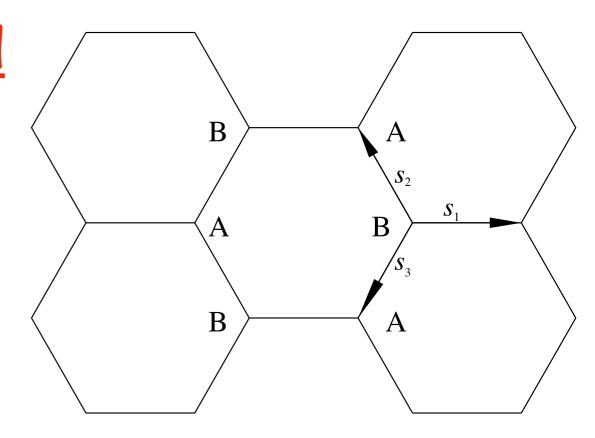


In this talk I will

- discuss quantum field theories of relativistic fermions in 2+1d focussing on the U(2N)-invariant Thirring model
- review critically old simulation results for QCPs obtained with staggered lattice fermions
- show that domain wall fermions capture the relevant global symmetries more accurately
- present simulation results showing that DWF tell a very different story to staggered

Relativistic Fermions in 2+1d

Several applications in condensed matter physics



- Nodal fermions in d-wave superconductors
- Spin liquids in Heisenberg AFM
- surface states of topological insulators
-and graphene

Free reducible fermions in 3 spacetime dimensions

$$\mathcal{S} = \int d^3x \, \bar{\Psi}(\gamma_{\mu}\partial_{\mu})\Psi + m\bar{\Psi}\Psi \qquad \qquad \begin{aligned} \mu &= 0, 1, 2\\ \{\gamma_{\mu}, \gamma_{\nu}\} &= 2\delta_{\mu\nu}\\ \operatorname{tr}(\gamma_{\mu}\gamma_{\mu}) &= 4 \end{aligned}$$

For m=0 S is invariant under global U(2N) symmetry generated by

(i)
$$\Psi \mapsto e^{i\alpha}\Psi$$
; $\bar{\Psi} \mapsto \bar{\Psi}e^{-i\alpha}$, (ii) $\Psi \mapsto e^{i\alpha\gamma_5}\Psi$; $\bar{\Psi} \mapsto \bar{\Psi}e^{i\alpha\gamma_5}$
(iii) $\Psi \mapsto e^{\alpha\gamma_3\gamma_5}\Psi$; $\bar{\Psi} \mapsto \bar{\Psi}e^{-\alpha\gamma_3\gamma_5}$ (iv) $\Psi \mapsto e^{i\alpha\gamma_3}\Psi$; $\bar{\Psi} \mapsto \bar{\Psi}e^{i\alpha\gamma_3}$

For $m\neq 0$ γ_3 and γ_5 rotations no longer symmetries

$$\rightarrow$$
 U(2N) \rightarrow U(N) \otimes U(N)

Mass term $m\bar{\Psi}\Psi$ is hermitian & invariant under parity $x_{\mu} \mapsto -x_{\mu}$

Two physically equivalent antihermitian "twisted" or "Kekulé" mass terms:

$$im_3\bar{\Psi}\gamma_3\Psi;\quad im_5\bar{\Psi}\gamma_5\Psi$$

The "Haldane" mass $m_{35} \bar{\Psi} \gamma_3 \gamma_5 \Psi$ is not parity-invariant

The Thirring Model in 2+1d

$$\mathcal{L} = \bar{\psi}_i(\not \! \partial + m)\psi_i + \frac{g^2}{2N_f}(\bar{\psi}_i\gamma_\mu\psi_i)^2$$
 bosonised form
$$\mathcal{L} = \bar{\psi}_i(\not \! \partial + i\frac{g}{\sqrt{N_f}}A_\mu\gamma_\mu + m)\psi_i + \frac{1}{2}A_\mu A_\mu$$

- Interacting QFT
- expansion in g² non-renormalisable
- Hidden Local Symmetry $\psi \mapsto e^{i\alpha}\psi$; $A_{\mu} \mapsto A_{\mu} + \partial_{\mu}\alpha$; $\varphi \mapsto \varphi + \alpha$ if Stückelberg scalar field φ introduced
- expansion in 1/N_f exactly renormalisable for 2<d<4 $\langle A_{\mu}A_{\nu}\rangle \propto \delta_{\mu\nu}/k^{d-2} \text{ in "Feynman gauge"} \qquad \text{SJH PRD51 (1995) 5816}$
- dynamical chiral symmetry breaking for g² > g_c²; N_f < N_{fc}?
- Quantum Critical Point at g_c²(N<N_{fc})?

