

Qusk conttiment and the Hadro
spect

In this talk I will

discuss quantum field theories of relativistic fermions in 2+1d focussing on the $U(2 N)$-invariant Thirring model

- review critically old simulation results for QCPs obtained with staggered lattice fermions
- show that domain wall fermions capture the relevant global symmetries more accurately
- present simulation results showing that DWF tell a very different story to staggered

Relativistic Fermions in 2+1d

Several applications in condensed matter physics

- Nodal fermions in d-wave superconductors
- \quad Spin liquids in Heisenberg AFM
- surface states of topological insulators
-and graphene

Free reducible fermions in 3 spacetime dimensions

$$
\mathcal{S}=\int d^{3} x \bar{\Psi}\left(\gamma_{\mu} \partial_{\mu}\right) \Psi+m \bar{\Psi} \Psi
$$

$$
\begin{aligned}
& \mu=0,1,2 \\
& \left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \delta_{\mu \nu} \\
& \operatorname{tr}\left(\gamma_{\mu} \gamma_{\mu}\right)=4
\end{aligned}
$$

For $m=0 \quad S$ is invariant under global $\mathrm{U}(2 \mathrm{~N})$ symmetry generated by
$\left.\begin{array}{lll}\text { (i) } \Psi \mapsto e^{i \alpha} \Psi ; & \bar{\Psi} \mapsto \bar{\Psi} e^{-i \alpha}, & \text { (ii) } \Psi \mapsto e^{i \alpha \gamma_{5}} \Psi ; ~ \\ \text { (iii) } \Psi \mapsto \bar{\Psi} e^{i \alpha \gamma_{5}} \\ \text { (ii) } \Psi e^{\alpha \gamma_{3} \gamma_{5}} \Psi ; & \bar{\Psi} \mapsto \bar{\Psi} e^{-\alpha \gamma_{3} \gamma_{5}} \text { (} & \text { (iv) } \Psi \mapsto e^{i \alpha \gamma_{3}} \Psi ; \\ \hline \Psi\end{array}\right) \bar{\Psi} e^{i \alpha \gamma_{3}}$
For $m \neq 0 \quad \gamma_{3}$ and γ_{5} rotations no longer symmetries

$$
\Rightarrow \quad \mathrm{U}(2 \mathrm{~N}) \rightarrow \mathrm{U}(\mathrm{~N}) \otimes \mathrm{U}(\mathrm{~N})
$$

Mass term $m \bar{\Psi} \Psi$ is hermitian \& invariant under parity $x_{\mu} \mapsto-x_{\mu}$
Two physically equivalent antihermitian "twisted" or "Kekulé" mass terms:

The "Haldane" mass $m_{35} \bar{\Psi} \gamma_{3} \gamma_{5} \Psi$ is not parity-invariant

The Thirring Model in $2+1 \mathrm{~d}$

four-fermi form
bosonised form

$$
\begin{aligned}
\mathcal{L} & =\bar{\psi}_{i}(\not \partial+m) \psi_{i}+\frac{g^{2}}{2 N_{f}}\left(\bar{\psi}_{i} \gamma_{\mu} \psi_{i}\right)^{2} \\
\mathcal{L} & =\bar{\psi}_{i}\left(\not \partial+i \frac{g}{\sqrt{ } N_{f}} A_{\mu} \gamma_{\mu}+m\right) \psi_{i}+\frac{1}{2} A_{\mu} A_{\mu}
\end{aligned}
$$

- Interacting QFT
- expansion in g2 non-renormalisable
- Hidden Local Symmetry $\psi \mapsto e^{i \alpha} \psi ; \quad A_{\mu} \mapsto A_{\mu}+\partial_{\mu} \alpha ; \quad \varphi \mapsto \varphi+\alpha$
if Stückelberg scalar field φ introduced
- expansion in $1 / N_{f}$ exactly renormalisable for $2<d<4$

$$
\begin{aligned}
& \left\langle\mathrm{A}_{\mu} \mathrm{A}_{v}\right\rangle \propto \delta_{\mu \mathrm{v}} / \mathrm{kd} \text {-2 in "Feynman gauge" SJH PRD51 (1995) } 5 \\
& \text { - dynamical chiral symmetry breaking for } \mathrm{g}^{2}>\mathrm{gc}_{\mathrm{c}}^{2} ; \mathrm{N}_{\mathrm{f}}<\mathrm{N}_{\mathrm{fc}} \text { ? }
\end{aligned}
$$

- Quantum Critical Point at $\mathrm{gc}^{2}\left(\mathrm{~N}<\mathrm{N}_{\mathrm{fc}}\right)$?

