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Baryonic matter gets about 99% of its mass from QCD.
The proton is stable due to an accidental U(1)B in the Standard Model.

Dark matter might also arise from a non-abelian gauge theory.
The lightest baryon could be stable due to an accidental U(1)B .

What is the minimal such model?
• smallest non-abelian gauge theory: SU(2)
• fewest fermions: 1 dark quark
• smallest fermion representation: the fundamental
• no renormalizable couplings to the Standard Model.

Is the dark baryon stable enough to be dark matter?
In general, SU(2) permits decay via L = 1

Λ
q̄q|H|2.

As we’ll see, the 1-flavor case is special, having no such problem.
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The Lagrangian of this model,

L = − 1
2

Tr(FµνFµν) + Lfermion + Lhigher dim ,

has a global U(2) symmetry because the gauge theory is pseudo-real.

Lfermion = q̄(iD/−m)q

= Q̄iD/Q− m
2

(
QT iσ2CEQ+ Q̄iσ2CEQ̄T

)
where C is the charge conjugation matrix, σ2 is a color Pauli, and

Q =

(
qL

−iσ2Cq̄TR

)
, E =

(
0 1
−1 0

)
.

The global U(2) = SU(2)B × U(1)A has an anomalous axial U(1)A.
The baryonic isospin SU(2)B remains unbroken.
Therefore there will be no Goldstone bosons.
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Operators for scalar, pseudoscalar, vector and axial vector mesons are

q̄q = 1
2

(
QT iσ2CEQ+ Q̄iσ2CEQ̄T

)
q̄γ5q = − 1

2

(
QT iσ2CEQ− Q̄iσ2CEQ̄T

)
q̄γµq = Q̄γµτ3Q ⇒ part of an isotriplet

q̄γµγ5q = Q̄γµQ

where τ3 is an isospin Pauli.

The dark matter candidate is the baryon, coupling to Q̄γµτ±Q.
It has no dimension 5 decay, so it is cosmologically allowed.∗

More than 1 flavour would have given spin-zero baryons that can decay
at dim 5, eg. L = 1

Λ
q̄q|H|2, which is a cosmological problem.∗

∗Appelquist et al., PRD92 (2015) 075030
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We use the Wilson action with β = 4
g2

= 2.2

and κ = (8 + 2m)−1 = several values.
The main study is 123 × 32 with >1000 configurations per ensemble.
We also use 123 × 48 for some topics.

We use the RHMC algorithm from the HiRep code.
Disconnected quark loops use an unbiased stochastic estimator.

Del Debbio, Patella, Pica, PRD81 (2010) 094503

We use Z2 stochastic wall sources (Z2SEMWall).
Boyle et al., JHEP 08 (2008) 086
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π is not a physical particle but it identifies the massless limit bym2
π = 0.

We can define a shifted bare quark mass mq ≡ m0 −mcrit.
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Topological susceptibility, χ, vanishes as mq → 0.
χ is a gauge field quantity in the theory’s integration measure.
A Euclidean lattice definition is

χ =
〈Q2〉
L3T

, Q =
∑
x

q(x), q(x) = −
1

32π2
εµνρσTr

[
Fµν(x)Fρσ(x)

]

Statistical noise is reduced
by the “slab method”.
Bietenholz,deForcrand,Gerber,JHEP12(2015)070

JLQCD(Aoki et al.)PTEP2018(2018)043B07

Temporal slabs: T
8
<width< T

2
.

Spatial slabs: L
3
<width< 2L

3
.

We also use HYP smearing.
Hasenfratz,Knechtli,PRD64(2001)034504 3 6 9 12 15 18 21 24 27
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This agrees with the result from method #1.
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We calculate the static potential, extract the string tension, then obtain
the scale: ΛMS = 0.7712

√
σ. Bali Phys.Rep.343(2001)1
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Conclusion: a
√
σ = 0.323(10) ⇒ aΛMS = 0.249(8).
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Masses are obtained from
standard correlator fits.

ρ is the dark matter candidate.
It has no disconnected diagrams.
Lattice data for ρ are precise.
For a light quark, mρ ∼ 2ΛMS.

η fits are mη = c0 + c1mq and
m2
η = c0 + c1mq .
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The expected degeneracies emerge at large mq .
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fη is defined by

ZA〈0|At(0)|P 〉 = fηmη

Fitting lattice data to
CAtP (t) = AB

(
e−mηt − e−mη(T−t)

)
CPP (t) = B2

(
e−mηt + e−mη(T−t)

)
gives the decay constant

fη = ZAA(2κ)2

√
2

mηL3

fρ is defined by

ZV 〈0|Vi(0)|V 〉 = fρmρεi

Fitting lattice data to
CσtV (t) = CD

(
e−mρt − e−mρ(T−t)

)
CV V (t) = D2

(
e−mρt + e−mρ(T−t)

)
gives the decay constant

fρ = ZVD(2κ)2

√
2

mρL3

One-loop perturbative expressions for ZV and ZA are taken from
Del Debbio et al.JHEP06(2008)007.
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The data for fρ are linear.

Here, 2 fit options are shown:
f = c0 + c1m0 for small m0,
f = c0 + c1m0 + c2m2

0.
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The dark matter candidate and Higgs may interact by a scalar coupling.

ρ

ρ

external

scalar

The Feynman-Hellman theorem
leads to a dimensionless ratio:

f scalarρ =
mq

mρ

∂mρ

∂mq

See, for example,
Junnarkar,Walker-Loud,PRD87(2013)114510

Detmold,McCullough,Pochinsky,PRD90(2014)114506
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• The dark hadrons that are stable under dark SU(2) are
η = lightest meson
ρ = lightest baryon

• Dark hadrons have no renormalizable couplings to the Higgs.
Higgs→ ηη might occur if 2mη < mH . (Also Higgs→ ρρ.)
However, the coupling to the Higgs should be indirect.
Example: H

dark qdark q new heavy particle

H

• Dark hadron decay rates:
η can decay at dim 5, for example L = 1

Λ
q̄q|H|2.

This allows τη . 1 second, evading BBN constraints.
ρ can decay at dim 6, for example L = 1

Λ2 q̄γµqH∇µH.
This allows τρ & 1024 years, making ρ a dark matter candidate.
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This model has another nice feature:
The dark matter relic density is set naturally, through freeze-out.

At early times (high temperatures): ρρ̄
 ηη

At late times (low temperatures): ρρ̄→ ηη

Recall τη . 1 second.

This freeze-out mechanism
• works because mρ > mη , as the lattice results show.
• is special to the 1-flavour theory because ρ is the dark matter.
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Is dark matter the lightest hadron in a non-abelian gauge theory?

Summary:
• The minimal model is SU(2) with 1 fundamental fermion.
•With only 1 fermion, the dark matter particle is spin 1, not spin 0.
• Lattice calculations give hadron masses, decay constants,

scalar couplings, and the scale ΛMS.
• This minimal model can satisfy phenomenological constraints.
• Dark matter freeze-out is natural.

Possible future work:
• extended lattice study, with multiple lattice spacings and volumes.
• study of dark hadron scattering and dark nuclear physics.
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