Determination of N_{fc} is a non-perturbative problem in QFT

eg. N_{fc}=4.32 strong coupling Schwinger-Dyson (ladder approximation)

Itoh, Kim, Sugiura & Yamawaki Prog. Theor. Phys. **93** (1995) 417

Numerical Lattice Approach

Del Debbio, SJH, Mehegan NP**B502** (1997) 269; **B552** (1999) 339

Early work used staggered fermions

$$S_{latt} = \frac{1}{2} \sum_{x\mu i} \bar{\chi}_{x}^{i} \eta_{\mu x} (1 + i A_{\mu x}) \chi_{x+\hat{\mu}}^{i} - \bar{\chi}_{x}^{i} \eta_{\mu x} (1 - i A_{\mu x-\hat{\mu}}) \chi_{x-\hat{\mu}}^{i}$$

$$+ m \sum_{xi} \bar{\chi}_{x}^{i} \chi_{x}^{i} + \frac{N}{4g^{2}} \sum_{x\mu} A_{\mu x}^{2}$$
 auxiliary boson couples linearly

resembles abelian gauge theory, but link field is NOT unit modulus!

 $A_{\mu x}$ auxiliary vector field defined on link between x and $x+\mu$

$$\eta_{\mu x} \equiv (-1)^{x_0 + \dots + x_{\mu - 1}} \implies \prod_{\square} \eta \eta \eta \eta = -1$$

Chiral symmetry: $U(N) \otimes U(N) \rightarrow U(N)$ (if $m, \Sigma \neq 0$)

In weak coupling continuum limit $U(2N_f)$ symmetry is recovered, with $N_f = 2N$

Strong coupling limit $g^2 \rightarrow \infty$

The lattice regularisation does not respect current conservation

Both diagrams needed to ensure transversity, (ie. WT identity $\sum_{x} \left[\Pi_{\mu\nu}(x) - \Pi_{\mu\nu}(x - \hat{\mu}) \right] = 0$) in lattice QED

 \Rightarrow 1/N_f expansion yields additive $g_R^2 = \frac{g^2}{1 - a^2/a_V^2}$ renormalisation of g^{-2}

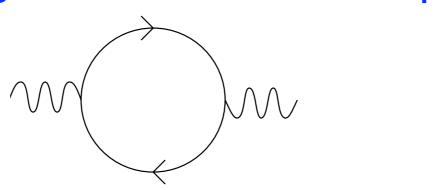
$$g_R^2 = \frac{g^2}{1 - g^2/g_{\lim}^2}$$

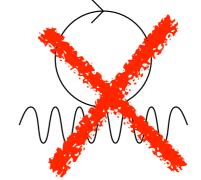
 \Rightarrow lattice strong coupling limit as $g^2 \rightarrow g_{lim}^2(N_f)$

Strong coupling limit

$$g^2 \rightarrow \infty$$

The lattice regularisation does not respect current conservation





Both diagrams needed to ensure transversity, (ie. WT identity $\sum_{\mu} \left[\Pi_{\mu\nu}(x) - \Pi_{\mu\nu}(x - \hat{\mu}) \right] = 0$) in lattice QED

Only the left hand diagram is present for the lattice Thirring model with linear coupling to auxiliary

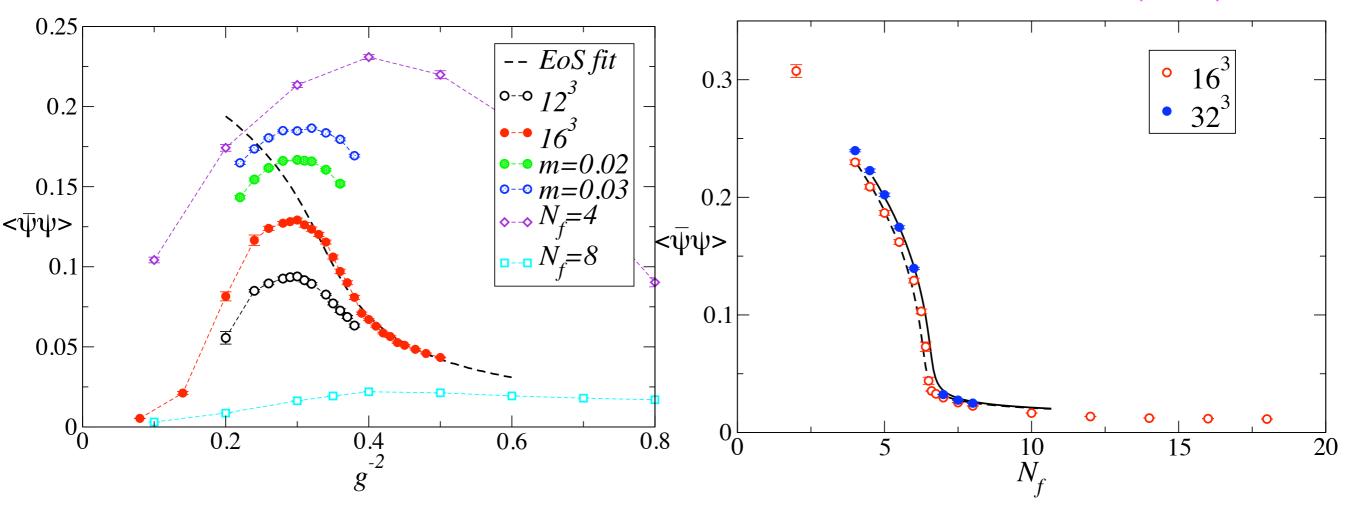
 \Rightarrow 1/N_f expansion yields additive renormalisation of g^{-2}

