Spontaneous Symmetry Breaking in the U(2) Planar Thirring Model?

Simon Hands.

Quark Confinement and the Hadron Spectrum, Maynooth 2nd August 2018

In this talk I will

discuss quantum field theories of relativistic fermions in 2+1d focussing on the U(2N)-invariant Thirring model

- review critically old simulation results for QCPs obtained with staggered lattice fermions
- show that domain wall fermions capture the relevant global symmetries more accurately
- present simulation results showing that DWF tell a very different story to staggered

<u>Relativistic Fermions in 2+1d</u>

Several applications in condensed matter physics

 Nodal fermions in *d*-wave superconductors
 Spin liquids in Heisenberg AFM
 surface states of topological insulators
and graphene

Free reducible fermions in 3 spacetime dimensions

$$\mathcal{S} = \int d^3x \,\bar{\Psi}(\gamma_{\mu}\partial_{\mu})\Psi + m\bar{\Psi}\Psi \qquad \qquad \begin{aligned} \mu &= 0, 1, 2\\ \{\gamma_{\mu}, \gamma_{\nu}\} &= 2\delta_{\mu\nu}\\ \operatorname{tr}(\gamma_{\mu}\gamma_{\mu}) &= 4 \end{aligned}$$

For *m*=0 *S* is invariant under global U(2N) symmetry generated by

(i) $\Psi \mapsto e^{i\alpha}\Psi; \quad \bar{\Psi} \mapsto \bar{\Psi}e^{-i\alpha},$ (ii) $\Psi \mapsto e^{i\alpha\gamma_5}\Psi; \quad \bar{\Psi} \mapsto \bar{\Psi}e^{i\alpha\gamma_5}$ (iii) $\Psi \mapsto e^{\alpha\gamma_3\gamma_5}\Psi; \quad \bar{\Psi} \mapsto \bar{\Psi}e^{-\alpha\gamma_3\gamma_5}$ (iv) $\Psi \mapsto e^{i\alpha\gamma_3}\Psi; \quad \bar{\Psi} \mapsto \bar{\Psi}e^{i\alpha\gamma_3}$

For $m \neq 0$ γ_3 and γ_5 rotations no longer symmetries $\Rightarrow U(2N) \rightarrow U(N) \otimes U(N)$

Mass term $m\Psi\Psi$ is hermitian & invariant under parity $x_{\mu} \mapsto -x_{\mu}$

Two physically equivalent antihermitian "twisted" or "Kekulé" mass terms: $im_3 \bar{\Psi} \gamma_3 \Psi; \quad im_5 \bar{\Psi} \gamma_5 \Psi$

The "Haldane" mass $m_{35}\overline{\Psi}\gamma_3\gamma_5\Psi$ is not parity-invariant

The Thirring Model in 2+1d

four-fermi form
$$\mathcal{L} = \bar{\psi}_i (\partial \!\!\!/ + m) \psi_i + \frac{g^2}{2N_f} (\bar{\psi}_i \gamma_\mu \psi_i)^2$$

bosonised form
$$\mathcal{L} = \bar{\psi}_i (\partial \!\!\!/ + i \frac{g}{\sqrt{N_f}} A_\mu \gamma_\mu + m) \psi_i + \frac{1}{2} A_\mu A_\mu$$

- Interacting QFT
- expansion in g² non-renormalisable
- Hidden Local Symmetry $\psi \mapsto e^{i\alpha}\psi$; $A_{\mu} \mapsto A_{\mu} + \partial_{\mu}\alpha$; $\varphi \mapsto \varphi + \alpha$ if Stückelberg scalar field φ introduced
- expansion in 1/N_f exactly renormalisable for 2<d<4 $\langle A_{\mu}A_{\nu} \rangle \propto \delta_{\mu\nu}/k^{d-2}$ in "Feynman gauge" SJH PRD51 (1995) 5816
- dynamical chiral symmetry breaking for $g^2 > g_c^2$; $N_f < N_{fc}$?
- Quantum Critical Point at $g_c^2(N < N_{fc})$?