Determination of N_{fc} is a non-perturbative problem in QFT
eg. $\mathrm{N}_{\mathrm{fc}}=4.32$ strong coupling Schwinger-Dyson (Iadder approximation)

Itoh, Kim, Sugiura \& Yamawaki Prog. Theor. Phys. 93 (1995) 417

Numerical Lattice Approach

Early work used staggered fermions

$$
\begin{array}{rlr}
S_{\text {latt }} & =\frac{1}{2} \sum_{x \mu i} \bar{\chi}_{x}^{i} \eta_{\mu x}\left(1+i A_{\mu x}\right) \chi_{x+\hat{\mu}}^{i}-\bar{\chi}_{x}^{i} \eta_{\mu x}\left(1-i A_{\mu x-\hat{\mu}}\right) \chi_{x-\hat{\mu}}^{i} \\
& +m \sum_{x i} \bar{\chi}_{x}^{i} \chi_{x}^{i}+\frac{N}{4 g^{2}} \sum_{x \mu} A_{\mu x}^{2} & \begin{array}{l}
\text { auxiliary boson } \\
\text { couples linearly }
\end{array}
\end{array}
$$

resembles abelian gauge theory, but link field is NOT unit modulus!
$A_{\mu x}$ auxiliary vector field defined on link between x and $x+\mu$

$$
\eta_{\mu x} \equiv(-1)^{x_{0}+\cdots+x_{\mu-1}} \Rightarrow \prod_{\square} \eta \eta \eta \eta=-1
$$

Chiral symmetry: $\mathrm{U}(\mathrm{N}) \otimes \mathrm{U}(\mathrm{N}) \rightarrow \mathrm{U}(\mathrm{N})$ (if $m, \Sigma \neq 0$)
In weak coupling continuum limit $\mathrm{U}\left(2 \mathrm{~N}_{f}\right)$ symmetry is recovered, with $\mathrm{N}_{f}=2 \mathrm{~N}$

Strong coupling limit $\quad g^{2 \rightarrow \infty}$

The lattice regularisation does not respect current conservation

Both diagrams needed to ensure transversity, (ie. WT identity $\sum_{\mu}\left[\Pi_{\mu}(x)-\Pi_{\mu}(x-\mu)\right]=0$) in lattice QED
$\Rightarrow 1 / \mathrm{N}_{f}$ expansion yields additive renormalisation of g^{-2}

$$
g_{R}^{2}=\frac{g^{2}}{1-g^{2} / g_{\mathrm{lim}}^{2}}
$$

\Rightarrow lattice strong coupling limit as $\mathrm{g}^{2} \rightarrow \mathrm{~g}_{\lim ^{2}}\left(\mathrm{~N}_{f}\right)$

Strong coupling limit $\quad g^{2 \rightarrow \infty}$

The lattice regularisation does not respect current conservation

Both diagrams needed to ensure transversity,
(ie. WT identity $\sum_{\mu}\left[\Pi_{\mu}(x)-\Pi_{\mu}(x-\mu)\right]=0$) in lattice QED
Only the left hand diagram is present for the lattice Thirring model with linear coupling to auxiliary
$\Rightarrow 1 / \mathrm{N}_{f}$ expansion yields additive renormalisation of g^{-2}

$$
g_{R}^{2}=\frac{g^{2}}{1-g^{2} / g_{\mathrm{lim}}^{2}}
$$

\Rightarrow lattice strong coupling limit as $\mathrm{g}^{2} \rightarrow \mathrm{~g}_{\lim }{ }^{2}\left(\mathrm{~N}_{f}\right)$