$$g_R^2 = \frac{g^2}{1 - g^2/g_{\rm lim}^2}$$

 \Rightarrow lattice strong coupling limit as $g^2 \rightarrow g_{lim}^2(N_f)$

Results in effective strong-coupling limit

Christofi, SJH, Strouthos, PRD75 (2007) 101701

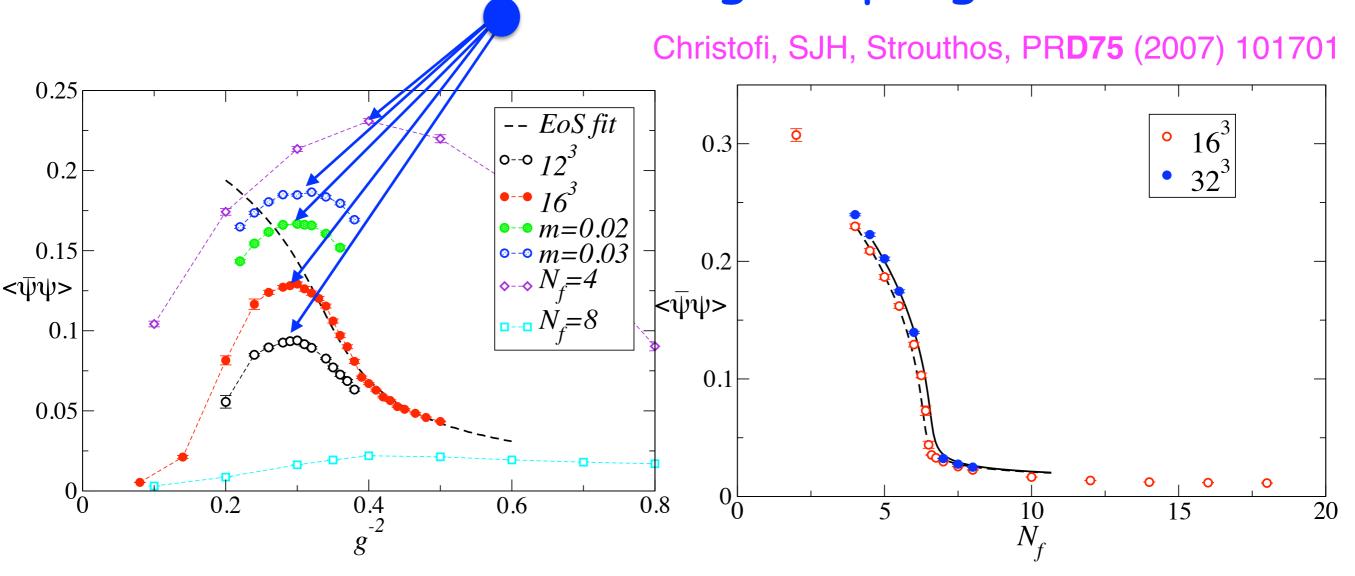


$$N_{fc}$$
=6.6(1), $\delta(N_{fc})$ =6.90(3)

Chiral symmetry unbroken for all g^2 for $N_f > N_{fc}$

Cf. SDE: N_{fc} =4.32, $\delta(N_{fc})$ =1 "conformal phase transition"

Results in effective strong-coupling limit



$$N_{fc}$$
=6.6(1), $\delta(N_{fc})$ =6.90(3)

