Study of deconfined quark matter at zero temperature and high density

IHEP, Protvino, Russia
ITEP, Moscow, Russia
FEFU, Vladivostok, Russia
JINR, Dubna, Russia
University of Stavanger, Norway

Confinement XIII, 05.08.2018
Outline

- Introduction
- Features of QC$_2$D
- Static quark-antiquark potential zero T
- Quarkonia dissociation
- Debye screening
- Conclusions
QCD phase diagram

The Phases of Dense Matter, INT, July 11 - August 12, 2016
No sign problem in QC$_{2D}$

SU(3) QCD

- Eigenvalues of $\hat{D} : \pm i\lambda$, $\det(\hat{D} + m) = \prod_{\lambda}(\lambda^2 + m^2) > 0$
- But $\det(\hat{D} - \mu \gamma_4 + m)$ is complex

SU(2) QCD

- $\det[M(\mu_q)] = \det[(\tau_2 C \gamma_5)^{-1} M(\mu_q) (\tau_2 C \gamma_5)] = \det[M(\mu_q^*)]^*$, where $C = \gamma_2 \gamma_4$
- In LQC$_{2D}$ with fundamental quarks $\det[M(\mu_q)]$ is positive definite at real μ_q [see S. Hands, I. Montvay, S. Morrison, M. Oevers, L. Scorzato, J.-I. Skullerud, EPJ C17, 285 (2000)]

At real μ_q in QC$_{2D}$

$\det[M(\mu_q)]$ is real, $\det[M^\dagger(\mu_q)M(\mu_q)] > 0$ at $m_q \neq 0$.
QC$_2$D compared to usual QCD

Similarities

- Phase transitions: confinement/deconfinement, chiral symmetry restoration
- Some observables (normalized) are nearly equal in both theories:

 \[\chi^{1/4}/\sqrt{\sigma} = 0.3928(40) \ (SU(2)), \quad \chi^{1/4}/\sqrt{\sigma} = 0.4001(35) \ (SU(3)) \]

 \[T_c/\sqrt{\sigma} = 0.7092(36) \ (SU(2)), \quad T_c/\sqrt{\sigma} = 0.6462(30) \ (SU(3)) \]

 Shear viscosity:
 \[\eta/s = 0.134(57) \ (SU(2)) \ [N.Yu. Astrakhantsev et. al., JHEP 1509 (2015) 082] \]
 \[\eta/s = 0.102(56) \ (SU(3)) \ [H.B. Meyer, PRD 76 (2007) 101701] \]

- Thermodynamical properties (M. Caselle et. al., JHEP 1205 (2012) 135)
The Lagrangian of the QC$_2$D has the symmetry $SU(2N_f)$ instead of $SU_R(N_f) \times SU_L(N_f)$ for $SU(3)$ QCD.

Goldstone bosons ($N_f = 2$): $\pi^+, \pi^-, \pi^0, d, \bar{d}$

Chiral symmetry is restored
thus symmetry breaking pattern is not important

Relevant degrees of freedom are quarks and gluons rather than Goldstone bosons

$N_f = 2$ of rooted staggered quarks

$M_\pi = 740(40)$ MeV, $M_\pi L_s \approx 5$
Tentative phase diagram of QC$\textsubscript{2D}$ at low T

Zero temperature profile:

hadronic phase \arrow{BEC} \arrow{dense quark matter} \arrow{BCS} \arrow{deconfinement}

[For details see JHEP03(2018)161; PRD 94, 114510(2016)]
We observe deconfinement in dense medium
Deconfinement at $\mu_q > 900 – 1100$ MeV

Good fit of $V(r)$ by the Cornell potential at $\mu_q \leq 1100$ MeV
Spatial quark-antiquark potential in dense medium

Different behavior compared to zero μ_q and finite T case
String tensions

- \(\sigma \) goes to zero around \(\mu_q = 1000\) MeV
- \(\sigma_s \) goes to zero around \(\mu_q = 2000\) MeV
Grand potential of a static quark-antiquark pair