Determination of $N_{\mbox{fc}}$ is a non-perturbative problem in QFT

eg. N_{fc}=4.32 strong coupling Schwinger-Dyson (ladder approximation)

Itoh, Kim, Sugiura & Yamawaki Prog. Theor. Phys. **93** (1995) 417

Numerical Lattice Approach

Del Debbio, SJH, Mehegan NP**B502** (1997) 269; **B552** (1999) 339

Early work used staggered fermions

$$S_{latt} = \frac{1}{2} \sum_{x\mu i} \bar{\chi}_x^i \eta_{\mu x} (1 + iA_{\mu x}) \chi_{x+\hat{\mu}}^i - \bar{\chi}_x^i \eta_{\mu x} (1 - iA_{\mu x-\hat{\mu}}) \chi_{x-\hat{\mu}}^i$$

+ $m \sum_{xi} \bar{\chi}_x^i \chi_x^i + \frac{N}{4g^2} \sum_{x\mu} A_{\mu x}^2$ auxiliary boson couples linearly

resembles abelian gauge theory, but link field is **NOT** unit modulus!

 $A_{\mu x}$ auxiliary vector field defined on link between x and $x+\mu$ $\eta_{\mu x} \equiv (-1)^{x_0+\dots+x_{\mu-1}} \Rightarrow \prod_{\alpha} \eta \eta \eta \eta = -1$

Chiral symmetry: $U(N) \otimes U(N) \rightarrow U(N)$ (if $m, \Sigma \neq 0$)

In weak coupling continuum limit $U(2N_f)$ symmetry is recovered, with $N_f = 2N$

<u>Strong coupling limit</u> $g^2 \rightarrow \infty$

The lattice regularisation does not respect current conservation

Both diagrams needed to ensure transversity, (ie. WT identity $\sum_{\mu} \left[\Pi_{\mu\nu}(x) - \Pi_{\mu\nu}(x - \hat{\mu}) \right] = 0$) in lattice QED

 $\Rightarrow 1/N_f \text{ expansion yields additive } g_R^2 = \frac{g^2}{1 - g^2/g_{\text{lim}}^2}$ renormalisation of g^{-2}

 \Rightarrow lattice strong coupling limit as $g^2 \rightarrow g_{\lim}^2(N_f)$

Strong coupling limit $g^2 \rightarrow \infty$

The lattice regularisation does not respect current conservation

Both diagrams needed to ensure transversity, (ie. WT identity $\sum_{\mu} \left[\Pi_{\mu\nu}(x) - \Pi_{\mu\nu}(x - \hat{\mu}) \right] = 0$) in lattice QED Only the left hand diagram is present for the lattice Thirring model with linear coupling to auxiliary

 $\Rightarrow 1/N_f \text{ expansion yields additive} \\ \text{renormalisation of } g^{-2}$

$$g_R^2 = \frac{g^2}{1 - g^2/g_{\rm lim}^2}$$

 \Rightarrow lattice strong coupling limit as $g^2 \rightarrow g_{\lim}^2(N_f)$

Results in effective strong-coupling limit

Christofi, SJH, Strouthos, PRD75 (2007) 101701

 $N_{fc}=6.6(1), \delta(N_{fc})=6.90(3)$

Chiral symmetry unbroken for all g^2 for $N_f > N_{fc}$

Cf. SDE: N_{fc} =4.32, $\delta(N_{fc})$ =1 "conformal phase transition"

Results in effective strong-coupling limit

 $N_{fc}=6.6(1), \delta(N_{fc})=6.90(3)$

Chiral symmetry unbroken for all g^2 for $N_f > N_{fc}$

Cf. SDE: N_{fc} =4.32, $\delta(N_{fc})$ =1 "conformal phase transition"