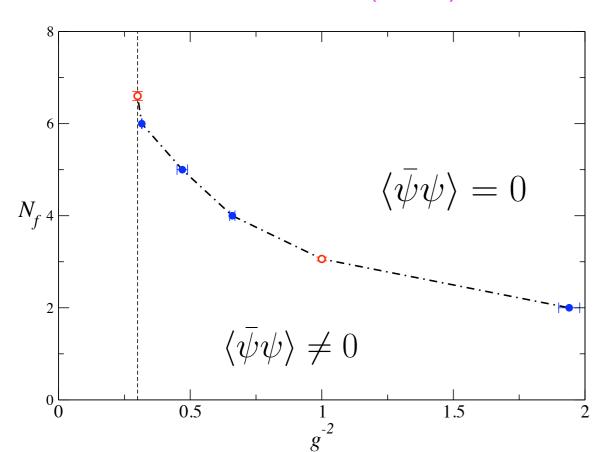
Chiral symmetry unbroken for all g^2 for $N_f > N_{fc}$

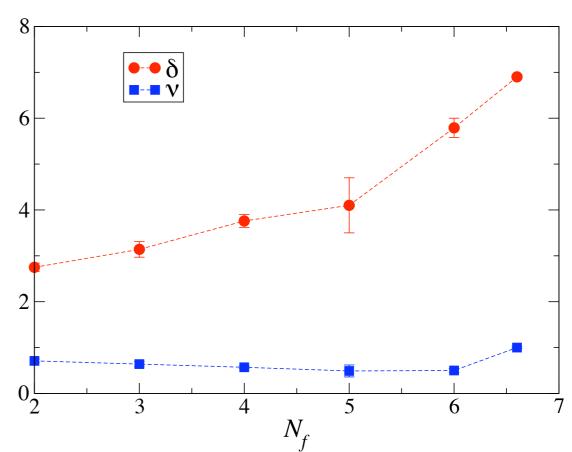
Cf. SDE: N_{fc} =4.32, $\delta(N_{fc})$ =1 "conformal phase transition"

Staggered Thirring Summary

SJH, Lucini, PLB461 (1999) 263

Christofi, SJH, Strouthos, PRD75 (2007) 101701





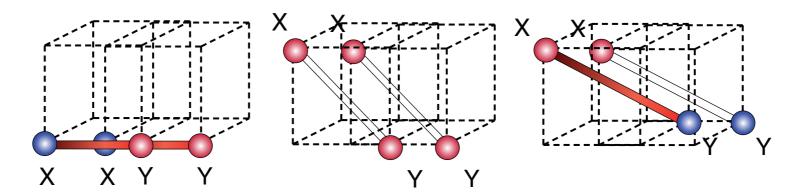
- Chiral symmetry broken for small N_f , large g^2
- Each point (for N_f integer) defines a UV fixed point of RG
- Distinct critical exponents
 ⇔ distinct interacting QFT
 - δ increases with N_f, $\delta(N_{fc})\approx 7$
- Non-covariant form used as EFT for graphene $\Rightarrow N_{fc} \approx 5$

Fermion Bag Algorithm with minimal $N_f = 2$

Chandrasekharan & Li, PRL 108 (2012) 140404; PRD88 (2013) 021701

Thirring Model: $\nu=0.85(1)$, $\eta=0.65(1)$, $\eta_{\psi}=0.37(1)$ (N_f < N_{fC} ≈ 7)

U(1) GN Model: $\nu=0.849(8)$, $\eta=0.633(8)$, $\eta_{\psi}=0.373(3)$ (N_f $\rightarrow \infty$: $\nu=\eta=1$)



Interactions between staggered fields χ , $\bar{\chi}$ spread over elementary cubes. Only difference between Thirring & GN is body-diagonal term

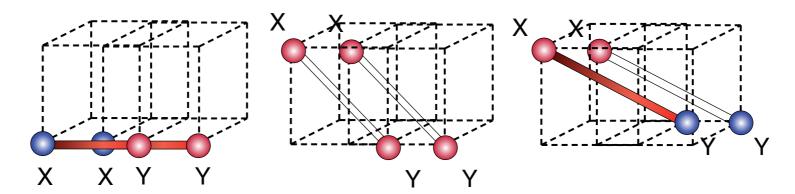
Staggered fermions not reproducing expected distinction between models a near strongly-coupled fixed point...

