpha_s^3 \log^2 \alpha_s + c_{3,1} \alpha_s^3 \log \alpha_s + c_{3,0} \alpha_s^3 + \dots$$

- Compare with "hot" QCD (large-*T* limit)
- Partial NNNLO results: $c_{3,2} = 0$ and $c_{3,1}$ is known ⁵
- Theory fundamentally different:
 - ▶ A 3d DR description is available
 - ► Notably, the theory has a *magnetic scale*, $\alpha_s T$, which is absent at T = 0
 - ▶ As a consequence, the "hard" contribution *c*_{3,0} *cannot* be computed in pure perturbation theory!

⁵Kajantie et al. hep-ph/0211321

Scale Hierarchy at Finite $\mu_B \& T = 0$

Naïve diagrammatic expansion valid close to vacuum, where the fields are not screened Hard Scale $P \sim \mu_B$:

- ► Energetic excitations → medium effects suppressed
- Standard Feynman graph expansion OK

Scale Hierarchy at Finite $\mu_B \& T = 0$

- Naïve diagrammatic expansion valid close to vacuum, where the fields are not screened
- In a dense medium, medium effects break the formalism
 - \rightarrow Resummation of diagram classes required

Hard Scale $P \sim \mu_B$:

- ► Energetic excitations → medium effects suppressed
- Standard Feynman graph expansion OK

- Soft Scale $P \sim \alpha_s^{1/2} \mu_B$:
 - ► Low-energy excitations → medium effects significant
 - Resum IR-sensitive objects (gluons) to all orders

Double-

00000000

Scale Hierarchy at Finite $\mu_B \& T = 0$

- Naïve diagrammatic expansion valid close to vacuum, where the fields are not screened
- In a dense medium, medium effects break the formalism
 - \rightarrow Resummation of diagram classes required
- In the intermediate region, when ratios of scales are involved, nonanalytic terms $\mathcal{O}(\alpha_s^m \log^n \alpha_s)$ are generated from resummed diagrams

Hard Scale $P \sim \mu_B$:

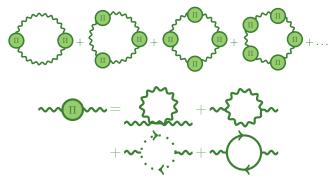
- ► Energetic excitations → medium effects suppressed
- Standard Feynman graph expansion OK

Semisoft Scale $\alpha_s^{1/2} \mu_B \ll P \ll \mu_B$:

- ▶ "Somewhat" energetic excitations → medium effects present
- Corrections to naïve diagrams not suppressed enough, but approximations possible
- Soft Scale $P \sim \alpha_s^{1/2} \mu_B$:
 - ► Low-energy excitations → medium effects significant
 - Resum IR-sensitive objects (gluons) to all orders

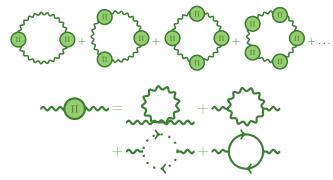
1-loop Ring Sum

First logs at $\mathcal{O}(\alpha_s^2)$: The gluonic ring sum



1-loop Ring Sum

First logs at $\mathcal{O}(\alpha_s^2)$: The gluonic ring sum



Well-known: Contributes a non-analytic term at NNLO: $c_{2,1} \neq 0$

HTL APPROXIMATION

- IR DoFs admit an effective description, and only they require resummation!

HTL APPROXIMATION

- IR DoFs admit an effective description, and only they require resummation!
- Hard Thermal Loops⁶ suitable since hard modes dominate the self-energies

Physical motivation: Accounts for the medium

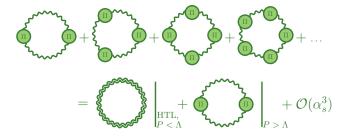
⁶Hard Dense Loops, really, but abbreviated HTL here

Conclusions

00

Approximating the Ring Sum

Applying the HTL approximation leads to the following:



The logarithms, that is, the semisoft region, can be taken to come from the UV-limit of the first term or the IR-limit of the second one, we choose the first
Using HTL gives the correct c_{2,1} : There is a Logarithmic

enhancement at NNLO from the semisoft modes

HTL Propagators & m_E

After scalarisation, transversal and longitudinal gluons:

$$G_T(P) = \frac{-1}{P^2 + \frac{m_E^2}{d-1} - \frac{P^2}{p^2} \Pi_{\text{HTL}}(P)}, \ G_L(P) = \frac{1}{p^2 + \Pi_{\text{HTL}}(P)}$$