Staggered Thirring Summary

SJH, Lucini, PL**B461** (1999) 263

Christofi, SJH, Strouthos, PRD75 (2007) 101701

- Chiral symmetry broken for small N_f , large g^2
- Each point (for N_f integer) defines a UV fixed point of RG

 δ increases with N_f, $\delta(N_{fc}) \approx 7$

• Non-covariant form used as EFT for graphene \implies N_{fc} \approx 5 SJH, Strouthos, PRB78 (2008)165423; Armour, SJH, Strouthos, PRB81 (2010)125105

Fermion Bag Algorithm with minimal $N_f = 2$

Chandrasekharan & Li, PRL 108 (2012) 140404; PRD88 (2013) 021701

Thirring Model: v=0.85(1), $\eta=0.65(1)$, $\eta_{\psi}=0.37(1)$ (N_f < N_{fc} \approx 7) U(1) GN Model: v=0.849(8), $\eta=0.633(8)$, $\eta_{\psi}=0.373(3)$ (N_f $\rightarrow \infty$: $v=\eta=1$)

Interactions between staggered fields χ , χ spread over elementary cubes. Only difference between Thirring & GN is body-diagonal term

Staggered fermions not reproducing expected distinction between models a near strongly-coupled fixed point...

see also SLAC Schmidt, Wellegehausen & Wipf, PoS LATTICE2015 (2016) 050 fermion approach PRD96 (2017) 094504

Fermion Bag Algorithm with minimal $N_f = 2$

Chandrasekharan & Li, PRL 108 (2012) 140404; PRD88 (2013) 021701

Thirring Model: v=0.85(1), $\eta=0.65(1)$, $\eta_{\psi}=0.37(1)$ (N_f < N_{fc} \approx 7) U(1) GN Model: v=0.849(8), $\eta=0.633(8)$, $\eta_{\psi}=0.373(3)$ (N_f $\rightarrow \infty$: $v=\eta=1$)

Interactions between staggered fields χ , χ spread over elementary cubes. Only difference between Thirring & GN is body-diagonal term

Staggered fermions not reproducing expected distinction between models a near strongly-coupled fixed point...

... so we need better lattice fermions

see also SLAC Schmidt, Wellegehausen & Wipf, PoS LATTICE2015 (2016) 050 fermion approach PRD96 (2017) 094504

Fermions propagate freely along a fictitious third direction of extent L_s with open boundaries

Domain Wall Fermions

Basic idea as $L_s \rightarrow \infty$:

coupling between the walls proportional to explicit massgap *m*

- zero-modes of D_{DWF} localised on walls are \pm eigenmodes of γ_s
- Modes propagating in bulk can be decoupled (with cunning)

"Physical" fields $\psi(x) = P_-\Psi(x,1) + P_+\Psi(x,L_s);$ in 2+1d target space $\bar{\psi}(x) = \bar{\Psi}(x,L_s)P_- + \bar{\Psi}(x,1)P_+,$ with $P_{\pm}=\frac{1}{2}(1\pm\gamma_s)$

Bottom Up View...

in DWF approach we simulate 2+1+1d fermions

Desiderata...

- Modes localised on walls carry U(2N)-invariant physics
- Fermion doublers don't contribute to normalisable modes
- Bulk modes can be made to decouple

Claim...

It appears to work for....

- carefully-chosen domain wall height M
- smooth gauge field background

<u>Are DWF in 2+1+1d U(2N) symmetric?</u>

Issue: wall modes are eigenstates of γ_3 as $L_s \rightarrow \infty$,

but: U(2N) symmetry demands equivalence under rotations generated by both γ_3 and γ_5

ie. U(2N) \rightarrow U(N) \otimes U(N) symmetry-breaking mass terms $m_h \bar{\psi} \psi \qquad i m_3 \bar{\psi} \gamma_3 \psi \qquad : i m_5 \bar{\psi} \gamma_5 \psi$ should yield identical physics as L_s $\rightarrow \infty$

Non-trivial requirement since m_h , m_3 couple Ψ , $\overline{\Psi}$ on *opposite* walls while m_5 couples modes on *same* wall