Fermion Bag Algorithm with minimal $N_f = 2$

Chandrasekharan & Li, PRL 108 (2012) 140404; PRD88 (2013) 021701

Thirring Model: $\nu=0.85(1)$, $\eta=0.65(1)$, $\eta_{\psi}=0.37(1)$ (N_f < N_{fC} ≈ 7)

U(1) GN Model: $\nu=0.849(8)$, $\eta=0.633(8)$, $\eta_{\psi}=0.373(3)$ (N_f $\rightarrow \infty$: $\nu=\eta=1$)



Interactions between staggered fields χ , $\bar{\chi}$ spread over elementary cubes. Only difference between Thirring & GN is body-diagonal term

Staggered fermions not reproducing expected distinction between models a near strongly-coupled fixed point...

... so we need better lattice fermions

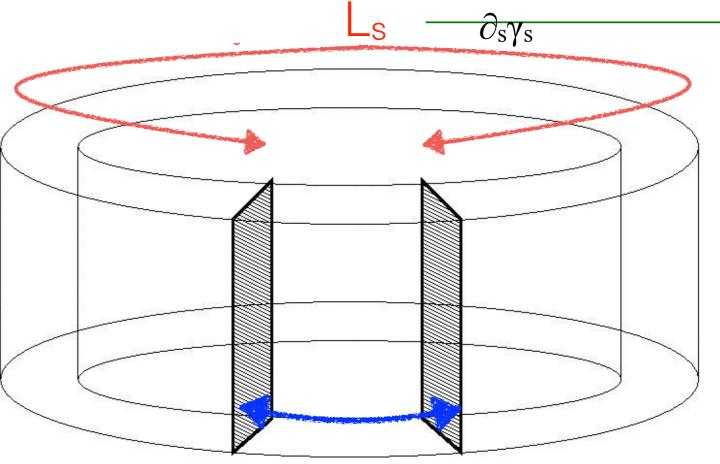
see also SLAC fermion approach

Schmidt, Wellegehausen & Wipf, PoS LATTICE2015 (2016) 050 PRD96 (2017) 094504

Fermions propagate freely along a fictitious third direction of extent L_s with open boundaries

Basic idea as $L_s \rightarrow \infty$:

Domain Wall Fermions



coupling between the walls proportional to explicit massgap m

- zero-modes of D_{DWF} localised on walls are \pm eigenmodes of γ_s
- Modes propagating in bulk can be decoupled (with cunning)

"Physical" fields $\psi(x) = P_-\Psi(x,1) + P_+\Psi(x,L_s);$ in 2+1d target space $\bar{\psi}(x) = \bar{\Psi}(x,L_s)P_- + \bar{\Psi}(x,1)P_+, \text{ with } P_\pm = \frac{1}{2}(1\pm\gamma_s)$

Bottom Up View...

in DWF approach we simulate 2+1+1d fermions

Desiderata...

- Modes localised on walls carry U(2N)-invariant physics
- Fermion doublers don't contribute to normalisable modes
- Bulk modes can be made to decouple

Claim...

It appears to work for....

- carefully-chosen domain wall height M
- smooth gauge field background

Are DWF in 2+1+1d U(2N) symmetric?

Issue: wall modes are eigenstates of γ_3 as $L_s \rightarrow \infty$,

but: U(2N) symmetry demands equivalence under rotations generated by both γ_3 and γ_5

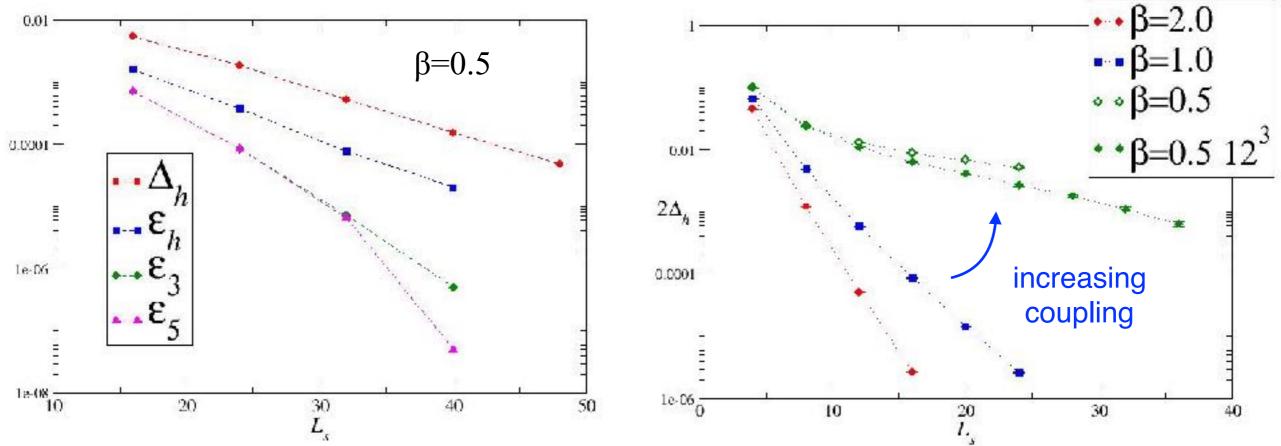
ie. U(2N) → U(N)⊗U(N) symmetry-breaking mass terms