HTL structure is given by the function

$$\Pi_{\rm HTL}(P) = m_E^2 \left(1 - \int\limits_{S^{d-1}} \Omega_{\bf v} \frac{iP_0}{iP_0 - {\bf p} \cdot {\bf v}} \right)$$

 Details unimportant, point is that the propagators are nontrivial

HTL Propagators & m_E

After scalarisation, transversal and longitudinal gluons:

$$G_T(P) = \frac{-1}{P^2 + \frac{m_E^2}{d-1} - \frac{P^2}{p^2} \Pi_{\text{HTL}}(P)}, \ G_L(P) = \frac{1}{p^2 + \Pi_{\text{HTL}}(P)}$$

HTL structure is given by the function

$$\Pi_{\rm HTL}(P) = m_E^2 \left(1 - \int\limits_{S^{d-1}} \Omega_{\bf v} \frac{iP_0}{iP_0 - {\bf p}\cdot {\bf v}} \right)$$

- Details unimportant, point is that the propagators are nontrivial
- Without quark masses, the only scale is the effective mass

$$m_E^2 \equiv \mathrm{Tr}\Pi \stackrel{T \to 0}{\sim} \alpha_s \mu^2$$

		Double-log at NNNLO	
00000	0000000	000000000	00

Double-log at NNNLO

- The next order is $\mathcal{O}(\alpha_s^3)$, NNNLO. How do we get there?
- Calculating everything up to *c*_{3,0} is daunting, but...

⁷Gorda, Kurkela, Romatschke, MS, Vuorinen, hep-ph/1807.04120

Starting Point

- The next order is $\mathcal{O}(\alpha_s^3)$, NNNLO. How do we get there?
- Calculating everything up to c_{3,0} is daunting, but...
- ...At $\mathcal{O}(\alpha_s^2)$ the ring sum contribution was separate from everything else
- Try to compute the non-analytic terms $c_{3,1}, c_{3,2}$ first

⁷Gorda, Kurkela, Romatschke, MS, Vuorinen, hep-ph/1807.04120

Starting Point

- The next order is $\mathcal{O}(\alpha_s^3)$, NNNLO. How do we get there?
- Calculating everything up to c_{3,0} is daunting, but...
- ...At $\mathcal{O}(\alpha_s^2)$ the ring sum contribution was separate from everything else
- **Try to compute the** non-analytic terms $c_{3,1}, c_{3,2}$ first
 - Again, non-hard modes require establishing a suitable resummation scheme
 - Analogous with hot QCD development
- Computation of $c_{3,2}$ is complete ⁷

⁷Gorda, Kurkela, Romatschke, MS, Vuorinen, hep-ph/1807.04120

FINDING THE LOGARITHMS

- There are now generally double logarithms $c_{3,2} \neq 0$, and single logarithms $c_{3,1} \neq 0$.
 - Two sources of logs:
 - ► Corrections to the one-loop ring sum that require non-HTL corrections (c_{3,1} only)
 - ► Two-loop resummations analogous to the NNLO case (c_{3,1} and c_{3,2}, focus on these)

Constructing the Diagrams

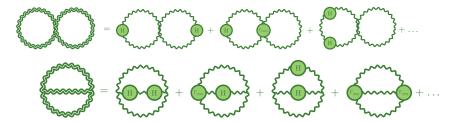
- We can again split between naïvely loop-expanded hard contributions and resummed soft contributions, and we choose to compute the logarithm as the UV-limit of the soft contribution like in the NNNLO case
 - There are four classes of IR-sensitive two-loop diagrams. They must be resummed by dressing the gluonic lines:

DOUBLE LOGARITHM FROM THE TWO-LOOP RING SUMS

Each logarithm arises from an integral ∫ dP/P, hence each resummed gluon line can yield at most a single log.
Consequently only two diagram classes contribute to the double log

DOUBLE LOGARITHM FROM THE TWO-LOOP RING SUMS

Each logarithm arises from an integral ∫ dP/P, hence each resummed gluon line can yield at most a single log.
Consequently only two diagram classes contribute to the double log