Bilinear Condensates in Quenched QED₃ on 24³×L_s...

$$\frac{1}{2} \langle \bar{\psi}\psi \rangle_{L_s} = \frac{i}{2} \langle \bar{\psi}\gamma_3\psi \rangle_{L_S \to \infty} + \Delta_h(L_s) + \epsilon_h(L_s);$$

$$\frac{i}{2} \langle \bar{\psi}\gamma_3\psi \rangle_{L_s} = \frac{i}{2} \langle \bar{\psi}\gamma_3\psi \rangle_{L_S \to \infty} + \epsilon_3(L_s);$$

$$\frac{i}{2} \langle \bar{\psi}\gamma_5\psi \rangle_{L_s} = \frac{i}{2} \langle \bar{\psi}\gamma_3\psi \rangle_{L_S \to \infty} + \epsilon_5(L_s).$$

$$U(2) \text{ symmetry restored}$$

$$\Leftrightarrow \Delta_h \to 0$$

$$\text{SJH JHEP 09(2015)047,}$$

PLB 754 (2016) 264

- exponentially suppressed as $L_s \rightarrow \infty$
- hierarchy: $\Delta_h > \epsilon_h > \epsilon_3 \equiv \epsilon_5$

Bilinear Condensates in Quenched QED₃ on 24³×L_s...

$$\frac{1}{2} \langle \bar{\psi}\psi \rangle_{L_s} = \frac{i}{2} \langle \bar{\psi}\gamma_3\psi \rangle_{L_S \to \infty} + \Delta_h(L_s) + \epsilon_h(L_s);$$

$$\frac{i}{2} \langle \bar{\psi}\gamma_3\psi \rangle_{L_s} = \frac{i}{2} \langle \bar{\psi}\gamma_3\psi \rangle_{L_S \to \infty} + \epsilon_3(L_s);$$

$$\frac{i}{2} \langle \bar{\psi}\gamma_5\psi \rangle_{L_s} = \frac{i}{2} \langle \bar{\psi}\gamma_3\psi \rangle_{L_S \to \infty} + \epsilon_5(L_s).$$

$$(U(2) \text{ symmetry restored} \Leftrightarrow \Delta_h \to 0$$

$$\Leftrightarrow \Delta_h \to 0$$

Subturbed (2015)047

- exponentially suppressed as $L_s \rightarrow \infty$
- hierarchy: $\Delta_h > \varepsilon_h > \varepsilon_3 \equiv \varepsilon_5$

SJH JHEP **09**(2015)047, PLB **754** (2016) 264

Bilinear Condensates in Quenched QED₃ on 24³×L_s...

$$\frac{1}{2} \langle \bar{\psi}\psi \rangle_{L_s} = \frac{i}{2} \langle \bar{\psi}\gamma_3\psi \rangle_{L_S \to \infty} + \Delta_h(L_s) + \epsilon_h(L_s);$$
$$\frac{i}{2} \langle \bar{\psi}\gamma_3\psi \rangle_{L_s} = \frac{i}{2} \langle \bar{\psi}\gamma_3\psi \rangle_{L_S \to \infty} + \epsilon_3(L_s); \qquad \qquad \mathsf{U(2) sy}$$
$$\frac{i}{2} \langle \bar{\psi}\gamma_5\psi \rangle_{L_s} = \frac{i}{2} \langle \bar{\psi}\gamma_3\psi \rangle_{L_S \to \infty} + \epsilon_5(L_s).$$

- exponentially suppressed as $L_s \rightarrow \infty$
- hierarchy: $\Delta_h > \varepsilon_h > \varepsilon_3 \equiv \varepsilon_5$

2) symmetry restored $\Leftrightarrow \Delta_h \rightarrow 0$

SJH JHEP **09**(2015)047, PLB **754** (2016) 264

Top Down View...