Results in effective strong-coupling limit

Christofi, SJH, Strouthos, PRD75 (2007) 101701

$\mathrm{N}_{f c}=6.6(1), \quad \delta\left(\mathrm{N}_{f c}\right)=6.90(3)$
Chiral symmetry unbroken for all g^{2} for $\mathrm{N}_{f}>\mathrm{N}_{f c}$
Cf. SDE: $\quad \mathrm{N}_{f c}=4.32, \quad \delta\left(\mathrm{~N}_{f c}\right)=1$
"conformal phase transition"

Results in effective strong-coupling limit

$$
\mathrm{N}_{f c}=6.6(\mathrm{I}), \quad \delta\left(\mathrm{N}_{f c}\right)=6.90(3)
$$

Chiral symmetry unbroken for all g^{2} for $\mathrm{N}_{f}>\mathrm{N}_{f c}$
Cf. SDE: $\quad \mathrm{N}_{f c}=4.32, \quad \delta\left(\mathrm{~N}_{f c}\right)=1$
"conformal phase transition"

Staggered Thirring Summary

SJH, Lucini, PLB461 (1999) 263
Christofi, SJH, Strouthos, PRD75 (2007) 101701

Chiral symmetry broken for small N_{f}, large g^{2}

- Each point (for N_{f} integer) defines a UV fixed point of RG Distinct critical exponents \Leftrightarrow distinct interacting QFT δ increases with $\mathrm{N}_{f}, \quad \delta\left(\mathrm{~N}_{f c}\right) \approx 7$
- \quad Non-covariant form used as EFT for graphene $\Rightarrow \mathrm{N}_{f c} \approx 5$

Fermion Bag Algorithm with minimal $\mathrm{N}_{f}=2$

Chandrasekharan \& Li, PRL 108 (2012) 140404; PRD88 (2013) 021701
Thirring Model: $\quad v=0.85(1), \eta=0.65(1), \eta_{\psi}=0.37(1) \quad\left(N_{f}<N_{f c} \approx 7\right)$
$\mathrm{U}(1)$ GN Model: $v=0.849(8), \eta=0.633(8), \eta_{\psi}=0.373(3) \quad\left(N_{f} \rightarrow \infty: \nu=\eta=1\right)$

Interactions between staggered fields χ, χ spread over elementary cubes.
Only difference between Thirring \& GN is body-diagonal term
Staggered fermions not reproducing expected distinction between models a near strongly-coupled fixed point...
see also SLAC

Fermion Bag Algorithm with minimal $\mathrm{N}_{f}=2$

Chandrasekharan \& Li, PRL 108 (2012) 140404; PRD88 (2013) 021701
Thirring Model: $\quad v=0.85(1), \eta=0.65(1), \eta_{\psi}=0.37(1) \quad\left(N_{f}<N_{f c} \approx 7\right)$
$U(1)$ GN Model: $v=0.849(8), \eta=0.633(8), \eta_{\psi}=0.373(3) \quad\left(N_{f} \rightarrow \infty: v=\eta=1\right)$

Interactions between staggered fields χ, χ spread over elementary cubes.
Only difference between Thirring \& GN is body-diagonal term
Staggered fermions not reproducing expected distinction between models a near strongly-coupled fixed point... ... so we need better lattice fermions
see also SLAC Schmidt, Wellegehausen \& Wipf, PoS LATTICE2015 (2016) 050 fermion approach

Fermions propagate freely along a fictitious third direction of extent L_{s} with open boundaries

Basic idea as $L_{s} \rightarrow \infty$:

Domain Wall Fermions

coupling between the walls proportional to explicit massgap m

- zero-modes of DDWF localised on walls are \pm eigenmodes of γ_{s}
- Modes propagating in bulk can be decoupled (with cunning)
"Physical" fields

$$
\psi(x)=P_{-} \Psi(x, 1)+P_{+} \Psi\left(x, L_{s}\right)
$$

in $2+1 \mathrm{~d}$ target space $\bar{\psi}(x)=\bar{\Psi}\left(x, L_{s}\right) P_{-}+\bar{\Psi}(x, 1) P_{+} ;$with $\mathrm{P}_{ \pm}=1 / 2\left(1 \pm \gamma_{\mathrm{s}}\right)$

Bottom Up View...

in DWF approach we simulate 2+1+1d fermions

Desiderata...