For dimensional reasons, in fact only the "double-blob insertions" pictured above contribute

SINGLE LOGARITHM FROM THE TWO-LOOP RING SUMS

The remaining resummed diagrams contribute only at $\mathcal{O}(\alpha_s^3 \log \alpha_s)$:



SINGLE LOGARITHM FROM THE TWO-LOOP RING SUMS

The remaining resummed diagrams contribute only at $\mathcal{O}(\alpha_s^3 \log \alpha_s)$:

- They, and the subleading logs from the gluonic diagrams, can be handled with a similar expansion with the following prescription:
 - ► Gluons IR-sensitive ⇒ resummed, but HTL-approximated
 - ► Fermions IR-insensitive ⇒ not resummed, but loop-corrected

WRAP-UP OF THE NNNLO LOGARITHMS

- Double log $c_{3,2}$ was reasonably simple to extract
- One needs two resummed gluon lines, so only the first two diagram classes contribute

WRAP-UP OF THE NNNLO LOGARITHMS

- Double log $c_{3,2}$ was reasonably simple to extract
- One needs two resummed gluon lines, so only the first two diagram classes contribute
- The HTL corrections to the *ggg* and *gggg* vertices are required
- For the leading log only one-loop (HTL) self-energies and vertices are required...
 - ▶ ...But for the subleading log $c_{3,1}$ this will not be enough
 - ...And more diagram classes need to be considered
 - There is some effort involved in making sure that double counting etc. is avoided

Our Calculation of $c_{3,2}$

- Relevant HTL diagrams appear in the literature ⁸
- One can extract the coefficient of the double-log (but not the constant under the log) from the semisoft regime
- We ended up with lengthy angular integrals and obtained the $\mathcal{O}(\alpha_s^3 \log^2 \alpha_s)$ -term...

⁸Andersen et al., hep-ph/0205085

The Result

...Which is surprisingly simple:

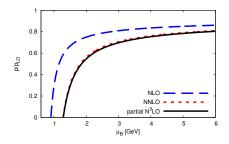
$$c_{3,2}\alpha_s^3 \log^2 \alpha_s = -\frac{11}{48} \frac{N_c d_A}{(2\pi)^3} \alpha_s m_\infty^4 \log^2 \alpha_s, \ m_\infty^2 = \frac{N_f}{9\pi} \mu_B^2 \alpha_s$$

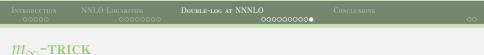
The Result

...Which is surprisingly simple:

$$c_{3,2}\alpha_s^3 \log^2 \alpha_s = -\frac{11}{48} \frac{N_c d_A}{(2\pi)^3} \alpha_s m_{\infty}^4 \log^2 \alpha_s, \ m_{\infty}^2 = \frac{N_f}{9\pi} \mu_B^2 \alpha_s$$

- No renormalisation scale dependence ⇒ error bands still large ...
- ...But nothing blows up ⇒ seems like pQCD still works!





- Physical intuition: In the semisoft region transverse gluons massive with mass m_{∞}^2 , longitudinal gluons massless
- Makes sense, because this is the UV limit of HTL, and the semisoft regime is the UV limit of the soft contribution (or the IR limit of the hard contribution)

\mathcal{M}_∞ -TRICK

- Physical intuition: In the semisoft region transverse gluons massive with mass m_{∞}^2 , longitudinal gluons massless
- Makes sense, because this is the UV limit of HTL, and the semisoft regime is the UV limit of the soft contribution (or the IR limit of the hard contribution)
- This is a sufficient approximation for the $\log^2 \alpha_s$! Can remove complicated Π_{HTL} leaving just a constant mass
- Much easier to compute, we verified that it gives the same $\log^2 \alpha_s$

	Conclusions	
		0

Conclusions

INTRODUCTION NNLO LOGARITHM DOUBLE-LOG AT NNNLO CONCLUSIONS

Conclusions

- Resummation in the IR-sector allowed us to go beyond the well-understood NNLO order of dense pQCD
- Θ(α³_s log α_s) in progress, will require eg. higher order HTL-corrections, but might help constrain the error bands more
- The full $\mathcal{O}(\alpha_s^3)$ might also be possible (??)
- Resummation schemes, small-T corrections etc. also under consideration...