In Coulomb gauge:

\[\Omega_{\bar{q}q}(r, \mu) / T = -(1/4) \log \left\langle \text{Tr} L(\vec{r}) \text{Tr} L^\dagger(0) \right\rangle + c(\mu) \]

\[\Omega_1(r, \mu) / T = -(1/2) \log \left\langle \text{Tr} \left[L(\vec{r}) L^\dagger(0) \right] \right\rangle + c_1(\mu) \]

Color-averaged grand potential may be decomposed into the singlet and triplet components (we study \(N_c = 2 \)):

\[\exp \left(-\Omega_{\bar{q}q} / T \right) = \frac{1}{4} \exp \left(-\Omega_1 / T \right) + \frac{3}{4} \exp \left(-\Omega_3 / T \right) \]

Renormalization:

\[\Omega_1(r \to 0) = V^{\text{ren.}}(r \to 0) \]

\[\Omega_{\bar{q}q}(r \to \infty) = \Omega_1(r \to \infty) \]

Color singlet grand potential

\[\Omega_1/\sqrt{\sigma} \]

\[r/a \]

\[r, \text{ fm} \]

\[V(\mu = 0.00) \]

\[\mu = 447 \text{ MeV} \]

\[\mu = 671 \text{ MeV} \]

\[\mu = 850 \text{ MeV} \]

\[\mu = 1119 \text{ MeV} \]

\[\mu = 1343 \text{ MeV} \]

\[\mu = 2238 \text{ MeV} \]
Screening radius definition: $V_{\mu=0}(R_{\text{scr.}}) = \Omega_{\bar{q}q}(\infty, \mu)$
\[\Omega_{\bar{q}q}(\infty, \mu) \text{ in dense medium} \]

Blue circles are obtained from renormalized Polyakov loop:

\[\Omega_{\bar{q}q}(\infty, \mu) = -2T \log \langle L^R(\mu) \rangle \]
String breaking in dense medium

In QC$_2$D:

Analogous mechanism may be introduced in QCD:
Screening radius and quarkonia dissociation

\[\sqrt{\langle r^2 \rangle} \] are estimated from NR Schrodinger eq. with Cornell potential

Onset of quarkonia dissociation (?

Blue curve: \(R_{SC} = 1/[A m_D(\mu)] \), where \(m_D^2(\mu) = (4/\pi)\alpha_s(\mu)\mu^2 \)
Debye screening in dense medium

\[\Omega_1(r, \mu) = \Omega_1(\infty, \mu) - \frac{3}{4} \frac{\alpha_s(\mu)}{r} \exp(-m_D r) \]
Debye mass

\[m_D(\mu)/\mu \]

\[\mu, \text{ MeV} \]

\[\mu a \]

\[0.20 \ 0.25 \ 0.30 \ 0.35 \ 0.40 \ 0.45 \ 0.50 \]

\[1000 \ 1200 \ 1400 \ 1600 \ 1800 \ 2000 \ 2200 \]
In one-loop: \(m_D^2(\mu) = \frac{4}{\pi} \alpha_s(\mu) \mu^2 \)
Conclusions

- We observe deconfinement in dense medium at $\mu_q^{(c)} \approx 1$ GeV for the first time
- Spatial string tension disappears at $\mu_q \geq 2$ GeV
- Onset of quakonia dissociation (?)
- Quark-gluon plasma at large density is probably perturbative
Backup slides
Simulation parameters

- $N_f = 2$ of rooted staggered quarks
- Lattice: 32^4 ($T = 0$)
- $\beta = 1.8$, $a = 0.044(1) \text{ fm}$ (Sommer parameter), $L_s \approx 1.4 \text{ fm}$
- $ma = 0.0075$, $M_\pi = 740(40) \text{ MeV}$; $M_\pi L_s \approx 5$, $M_\pi / M_\rho \approx 0.55$
- Fixed $\lambda = 0.00075$, $\lambda^2 \ll (ma)^2$
$\alpha_s(\mu)$
String tension with $N_t = 48$

Deconfinement at $\mu_q > 900 - 1100$ MeV

Good fit of $V(r)$ by the Cornell potential at $\mu_q \leq 1100$ MeV
Chiral condensate