- Modes localised on walls carry $\mathrm{U}(2 \mathrm{~N})$-invariant physics
- Fermion doublers don't contribute to normalisable modes
- Bulk modes can be made to decouple

Claim...
It appears to work for....

- carefully-chosen domain wall height M
- smooth gauge field background

Are DWF in $2+1+1 \mathrm{~d} U(2 \mathrm{~N})$ symmetric?

Issue: wall modes are eigenstates of γ_{3} as $L_{s} \rightarrow \infty$,
but: U(2N) symmetry demands equivalence under rotations generated by both γ_{3} and γ_{5}
ie. $\mathrm{U}(2 \mathrm{~N}) \rightarrow \mathrm{U}(\mathrm{N}) \otimes \mathrm{U}(\mathrm{N})$ symmetry-breaking mass terms

$$
m_{h} \bar{\psi} \psi \quad i m_{3} \bar{\psi} \gamma_{3} \psi \quad: i m_{5} \bar{\psi} \gamma_{5} \psi
$$

should yield identical physics as $\mathrm{L}_{\mathrm{s}} \rightarrow \infty$

Non-trivial requirement
since m_{h}, m_{3} couple $\Psi, \bar{\Psi}$ on opposite walls
while m_{5} couples modes on same wall

Bilinear Condensates in Quenched QED 3 on $24^{3} \times L_{\text {s... }}$

Define main residual: $i\left\langle\bar{\Psi}(1) \gamma_{3} \Psi\left(L_{s}\right)\right\rangle=\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s}}+i \Delta_{h}\left(L_{s}\right)$ real imaginary

$$
\begin{aligned}
\frac{1}{2}\langle\bar{\psi} \psi\rangle_{L_{s}} & =\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s} \rightarrow \infty}+\Delta_{h}\left(L_{s}\right)+\epsilon_{h}\left(L_{s}\right) ; \\
\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s}} & =\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s} \rightarrow \infty}+\epsilon_{3}\left(L_{s}\right) ; \quad \mathrm{U}(\\
\frac{i}{2}\left\langle\bar{\psi} \gamma_{5} \psi\right\rangle_{L_{s}} & =\frac{i}{2}\left\langle\left\langle\gamma_{3} \psi\right\rangle_{L_{s} \rightarrow \infty}+\epsilon_{5}\left(L_{s}\right) .\right.
\end{aligned}
$$

- exponentially suppressed as $\mathrm{L}_{\mathrm{s}} \rightarrow \infty$

U(2) symmetry restored $\Leftrightarrow \Delta_{h} \rightarrow 0$

SJH JHEP 09(2015)047,
PLB 754 (2016) 264

- hierarchy: $\Delta_{\mathrm{h}}>\varepsilon_{\mathrm{h}}>\varepsilon_{3} \equiv \varepsilon_{5}$

Bilinear Condensates in Quenched QED 3 on $24^{3} \times L_{\text {s... }}$

Define main residual: $i\left\langle\bar{\Psi}(1) \gamma_{3} \Psi\left(L_{s}\right)\right\rangle=\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s}}+i \Delta_{h}\left(L_{s}\right)$ real imaginary

$$
\begin{aligned}
\frac{1}{2}\langle\bar{\psi} \psi\rangle_{L_{s}} & =\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{S} \rightarrow \infty}+\Delta_{h}\left(L_{s}\right)+\epsilon_{h}\left(L_{s}\right) ; \\
\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s}} & =\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s} \rightarrow \infty}+\epsilon_{3}\left(L_{s}\right) ; \quad U(\\
\frac{i}{2}\left\langle\bar{\psi} \gamma_{5} \psi\right\rangle_{L_{s}} & =\frac{i}{2}\left\langle\left\langle\gamma_{3} \psi\right\rangle_{L_{S} \rightarrow \infty}+\epsilon_{5}\left(L_{s}\right) .\right.
\end{aligned}
$$

- exponentially suppressed as $\mathrm{L}_{\mathrm{s}} \rightarrow \infty$

U(2) symmetry restored $\Leftrightarrow \Delta_{h} \rightarrow 0$

SJH JHEP 09(2015)047,
PLB 754 (2016) 264

- hierarchy: $\Delta_{\mathrm{h}}>\varepsilon_{\mathrm{h}}>\varepsilon_{3} \equiv \varepsilon_{5}$

