Towards a precise determination of the equation of state of QCD at high-temperature

Mattia Dalla Brida*, Leonardo Giusti, Michele Pepe

Università di Milano-Bicocca and INFN, Sezione di Milano-Bicocca

XIIIth Quark Confinement and the Hadron Spectrum August 1st 2018, Maynooth, Ireland

Introduction

The goal

QCD equation of state

 $s(T),\ p(T),\ \varepsilon(T)$

Thermodynamics

$$s(T) = \frac{\partial p(T)}{\partial T}$$

$$Ts(T) = p(T) + \varepsilon(T)$$

Why is this important?

- ► Fundamental property of QCD
- Heavy-ion collisions
- Cosmology
- ▶ etc . . .

Ultimately, one would wish for

 $s(T,\mu), \ p(T,\mu), \ \varepsilon(T,\mu) \qquad \mu \equiv \text{chemical potential}$

Introduction

A non-perturbative problem

Asymptotic freedom

$$\alpha_s(\mu) \stackrel{\mu \to \infty}{\longrightarrow} 0$$

taking $\mu\approx T\Rightarrow {\rm PTh}$ should work at high-T

Free quarks & gluons

7.6 7.4

7.2

Problems

- (Generic) PTh is only asymptotic!
- ► (Specific) High-*T* expansion shows very poor convergence!
 - Only works up to a finite, observable dependent order, no matter how weak the coupling is!
 - ► Here O(g⁶) + Data at T ≈ 230 T_c ≈ 68 GeV is about 30% of the total entropy!

Solution

Lattice QCD is the **only** framework for a first principle **non-perturbative** determination

(Lindé '80)

O(g²)

 $O(g^3)$

SU(3) YM – $T_c \approx 300 \,\mathrm{MeV}$

O(g^o) + Data Data

Introduction

A difficult non-perturbative problem

Free energy

$$f = -p = -\frac{T}{V}\ln \mathcal{Z}$$

Trace anomaly

(Engels et. al. '81; Umeda et. al. '09; ...)

$$\frac{I(T)}{T^4} \equiv \frac{\varepsilon - 3p}{T^4} = T \frac{\mathrm{d}}{\mathrm{d}T} \left(\frac{p}{T^4}\right)$$

Pressure

$$\frac{p(T)}{T^4} = \frac{p(T_0)}{T_0^4} + \int_{T_0}^T \mathrm{d}T' \, \frac{I(T')}{T'^5}$$

Lattice obs.

$$\widehat{I}(T) = -\frac{T}{V} \frac{\mathrm{d}\ln\widehat{\mathcal{Z}}}{\mathrm{d}\ln a} = \frac{T}{V} \left(a \frac{\mathrm{d}\vec{b}}{\mathrm{d}a} \right) \left\langle \frac{\partial\widehat{S}_{\mathrm{QCD}}}{\partial\vec{b}} \right\rangle_{T}$$

Renormalization

$$I(T) = \lim_{a \to 0} \widehat{I}_R(T) = \lim_{a \to 0} \left[\widehat{I}(T) - \widehat{I}(0) \right] \Big|_{\vec{b}}$$

Problem

The renormalization unnaturally ties together two separate physical scales ...

 $L^{-1} \ll T \ll a^{-1}$ AND $L^{-1} \sim m_{\pi} \Rightarrow L/a = O(100)$ for T = O(1 GeV)

16

12

8

0

Thermodynamics in a moving frame

The relativistic liquid or gas

(Minkowski space)

Energy-momentum tensor (EMT)

 $\mathcal{T}_{\mu\nu}$ contains all the information we need

Local rest frame

$$\mathcal{T}_{\mu\nu} = \begin{pmatrix} \varepsilon & 0 & 0 & 0\\ 0 & p & 0 & 0\\ 0 & 0 & p & 0\\ 0 & 0 & 0 & p \end{pmatrix}$$

Moving frame

$$\mathcal{T}_{0k} = \frac{p+\varepsilon}{1-v^2} v_k \qquad v \equiv \text{velocity}$$
$$\mathcal{T}_{00} = \frac{p+\varepsilon}{1-v^2} - p \qquad \mathcal{T}_{jk} = \frac{p+\varepsilon}{1-v^2} v_j v_k + p \,\delta_{jk}$$

Entropy density (using $Ts = p + \varepsilon$)

$$Ts = \frac{\mathcal{T}_{0k}}{\gamma^2 v_k} \qquad \gamma = \frac{1}{\sqrt{1 - v^2}}$$

The entropy is a physical quantity and thus a natural observable to consider!