$$m_h \bar{\psi} \psi = i m_3 \bar{\psi} \gamma_3 \psi = i m_5 \bar{\psi} \gamma_5 \psi$$

should yield identical physics as $L_s \rightarrow \infty$

Non-trivial requirement since m_h , m_3 couple Ψ , $\overline{\Psi}$ on *opposite* walls while m_5 couples modes on *same* wall

Bilinear Condensates in Quenched QED₃ on 24³×L_s...



Define main residual: $i\langle \bar{\Psi}(1)\gamma_3\Psi(L_s)\rangle = \frac{i}{2}\langle \bar{\psi}\gamma_3\psi\rangle_{L_s} + i\Delta_h(L_s)$ real imaginary

$$\frac{1}{2}\langle \bar{\psi}\psi\rangle_{L_s} = \frac{i}{2}\langle \bar{\psi}\gamma_3\psi\rangle_{L_S\to\infty} + \Delta_h(L_s) + \epsilon_h(L_s);$$

$$\frac{i}{2}\langle \bar{\psi}\gamma_3\psi\rangle_{L_s} = \frac{i}{2}\langle \bar{\psi}\gamma_3\psi\rangle_{L_S\to\infty} + \epsilon_3(L_s);$$

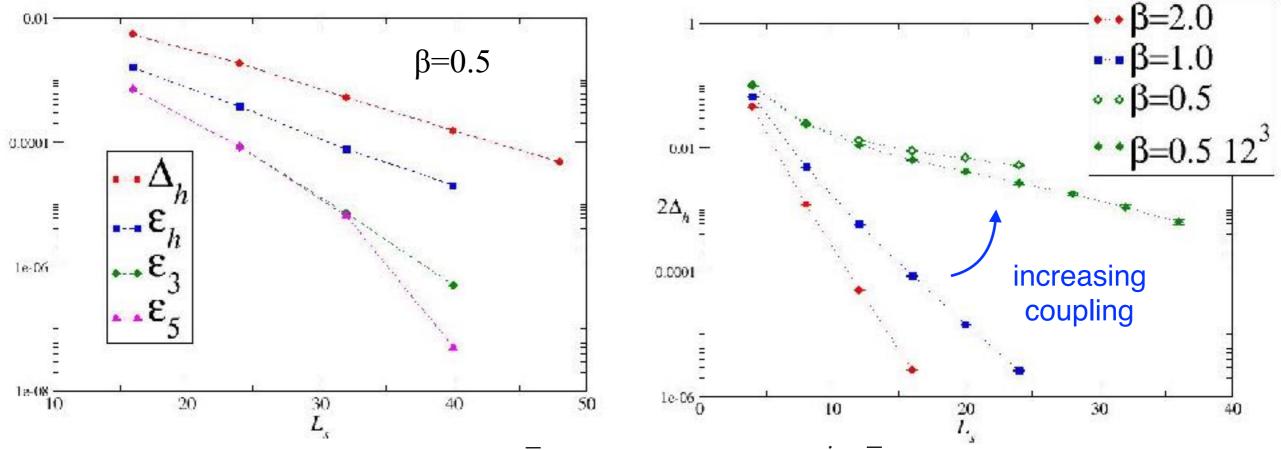
$$\frac{i}{2}\langle \bar{\psi}\gamma_5\psi\rangle_{L_s} = \frac{i}{2}\langle \bar{\psi}\gamma_3\psi\rangle_{L_S\to\infty} + \epsilon_5(L_s).$$

- exponentially suppressed as $L_s \rightarrow \infty$
- hierarchy: $\Delta_h > \varepsilon_h > \varepsilon_3 \equiv \varepsilon_5$

U(2) symmetry restored $\Leftrightarrow \Delta_h \rightarrow 0$

SJH JHEP **09**(2015)047, PLB **754** (2016) 264

Bilinear Condensates in Quenched QED₃ on 24³×L_s...