Bilinear Condensates in Quenched QED 3 on $24^{3} \times L_{\text {s... }}$

Define main residual: $i\left\langle\bar{\Psi}(1) \gamma_{3} \Psi\left(L_{s}\right)\right\rangle=\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s}}+i \Delta_{h}\left(L_{s}\right)$ real imaginary

$$
\begin{aligned}
\frac{1}{2}\langle\bar{\psi} \psi\rangle_{L_{s}} & =\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{S} \rightarrow \infty}+\Delta_{h}\left(L_{s}\right)+\epsilon_{h}\left(L_{s}\right) ; \\
\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s}} & =\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s} \rightarrow \infty}+\epsilon_{3}\left(L_{s}\right) ; \quad U(\\
\frac{i}{2}\left\langle\bar{\psi} \gamma_{5} \psi\right\rangle_{L_{s}} & =\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{S} \rightarrow \infty}+\epsilon_{5}\left(L_{s}\right) .
\end{aligned}
$$

- exponentially suppressed as $L_{s} \rightarrow \infty$

U(2) symmetry restored $\Leftrightarrow \Delta_{h} \rightarrow 0$

SJH JHEP 09(2015)047,
PLB 754 (2016) 264

- hierarchy: $\Delta_{\mathrm{h}}>\varepsilon_{\mathrm{h}}>\varepsilon_{3} \equiv \varepsilon_{5}$

Top Down View...

The closest approach to continuum symmetries is expressed by Ginsparg-Wilson relations

$$
\left\{\gamma_{5}, D\right\}=2 D \gamma_{5} D
$$

RHS is $\mathrm{O}(a D)$, so $\mathrm{U}(2 \mathrm{~N})$ recovered in long-wavelength limit if D local
By construction GW is satisfied by the 2+1d overlap operator

$$
D_{o v}=\frac{1}{2}\left[\left(1+m_{h}\right)+\left(1-m_{h}\right) \frac{A}{\sqrt{A^{\dagger} A}}\right] \quad \text { with } \quad \gamma_{3} A \gamma_{3}=\gamma_{5} A \gamma_{5}=A^{\dagger}
$$

$A \equiv\left[2+\left(D_{W}-M\right)\right]^{-1}\left[D_{W}-M\right] ; \quad D_{W}$ local; $M a=O(1) \quad$ Dov not manifestly local

DWF provide a
regularisation of overlap with a local kernel in 2+1+1d

$$
\text { SJH PLB } 754 \text { (2016) } 264
$$

$$
\frac{\operatorname{det} D_{\mathrm{DWF}}\left(m_{i}\right)}{\operatorname{det} D_{\mathrm{DWF}}\left(m_{h}=1\right)}=\operatorname{det} D_{L_{s}}\left(m_{i}\right)
$$

$$
\lim _{L_{s} \rightarrow \infty} D_{L_{s}}=D_{o v}
$$

Top Down View...

The closest approach to continuum symmetries is expressed by Ginsparg-Wilson relations

$$
\begin{aligned}
& \left\{\gamma_{5}, D\right\}=2 D \gamma_{5} D \\
& \left\{\gamma_{3}, D\right\}=2 D \gamma_{3} D \quad\left[\gamma_{3} \gamma_{5}, D\right]=0
\end{aligned}
$$

RHS is $\mathrm{O}(a D)$, so $\mathrm{U}(2 \mathrm{~N})$ recovered in long-wavelength limit if D local
By construction GW is satisfied by the 2+1d overlap operator

$$
D_{o v}=\frac{1}{2}\left[\left(1+m_{h}\right)+\left(1-m_{h}\right) \frac{A}{\sqrt{A^{\dagger} A}}\right] \quad \text { with } \quad \gamma_{3} A \gamma_{3}=\gamma_{5} A \gamma_{5}=A^{\dagger}
$$