Thermodynamics in a moving frame

Shifted boundary conditions

(Giusti, Meyer '11 '13)

Euclidean partition function

$$\mathcal{Z}(L_0, \boldsymbol{\xi}) = \operatorname{Tr}\left\{e^{-L_0(H-i\boldsymbol{\xi}\cdot \boldsymbol{P})}\right\} \qquad \left[\boldsymbol{\xi} = -i\boldsymbol{v}\right]$$

Free energy

$$f(L_0,\boldsymbol{\xi}) = -\frac{1}{L_0 V} \ln \mathcal{Z}(L_0,\boldsymbol{\xi}) \qquad f(L_0,\boldsymbol{\xi}) \stackrel{V \to \infty}{\longrightarrow} f(L_0 \sqrt{1 + \boldsymbol{\xi}^2}, 0)$$

QCD path integral

$$\mathcal{Z}(L_0, \boldsymbol{\xi}) = \int [DA] [D\overline{\psi}] [D\psi] e^{-S_{\text{QCD}}[A, \overline{\psi}, \psi]}$$
$$A_{\mu}(L_0, \boldsymbol{x}) = A_{\mu}(0, \boldsymbol{x} - \boldsymbol{\xi}L_0) \qquad \psi(L_0, \boldsymbol{x}) = -\psi(0, \boldsymbol{x} - \boldsymbol{\xi}L_0)$$

"Ward identities"

$$\langle \mathcal{T}_{0k} \rangle_{\xi} = -\frac{\partial}{\partial \xi_k} f(L_0, \xi) \quad \Rightarrow \quad \frac{\partial}{\partial \xi_k} \langle \mathcal{O} \rangle_{\xi} = L_0 \langle \overline{\mathcal{T}}_{0k}(x_0) \mathcal{O} \rangle_{\xi,c}$$

Entropy

$$Ts(T) = -\frac{(1+\xi^2)}{\xi_k} \langle \mathcal{T}_{0k} \rangle_{\xi} \qquad T = \frac{1}{L_0 \sqrt{1+\xi^2}}$$

The energy-momentum tensor

0

Renormalization on and off the lattice

Continuum EMT

(Callan, Coleman, Jackiw '71; ...)

$$\begin{aligned} \mathcal{T}^{R}_{\mu\nu} &= \mathcal{T}_{\mu\nu} = \mathcal{T}^{F}_{\mu\nu} + \mathcal{T}^{G}_{\mu\nu} \\ \mathcal{T}^{F}_{\mu\nu} &= \frac{1}{4} \left\{ \overline{\psi} \gamma_{\mu} \overset{\leftrightarrow}{D}_{\nu} \psi + \overline{\psi} \gamma_{\nu} \overset{\leftrightarrow}{D}_{\mu} \psi \right\} - \delta_{\mu\nu} \mathcal{L}^{F} \qquad \mathcal{T}^{G}_{\mu\nu} &= \frac{1}{g_{0}^{2}} F^{a}_{\mu\alpha} F^{a}_{\nu\alpha} - \delta_{\mu\nu} \mathcal{L}^{G} \end{aligned}$$

On the lattice

(Caracciolo et. al. '90 '91 '92)

► The lattice regulator explicitly breaks Poincaré symmetry

 \Rightarrow The EMT requires renormalization

- \blacktriangleright Poincaré symmetry is however ${\bf recovered}$ for $a \rightarrow 0$
 - \Rightarrow The renormalization is scale-independent

Lattice EMT

► $\widehat{\mathcal{T}}_{0k}^R = Z_T^F \widehat{\mathcal{T}}_{0k}^F + Z_T^G \widehat{\mathcal{T}}_{0k}^G$ with $Z_T^{F,G} \stackrel{g_0 \to 0}{=} 1 + c_0^{F,G} g_0^2 + ...$ ► $\langle \widehat{\mathcal{T}}_{\mu\mu} \rangle_T / T^4 \stackrel{a \to 0}{\propto} 1 / (aT)^4 \Rightarrow \widehat{\mathcal{T}}_{\mu\mu}$ requires power-subtractions!