Define main residual: $i\langle \bar{\Psi}(1)\gamma_3\Psi(L_s)\rangle = \frac{i}{2}\langle \bar{\psi}\gamma_3\psi\rangle_{L_s} + i\Delta_h(L_s)$ real imaginary

$$\frac{1}{2}\langle \bar{\psi}\psi\rangle_{L_s} = \frac{i}{2}\langle \bar{\psi}\gamma_3\psi\rangle_{L_S\to\infty} + \Delta_h(L_s) + \epsilon_h(L_s);$$

$$\frac{i}{2}\langle\bar{\psi}\gamma_3\psi\rangle_{L_s} = \frac{i}{2}\langle\bar{\psi}\gamma_3\psi\rangle_{L_S\to\infty} + \epsilon_3(L_s);$$

$$\frac{i}{2}\langle\bar{\psi}\gamma_5\psi\rangle_{L_s} = \frac{i}{2}\langle\bar{\psi}\gamma_3\psi\rangle_{L_S\to\infty} + \epsilon_5(L_s).$$

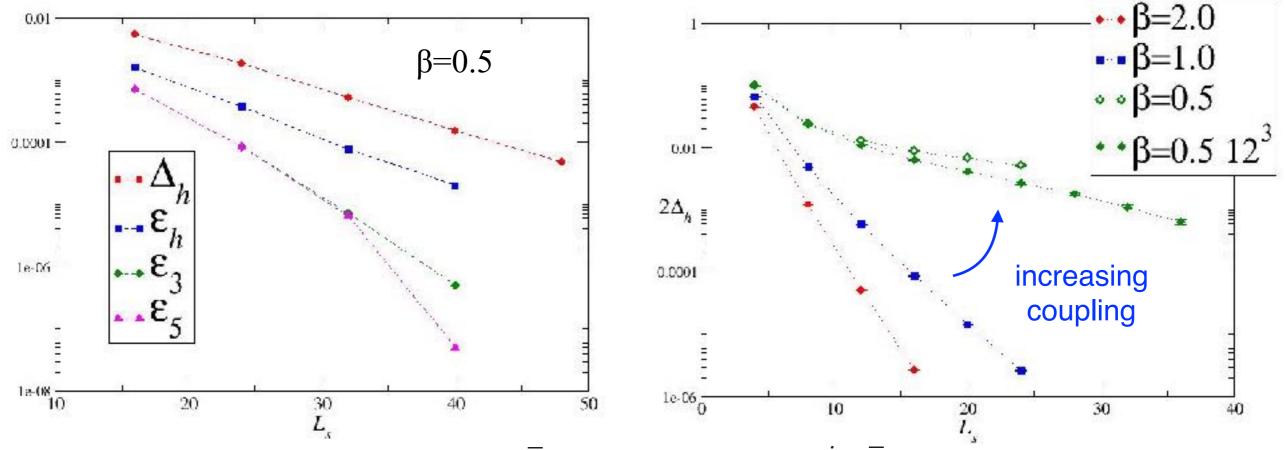
- exponentially suppressed as $L_s \rightarrow \infty$
- hierarchy: $\Delta_h > \varepsilon_h > \varepsilon_3 \equiv \varepsilon_5$

U(2) symmetry restored

$$\Leftrightarrow \Delta_h \rightarrow 0$$

SJH JHEP **09**(2015)047, PLB **754** (2016) 264

Bilinear Condensates in Quenched QED₃ on 24³×L_s...



Define main residual: $i\langle \bar{\Psi}(1)\gamma_3\Psi(L_s)\rangle = \frac{i}{2}\langle \bar{\psi}\gamma_3\psi\rangle_{L_s} + i\Delta_h(L_s)$ real imaginary

$$\frac{1}{2}\langle \bar{\psi}\psi\rangle_{L_s} = \frac{i}{2}\langle \bar{\psi}\gamma_3\psi\rangle_{L_S\to\infty} + \Delta_h(L_s) + \epsilon_h(L_s);$$

$$\frac{i}{2}\langle\bar{\psi}\gamma_3\psi\rangle_{L_s} = \frac{i}{2}\langle\bar{\psi}\gamma_3\psi\rangle_{L_S\to\infty} + \epsilon_3(L_s);$$

$$\frac{i}{2}\langle \bar{\psi}\gamma_5\psi\rangle_{L_s} = \frac{i}{2}\langle \bar{\psi}\gamma_3\psi\rangle_{L_S\to\infty} + \epsilon_5(L_s).$$

- exponentially suppressed as $L_s \rightarrow \infty$
- hierarchy: $\Delta_h > \epsilon_h > \epsilon_3 \equiv \epsilon_5$

U(2) symmetry restored

$$\Leftrightarrow \Delta_h \rightarrow 0$$

SJH JHEP **09**(2015)047, PLB **754** (2016) 264

Top Down View...