$A \equiv\left[2+\left(D_{W}-M\right)\right]^{-1}\left[D_{W}-M\right] ; \quad D_{W}$ local; $M a=O(1) \quad \mathrm{D}_{\mathrm{ov}}$ not manifestly local
DWF provide a
regularisation of overlap with a local kernel in 2+1+1d

$$
\text { SJH PLB } 754 \text { (2016) } 264
$$

$$
\frac{\operatorname{det} D_{\mathrm{DWF}}\left(m_{i}\right)}{\operatorname{det} D_{\mathrm{DWF}}\left(m_{h}=1\right)}=\operatorname{det} D_{L_{s}}\left(m_{i}\right)
$$

$$
\lim _{L_{s} \rightarrow \infty} D_{L_{S}}=D_{o v}
$$

Formulational issues for the Thirring Model with DWF

(a) Formulate interaction terms in terms of vector auxiliary

$\mathrm{A}_{\mu}(\mathrm{x})$ defined just on walls at $\mathrm{x}_{3}=1, \mathrm{~L}_{\mathrm{s}}$: "Surface"

Technical/cost advantage: no Pauli-Villars determinant needed to cancel bulk modes

$$
\text { P. Vranas, I. Tziligakis and J.B. Kogut, Phys. Rev. D } 62 \text { (2000) } 054507
$$

(b) By analogy with QCD, formulate with $\mathrm{A}_{\mu}(\mathrm{x})$ throughout bulk which are "static" ie. $\partial_{3} \mathrm{~A}_{\mu}=0$: "Bulk"
$\mathcal{S}=\bar{\Psi} \mathcal{D} \Psi=\bar{\Psi} D_{W} \Psi+\bar{\Psi} D_{3} \Psi+m_{i} S_{i}$ with

$$
\begin{aligned}
D_{W} & =\gamma_{\mu} D_{\mu}-\left(\hat{D}^{2}+M\right) \\
D_{3} & =\gamma_{3} \partial_{3}-\hat{\partial}_{3}^{2}
\end{aligned}
$$

Recall link field not unit modulus
Bulk formulation

$$
\left[\partial_{3}, D_{\mu}\right]=\left[\partial_{3}, \hat{D}^{2}\right]=0
$$

but $\left[\partial_{3}, \hat{\partial}_{3}^{2}\right] \neq 0$ on walls obstruction to proving $\operatorname{det} \mathcal{D}>0 \quad$ for $\mathrm{N}=1$

Formulational issues for the Thirring Model with DWF

(a) Formulate interaction terms in terms of vector auxiliary

$\mathrm{A}_{\mu}(\mathrm{x})$ defined just on walls at $\mathrm{x}_{3}=1, \mathrm{~L}_{\mathrm{s}}$: "Surface"

Technical/cost advantage: no Pauli-Villars determinant needed to cancel bulk modes

$$
\text { P. Vranas, I. Tziligakis and J.B. Kogut, Phys. Rev. D } 62 \text { (2000) } 054507
$$

(b) By analogy with QCD, formulate with $\mathrm{A}_{\mu}(\mathrm{x})$ throughout bulk which are "static" ie. $\partial_{3} \mathrm{~A}_{\mu}=0$: "Bulk"
$\mathcal{S}=\bar{\Psi} \mathcal{D} \Psi=\bar{\Psi} D_{W} \Psi+\bar{\Psi} D_{3} \Psi+m_{i} S_{i}$ with

$$
\begin{aligned}
D_{W} & =\gamma_{\mu} D_{\mu}-\left(\hat{D}^{2}+M\right) \\
D_{3} & =\gamma_{3} \partial_{3}-\hat{\partial}_{3}^{2}
\end{aligned}
$$

Recall link field not unit modulus
Bulk formulation

$$
\left[\partial_{3}, D_{\mu}\right]=\left[\partial_{3}, \hat{D}^{2}\right]=0
$$

but $\left[\partial_{3}, \hat{\partial}_{3}^{2}\right] \neq 0$ on walls obstruction to proving $\operatorname{det} \mathcal{D}>0 \quad$ for $\mathrm{N}=1$ \Rightarrow need RHMC algorithm for $\mathbf{N}=\mathbf{1}$