The closest approach to continuum symmetries is expressed by **Ginsparg-Wilson** relations

 $\{\gamma_5, D\} = 2D\gamma_5 D$

RHS is O(aD), so U(2N) recovered in long-wavelength limit if D local

By construction GW is satisfied by the 2+1d overlap operator

$$D_{ov} = \frac{1}{2} \left[(1+m_h) + (1-m_h) \frac{A}{\sqrt{A^{\dagger}A}} \right] \quad \text{with} \quad \gamma_3 A \gamma_3 = \gamma_5 A \gamma_5 = A^{\dagger}$$

 $A \equiv [2+(D_W-M)]^{-1}[D_W-M]; D_W \text{ local}; Ma = O(1)$ **D**_{ov} not manifestly local

DWF provide a
regularisation of overlap with
a local kernel in 2+1+1d
SJH PLB 754 (2016) 264 $\frac{\det D_{\text{DWF}}(m_i)}{\det D_{\text{DWF}}(m_h = 1)} = \det D_{L_s}(m_i)$ $\lim_{L_s \to \infty} D_{L_s} = D_{ov}$

Top Down View...

The closest approach to continuum symmetries is expressed by **Ginsparg-Wilson** relations

$$\{\gamma_5, D\} = 2D\gamma_5 D$$

$$\{\gamma_3, D\} = 2D\gamma_3 D \quad [\gamma_3\gamma_5, D] = 0$$

RHS is O(aD), so U(2N) recovered in long-wavelength limit if D local

By construction GW is satisfied by the 2+1d overlap operator

$$D_{ov} = \frac{1}{2} \left[(1+m_h) + (1-m_h) \frac{A}{\sqrt{A^{\dagger}A}} \right] \quad \text{with} \quad \gamma_3 A \gamma_3 = \gamma_5 A \gamma_5 = A^{\dagger}$$

 $A \equiv [2+(D_W-M)]^{-1}[D_W-M];$ D_W local; Ma = O(1) **D_{ov} not manifestly local**

DWF provide a
regularisation of overlap with
a local kernel in 2+1+1d
SJH PLB 754 (2016) 264 $\frac{\det D_{\text{DWF}}(m_i)}{\det D_{\text{DWF}}(m_h = 1)} = \det D_{L_s}(m_i)$ $\lim_{L_s \to \infty} D_{L_s} = D_{ov}$

Formulational issues for the Thirring Model with DWF

(a) Formulate interaction terms in terms of vector auxiliary $A_{\mu}(x)$ defined just on walls at $x_3 = 1$, L_s : "Surface"

Technical/cost advantage: no Pauli-Villars determinant needed to cancel bulk modes P. Vranas, I. Tziligakis and J.B. Kogut, Phys. Rev. D 62 (2000) 054507

(b) By analogy with QCD, formulate with $A_{\mu}(\mathbf{x})$ throughout bulk which are "static" ie. $\partial_3 A_{\mu}=0$: "Bulk" $\mathcal{S} = \bar{\Psi} \mathcal{D} \Psi = \bar{\Psi} D_W \Psi + \bar{\Psi} D_3 \Psi + m_i S_i$ with $\begin{array}{c} D_W = \gamma_{\mu} D_{\mu} - (\hat{D}^2 + M); \\ D_3 = \gamma_3 \partial_3 - \hat{\partial}_3^2, \end{array}$

Recall link field not unit modulus

Bulk formulation

$$[\partial_3, D_\mu] = [\partial_3, \hat{D}^2] = 0$$

but $[\partial_3, \hat{\partial}_3^2] \neq 0$ on walls obstruction to proving $\det \mathcal{D} > 0$ for N=1

Formulational issues for the Thirring Model with DWF

(a) Formulate interaction terms in terms of vector auxiliary $A_{\mu}(x)$ defined just on walls at $x_3 = 1$, L_s : "Surface"

Technical/cost advantage: no Pauli-Villars determinant needed to cancel bulk modes P. Vranas, I. Tziligakis and J.B. Kogut, Phys. Rev. D 62 (2000) 054507