Renormalization conds.

Ex.:
$$\langle \widehat{\mathcal{T}}_{0k}^R \rangle_{\xi} \stackrel{!}{=} -\frac{\partial}{\partial \xi_k} \widehat{f}(L_0, \boldsymbol{\xi})$$

Towards the EoS of QCD

Preparing the set-up

(MDB, Giusti, Pepe '17)

Master formula

$$\frac{s(T)}{T^3} = \lim_{a \to 0} \frac{\widehat{s}(T)}{T^3} \qquad \frac{\widehat{s}(T)}{T^3} = -\frac{L_0^4 (1 + \boldsymbol{\xi}^2)^3}{\xi_k} \langle \widehat{\mathcal{T}}_{0k}^R \rangle_{\boldsymbol{\xi}} \qquad T = \frac{1}{L_0 \sqrt{1 + \boldsymbol{\xi}^2}}$$

First steps

1. Choose the lattice set-up

 $N_{\rm f} = 2 + 1$ O(a)-improved Wilson fermions

- **2.** Choose a lattice regularization $\widehat{\mathcal{T}}_{0k}$ of \mathcal{T}_{0k}
- 3. Determine sensible sets of kinematical parameters

 $L_0/a, L/a, \xi, ...$

4. Estimate the CPU effort for precise determinations of the bare expectation values

 $\langle \widehat{\mathcal{T}}_{0k}^F \rangle_{\xi}, \quad \langle \widehat{\mathcal{T}}_{0k}^G \rangle_{\xi}$

5. Find convenient renormalization conditions to fix

 $Z_T^F, \quad Z_T^G$

6. Apply for CPU time ...

On the discretization of the EMT

Basic and O(a)-improved definition

Basic

(Caracciolo et. al. '90 '91 '92)

$$\begin{aligned} \widehat{\mathcal{T}}_{0k}^{R} &= Z_{T}^{F}(g_{0})\,\widehat{\mathcal{T}}_{0k}^{F} + Z_{T}^{G}(g_{0})\,\widehat{\mathcal{T}}_{0k}^{G} \\ \widehat{\mathcal{T}}_{0k}^{F} &= \frac{1}{4} \left\{ \overline{\psi}\gamma_{k} \overleftrightarrow{\nabla}_{0}\psi + \overline{\psi}\gamma_{0} \overleftrightarrow{\nabla}_{k}\psi \right\} \qquad \widehat{\mathcal{T}}_{0k}^{G} = \frac{1}{g_{0}^{2}}\widehat{F}_{0\alpha}^{a}\widehat{F}_{k\alpha}^{a} \qquad \overleftrightarrow{\nabla}_{\mu} \stackrel{a \to 0}{=} \stackrel{\leftrightarrow}{D}_{\mu} + \mathcal{O}(a^{2}) \end{aligned}$$

O(a)-improved (mass-degenerate quarks)

- $\begin{aligned} \widehat{\mathcal{T}}_{I,0k}^{R} &= Z_{T}^{F}(\widetilde{g}_{0})\widehat{\mathcal{T}}_{I,0k}^{F} + Z_{T}^{G}(\widetilde{g}_{0})\widehat{\mathcal{T}}_{I,0k}^{G} \qquad \left[\widetilde{g}_{0}^{2} = g_{0}^{2}\left(1 + b_{g}(g_{0})am_{q}\right)\right] \\ \bullet \quad \widehat{\mathcal{T}}_{I,0k}^{G} &= \left(1 + b_{T}^{G}(g_{0})am_{q}\right)\widehat{\mathcal{T}}_{0k}^{G} \\ \bullet \quad \widehat{\mathcal{T}}_{I,0k}^{F} &= \left(1 + b_{T}^{F}(g_{0})am_{q}\right)\left\{\widehat{\mathcal{T}}_{0k}^{F} + c_{T}^{F}(g_{0})a\delta\widehat{\mathcal{T}}_{0k}^{F}\right\} \end{aligned}$ (Sommer, Sint '96)
- $\blacktriangleright \ \delta \widehat{\mathcal{T}}_{0k}^{F} = \overline{\psi} i \big[\sigma_{0\rho} \, \widehat{F}_{k\rho} + \sigma_{k\rho} \, \widehat{F}_{0\rho} \big] \psi \ \Leftarrow \ \text{breaks chiral symmetry!}$