HMC Results with $\mathrm{N}_{\mathrm{f}}=2$ on $12^{3} \times 16$

- Breakdown of reflection positivity for strong coupling ag-2 ≈ 0.2 ?
- Strong volume dependence for surface model
- Results at $L_{s}=16$ and $L_{s}=20$ are consistent
- No evidence of spontaneous symmetry breaking anywhere along g^{-2} axis

HMC Results with $\mathrm{N}_{\mathrm{f}}=2$ on $12^{3} \times 16$

- Breakdown of reflection positivity for strong coupling ag-2 ≈ 0.2 ?
- Strong volume dependence for surface model
- Results at $L_{s}=16$ and $L_{s}=20$ are consistent
- No evidence of spontaneous symmetry breaking anywhere along g^{-2} axis

Axial Ward Identity

Ratio of order parameter
to susceptibility is
predicted constant by WI

$$
\frac{\langle\bar{\psi} \psi\rangle}{m}=\sum_{x}\left\langle\bar{\psi} \gamma_{3} \psi(0) \bar{\psi} \gamma_{3} \psi(x)\right\rangle
$$

Strong-coupling behaviour suggests
neither Surface nor Bulk model optimal:
work still needed to specify $2+1 d$ states ψ with control over normalisation
Cf. 2+1d Gross-Neveu model, where Ward Identity is respected, spectroscopy under control...

RHMC Results for $\mathrm{N}=1\left(12^{3} \times 8\right)$

$\mathrm{N}=1$ simulations performed with weight $\operatorname{det}\left(M^{+} M\right)^{1 / 2}$ using RHMC algorithm with 25 partial fractions

RHMC Results for $\mathrm{N}=1\left(12^{3} \times 8\right)$

$\mathrm{N}=1$ simulations performed with weight $\operatorname{det}\left(M^{+} M\right)^{1 / 2}$ using RHMC algorithm with 25 partial fractions

RHMC Results for $\mathrm{N}=1$ (123x8)

$\mathrm{N}=1$ simulations performed with weight $\operatorname{det}\left(\mathrm{M}^{+} \mathrm{M}\right)^{1 / 2}$ using RHMC algorithm with 25 partial fractions

RHMC Results for $\mathrm{N}=1$ ($12^{3} \times 8$)

$\mathrm{N}=1$ simulations performed with weight $\operatorname{det}\left(M^{+} M\right)^{1 / 2}$ using RHMC algorithm with 25 partial fractions

Henceforth focus on bulk
Evidence for enhanced pairing for $\mathrm{N}=1$ and $a g^{-2}<0.5$?

Boson Action

 an interesting diagnostic

Surface and Bulk models show different behaviour
$\mathrm{N}=1$: change of behaviour for $\mathrm{ag}^{-2}<0.5$?

Quenched Interlude

what does $\mathrm{U}(2 \mathrm{~N})$ symmetry-breaking

 look like with DWF?
comparison of bulk models with
$N=0,1,2$ with $L_{s}=16, m a=0.01$

Finite-Ls corrections much more significant in quenched simulations

$$
\langle\bar{\psi} \psi\rangle_{L_{s}}=\langle\bar{\psi} \psi\rangle_{\infty}-A\left(m, g^{2}\right) e^{-\Delta\left(m, g^{2}\right) L_{s}}
$$

Amplitude A \& decay constant Δ both increase with size of signal

$L_{s} \rightarrow \infty$
 for quenched theory

$\mathrm{ag}^{-2} \leq 0.2 \quad$ strong coupling lattice artefacts?
$\mathrm{ag}^{-2} \geq 0.8$
$m \rightarrow 0$ limit hard to extract, consistent with zero
$\mathrm{ag}^{-2} \in(0.3,0.7) \quad m \rightarrow 0$ has non-vanishing intercept consistent
with symmetry breaking
Cf. quenched QED 4 in the old days....
$\Rightarrow N_{c}>0$? Kocić, SJH, Kogut, Dagotto, NPB 347(1990)217

Have now repeated analysis for $\mathrm{N}=1,12^{3} \mathrm{x}$ Ls
lines are exponential extrapolations Ls $\rightarrow \infty$