(b) By analogy with QCD, formulate with $A_{\mu}(\mathbf{x})$ throughout bulk which are "static" ie. $\partial_3 A_{\mu}=0$: "Bulk" $\mathcal{S} = \bar{\Psi} \mathcal{D} \Psi = \bar{\Psi} D_W \Psi + \bar{\Psi} D_3 \Psi + m_i S_i$ with $\begin{array}{c} D_W = \gamma_{\mu} D_{\mu} - (\hat{D}^2 + M); \\ D_3 = \gamma_3 \partial_3 - \hat{\partial}_3^2, \end{array}$

Recall link field not unit modulus

Bulk formulation

$$[\partial_3, D_\mu] = [\partial_3, \hat{D}^2] = 0$$

but $[\partial_3, \hat{\partial}_3^2] \neq 0$ on walls obstruction to proving det $\mathcal{D} > 0$ for N=1 ⇒ need RHMC algorithm for N=1

HMC Results with Nf=2 on 123×16

SJH JHEP 11(2016)015

- Breakdown of reflection positivity for strong coupling $ag^{-2}\approx 0.2$?
- Strong volume dependence for surface model
- Results at L_s=16 and L_s=20 are consistent
- No evidence of spontaneous symmetry breaking anywhere along g^{-2} axis

μ

HMC Results with Nf=2 on 123×16

SJH JHEP 11(2016)015

- Breakdown of reflection positivity for strong coupling $ag^{-2}\approx 0.2$?
- Strong volume dependence for surface model
- Results at L_s=16 and L_s=20 are consistent

μ

 No evidence of spontaneous symmetry breaking anywhere along g⁻² axis

ν

big disparity with previous staggered results

Axial Ward Identity

Strong-coupling behaviour suggests neither Surface nor Bulk model optimal:

work still needed to specify 2+1d states ψ with control over normalisation

Cf. 2+1d Gross-Neveu model, where Ward Identity is respected, spectroscopy under control...

SJH JHEP 11(2016)015

RHMC Results for N=1 (12³x8)

N=1 simulations performed with weight det(M⁺M)^{1/2} using **RHMC** algorithm with 25 partial fractions

RHMC Results for N=1 (12³x8)

N=1 simulations performed with weight det(M⁺M)^{1/2} using **RHMC** algorithm with 25 partial fractions

RHMC Results for N=1 (12³x8)

N=1 simulations performed with weight det(M⁺M)^{1/2} using **RHMC** algorithm with 25 partial fractions

RHMC Results for N=1 (12³x8)

N=1 simulations performed with weight det(M⁺M)^{1/2} using **RHMC** algorithm with 25 partial fractions

Henceforth focus on **bulk**

Evidence for enhanced pairing for N=1 and $ag^{-2} < 0.5$?

Boson Action

an interesting diagnostic

Surface and Bulk models show different behaviour

N=1: change of behaviour for $ag^{-2} < 0.5$?

Quenched Interlude

what does U(2N) symmetry-breaking look like with DWF?

comparison of **bulk** models with N=0,1,2 with L_s=16, ma=0.01

Finite-L_s corrections *much* more significant in quenched simulations

$$\langle \bar{\psi}\psi \rangle_{L_s} = \langle \bar{\psi}\psi \rangle_{\infty} - A(m, g^2)e^{-\Delta(m, g^2)L_s}$$

Amplitude A & decay constant ∆ both increase with size of signal

 $ag^{-2} \leq 0.2$ strong coupling lattice artefacts? $ag^{-2^{\geq}} \geq 0.8$ $m \rightarrow 0$ limit hard to extract, consistent with zero $ag^{-2} \in (0.3, 0.7)$ $m \rightarrow 0$ has non-vanishing intercept consistent
with symmetry breaking