Observations

- ▶ In PTh $b_T^F = 1 + O(g_0^2)$ while b_T^G and b_g are $O(g_0^2)$
 - ▶ For mass non-degenerate quarks one more counterterm of $O(g_0^4)$
 - ▶ If $aT \ll 1$, at large T: $am_q \ll m_q/T \ll 1 \Rightarrow$ negligible effects!
- ► In the chiral limit for T > T_c chiral symmetry is restored ⇒ automatic O(a)-improvement of massless QCD is recovered
- ▶ For $T \lesssim T_c$ one may need to determine c_T^F non-perturbatively!

Towards the EoS of QCD

Discretization effects in the entropy for free lattice quarks and gluons

(MDB, Giusti, Pepe '17)

10/12

Towards the EoS of QCD

Determination of the EMT expectation values

(MDB, Giusti, Pepe '17)

Parameters

$$L_0/a = 6, \ L/a = 96, \ \boldsymbol{\xi} = (1, 0, 0) \ \Rightarrow \ TL \approx 11$$

Finite size effects

(Giusti, Meyer '11 '13)

 $s(T)|_{L} = s(T)|_{L=\infty} + O(e^{-ML})$ $M = O(T) \leftarrow$ lightest screening mass

Results

$T ({\rm GeV})$	$\langle \widehat{\mathcal{T}}_{0k}^F \rangle_{\xi} / \widehat{\mathcal{T}}_{0k,\mathrm{SB}}^F$	$\langle \widehat{\mathcal{T}}_{0k}^G \rangle_{\xi} / \widehat{\mathcal{T}}_{0k,\mathrm{SB}}^G$	$N_{\rm ms}$	$Time/N_{\mathrm{ms}}$
$T_1 \approx 0.36$	0.6859(56)	0.3775(67)	704	1.8 kch
$T_2 \approx 4$	0.8298(47)	0.6971(119)	548	0.5 kch
$T_3 \approx 45$	0.8711(41)	0.7712(131)	654	$0.3 \mathrm{\ kch}$
† T_1 : m_1 , m_2 st $m_2 \approx 340$ MeV and $m_{T} \approx 440$ MeV (0) $T = 0$				

^ T_1: m_{ud}, m_s s.t. $m_\pi \approx 340 \text{ MeV}$ and $m_K \approx 440 \text{ MeV}$ @ T = 0T_{2,3}: $m_{ud} = m_s \approx 0$

Very good precision with very modest CPU effort:

 $\delta \langle \widehat{\mathcal{T}}_{0k}^F \rangle_{\xi} \approx 0.5 - 1\% \quad \delta \langle \widehat{\mathcal{T}}_{0k}^G \rangle_{\xi} \approx 2\% \quad @ N_{\rm ms} \approx 600$

N.B.: In the free case we have that $\langle \widehat{T}_{0k}^F \rangle \approx 2 \langle \widehat{T}_{0k}^G \rangle$

Conclusions & outlook

Conclusions

- The framework of shifted boundary conditions allows to solve the window problem of standard lattice methods for the computation of the EoS
- Precise results for the (bare) entropy density can be obtained over a wide range of temperatures with modest effort

Here we scanned two orders of magnitude in T!

Outlook

- Physical results require renormalization
- We recently completed a one-loop study of the EMT with SBC. This allows us to:
 - devise a good renormalization strategy
 - decide on the best lattice set-up to adopt
 - obtain estimates for the O(a)-improvement coefficients and perturbatively improve continuum limit extrapolations
- ▶ Interesting to study the **(non-)convergence** of PTh at high-T and the approach to the Stefan-Boltzmann limit Using the one-loop estimates for $Z_T^{F,G}$ and our lattice results at $T \approx 40 \text{ GeV}$ we find e.g. $\widehat{s}(T)/s_{\text{SB}}(T) \approx 0.96$

Thank you for your attention and good night!