Again, a big contrast
weak $\mathrm{ag}^{-2}=0.6 \mathrm{vs}$. strong $\mathrm{ag}^{-2}=0.3$
$L_{s}=48, a m=0.01, \mathrm{ag}^{-2}=0.3$:
RHMC Hamiltonian step requires ~9500 QMR iterations

Have now repeated analysis for $\mathrm{N}=1,12^{3} \mathrm{x}$ Ls
lines are exponential extrapolations Ls $\rightarrow \infty$

Again, a big contrast
weak $\mathrm{ag}^{-2}=0.6 \mathrm{vs}$. strong $\mathrm{ag}^{-2}=0.3$
$L_{s}=48, a m=0.01, \mathrm{ag}^{-2}=0.3$:
RHMC Hamiltonian step requires ~9500 QMR iterations
No-one said strong coupling would be easy....

$\underline{N=1} L_{s} \rightarrow \infty$
 $12^{3} x L_{s}, L_{s}=8, \ldots, 40(48) ; \quad a g^{-2}=0.6,5,4,3 ;$ $\mathrm{ma}=0.01,2,3,4,5 \Leftrightarrow$

O(6 months) on cluster, 4 cores per run

$\underline{\mathrm{N}=1} \mathrm{~L}_{\mathrm{s}} \rightarrow \infty$
 $12^{3} x L_{s}, L_{s}=8, \ldots, 40(48) ; \quad a g^{-2}=0.6,5,4,3 ;$ $\mathrm{ma}=0.01,2,3,4,5 \Leftrightarrow$
 O (6 months) on cluster, 4 cores per run

$\mathrm{N}=1 \mathrm{~L}_{s} \rightarrow \infty$
 $12^{3} x L_{s}, L_{s}=8, \ldots, 40(48) ; \quad a g^{-2}=0.6,5,4,3 ;$ $\mathrm{ma}=0.01,2,3,4,5 \Leftrightarrow$

O(6 months) on cluster, 4 cores per run
$\mathrm{U}(2)$ symmetry restoration as $\mathrm{L}_{\mathrm{s}} \rightarrow \infty$

Qualitatively different at strong and weak coupling, and slow...
$\mathrm{U}(2)$ symmetry restoration as $\mathrm{L}_{\mathrm{s}} \rightarrow \infty$

Qualitatively different at strong and weak coupling, and slow...

Summary \& Outlook

- No obstruction found to simulating $U(2 N)$ fermions
- "twisted mass" im $_{3} \bar{\psi}_{3} \psi$ optimises $\mathrm{L}_{\mathrm{s}} \rightarrow \infty$
- Robust conclusion: $\mathrm{N}_{f c}<2$ for both bulk and surface
- Tentative evidence for SSB for $\mathrm{N}=1$ at strong coupling

Cf. QED $3 \mathrm{~N}_{f_{c}}<1$ Karthik \& Narayanan PRD93 045020, D94 065026 (2016)

- Staggered Thirring Model shouldn't be forgotten very non-trivial sensitivity to N
- Need to check V $\rightarrow \infty$, the effect of varying $M_{\text {wall }}$
- Try Haldane mass m ${ }_{35} \neq 0$?
- Need to examine locality of corresponding $D_{\text {ov }}$
- Analysis of critical scaling at QCP requires improved code!

Summary \& Outlook

- No obstruction found to simulating $U(2 N)$ fermions
- "twisted mass" im $_{3} \bar{\psi}_{3} \psi$ optimises $\mathrm{L}_{\mathrm{s}} \rightarrow \infty$
- Robust conclusion: $\mathrm{N}_{f c}<2$ for both bulk and surface
- Tentative evidence for SSB for $\mathrm{N}=1$ at strong coupling

$$
\Rightarrow \quad 1<\mathrm{N}_{f c}<2 ?
$$

Cf. QED $3_{3} \mathrm{~N}_{f c}<1$ Karthik \& Narayanan PRD93 045020, D94 065026 (2016)

- Staggered Thirring Model shouldn't be forgotten very non-trivial sensitivity to N
- Need to check V $\rightarrow \infty$, the effect of varying $M_{\text {wall }}$
- Try Haldane mass m ${ }_{35} \neq 0$?
- Need to examine locality of corresponding $D_{\text {ov }}$
- Analysis of critical scaling at QCP requires improved code!