Cf. quenched QED₄ in the old days.... Kocić, SJH, Kogut, Dagotto, NPB **347**(1990)217

$$\Rightarrow N_c > 0?$$

Have now repeated analysis for N=1,12³xL_s

lines are exponential extrapolations $Ls \rightarrow \infty$

Again, a big contrast weak ag⁻²=0.6 vs. strong ag⁻²=0.3

L_s=48, am=0.01, ag⁻²=0.3: RHMC Hamiltonian step requires ~9500 QMR iterations Have now repeated analysis for N=1,12³xL_s

lines are exponential extrapolations $Ls \rightarrow \infty$

Again, a big contrast weak ag⁻²=0.6 vs. strong ag⁻²=0.3

L_s=48, am=0.01, ag⁻²=0.3: RHMC Hamiltonian step requires ~9500 QMR iterations No-one said strong coupling would be easy....

 $12^{3}xL_{s}, L_{s}=8,...,40(48); ag^{-2}=0.6,5,4,3;$ ma = 0.01,2,3,4,5 ⇔

O(6 months) on cluster, 4 cores per run

 $\Rightarrow 1 < N_c < 2 ? 0.3 < ag_c^{-2} < 0.4 ??$

12³xL_s, L_s=8,...,40(48); ag⁻²=0.6,5,4,3; ma = 0.01,2,3,4,5 ⇔

O(6 months) on cluster, 4 cores per run 😦

 $\Rightarrow 1 < N_c < 2 ? 0.3 < ag_c^{-2} < 0.4 ??$

12³xL_s, L_s=8,...,40(48); ag⁻²=0.6,5,4,3; ma = 0.01,2,3,4,5 ⇔

O(6 months) on cluster, 4 cores per run 🙁

 $\Rightarrow 1 < N_c < 2 ? 0.3 < ag_c^{-2} < 0.4 ??$

U(2) symmetry restoration as $L_s \rightarrow \infty$

Qualitatively different at strong and weak coupling, and *slow*...

U(2) symmetry restoration as $L_s \rightarrow \infty$

Qualitatively different at strong and weak coupling, and *slow*...

• •

<u>Summary</u> & <u>Outlook</u>

- No obstruction found to simulating U(2N) fermions
- "twisted mass" $im_3\overline{\psi}\gamma_3\psi$ optimises $L_s \rightarrow \infty$
- Robust conclusion: N_{fc} <2 for both bulk and surface
- Tentative evidence for SSB for N=1 at strong coupling

Cf. QED₃ N_{fc} <1 Karthik & Narayanan PRD93 045020, D94 065026 (2016)

- Staggered Thirring Model shouldn't be forgotten very non-trivial sensitivity to N
- Need to check $V {\rightarrow} \infty$, the effect of varying M_{wall}
- Try Haldane mass $m_{35} \neq 0$?
- Need to examine locality of corresponding $D_{\rm ov}$
- Analysis of critical scaling at QCP requires improved code!

Science & Technology Facilities Council JHEP **1509** (2015) 047 PLB **754** (2016) 264 JHEP **1611** (2016) 015 arXiv:1708.07686

<u>Summary & Outlook</u>

- No obstruction found to simulating U(2N) fermions
- "twisted mass" $im_3\overline{\psi}\gamma_3\psi$ optimises $L_s \rightarrow \infty$
- Robust conclusion: N_{fc} <2 for both bulk and surface
- Tentative evidence for SSB for $N{=}1$ at strong coupling

 $\Rightarrow 1 < N_{fc} < 2 ?$

Cf. QED₃ N_{fc} <1 Karthik & Narayanan PRD93 045020, D94 065026 (2016)

- Staggered Thirring Model shouldn't be forgotten very non-trivial sensitivity to N
- Need to check $V {\rightarrow} \infty$, the effect of varying M_{wall}
- Try Haldane mass m₃₅≠0?
- Need to examine locality of corresponding D_{ov}
- Analysis of critical scaling at QCP requires improved code!

Science & Technology Facilities Council JHEP **1509** (2015) 047 PLB **754** (2016) 264 JHEP **1611** (2016) 015 arXiv:1708.07686