The closest approach to continuum symmetries is expressed by **Ginsparg-Wilson** relations

$$\{\gamma_5, D\} = 2D\gamma_5 D$$

RHS is O(aD), so U(2N) recovered in long-wavelength limit if D local

By construction GW is satisfied by the 2+1d overlap operator

$$D_{ov} = \frac{1}{2} \left[(1+m_h) + (1-m_h) \frac{A}{\sqrt{A^{\dagger}A}} \right]$$
 with $\gamma_3 A \gamma_3 = \gamma_5 A \gamma_5 = A^{\dagger}$

$$A \equiv [2+(D_W-M)]^{-1}[D_W-M]; \quad D_W \text{ local}; \quad Ma = O(1) \quad \textbf{D}_{ov} \text{ not manifestly local}$$

DWF provide a regularisation of overlap with a *local* kernel in 2+1+1d

$$\frac{\det D_{\text{DWF}}(m_i)}{\det D_{\text{DWF}}(m_h = 1)} = \det D_{L_s}(m_i)$$

$$\lim_{L_s\to\infty}D_{L_s}=D_{ov}$$

SJH PLB **754** (2016) 264

Top Down View...

The closest approach to continuum symmetries is expressed by **Ginsparg-Wilson** relations

$$\{\gamma_5, D\} = 2D\gamma_5 D$$

$$\{\gamma_3, D\} = 2D\gamma_3 D \quad [\gamma_3\gamma_5, D] = 0$$

RHS is O(aD), so U(2N) recovered in long-wavelength limit if D local

By construction GW is satisfied by the 2+1d overlap operator

$$D_{ov} = \frac{1}{2} \left[(1+m_h) + (1-m_h) \frac{A}{\sqrt{A^{\dagger}A}} \right]$$
 with $\gamma_3 A \gamma_3 = \gamma_5 A \gamma_5 = A^{\dagger}$

$$A \equiv [2+(D_W-M)]^{-1}[D_W-M]; \quad D_W \text{ local}; \quad Ma = O(1) \quad \textbf{D}_{ov} \text{ not manifestly local}$$

DWF provide a regularisation of overlap with a *local* kernel in 2+1+1d

$$\frac{\det D_{\text{DWF}}(m_i)}{\det D_{\text{DWF}}(m_h = 1)} = \det D_{L_s}(m_i)$$

$$\lim_{L_s\to\infty}D_{L_s}=D_{ov}$$

Formulational issues for the Thirring Model with DWF

(a) Formulate interaction terms in terms of vector auxiliary $A_{\mu}(x)$ defined just on walls at $x_3 = 1$, L_s : "Surface"

Technical/cost advantage: no Pauli-Villars determinant needed to cancel bulk modes
P. Vranas, I. Tziligakis and J.B. Kogut, Phys. Rev. D 62 (2000) 054507

(b) By analogy with QCD, formulate with $A_{\mu}(x)$ throughout bulk which are "static" ie. $\partial_3 A_{\mu} = 0$: "Bulk"

$$\mathcal{S} = \bar{\Psi}\mathcal{D}\Psi = \bar{\Psi}D_W\Psi + \bar{\Psi}D_3\Psi + m_iS_i$$
 with

$$D_W = \gamma_{\mu} D_{\mu} - (\hat{D}^2 + M);$$

$$D_3 = \gamma_3 \partial_3 - \hat{\partial}_3^2,$$

Recall link field **not** unit modulus

Bulk formulation

$$[\partial_3, D_\mu] = [\partial_3, \hat{D}^2] = 0$$

but $[\partial_3, \hat{\partial}_3^2] \neq 0$ on walls obstruction to proving $\det \mathcal{D} > 0$ for N=1

Formulational issues for the Thirring Model with DWF

(a) Formulate interaction terms in terms of vector auxiliary $A_{\mu}(x)$ defined just on walls at $x_3 = 1$, L_s : "Surface"

Technical/cost advantage: no Pauli-Villars determinant needed to cancel bulk modes
P. Vranas, I. Tziligakis and J.B. Kogut, Phys. Rev. D 62 (2000) 054507

(b) By analogy with QCD, formulate with $A_{\mu}(x)$ throughout bulk which are "static" ie. $\partial_3 A_{\mu} = 0$: "Bulk"

$$\mathcal{S} = \bar{\Psi}\mathcal{D}\Psi = \bar{\Psi}D_W\Psi + \bar{\Psi}D_3\Psi + m_iS_i$$
 with

$$D_W = \gamma_{\mu} D_{\mu} - (\hat{D}^2 + M);$$

$$D_3 = \gamma_3 \partial_3 - \hat{\partial}_3^2,$$

Recall link field **not** unit modulus

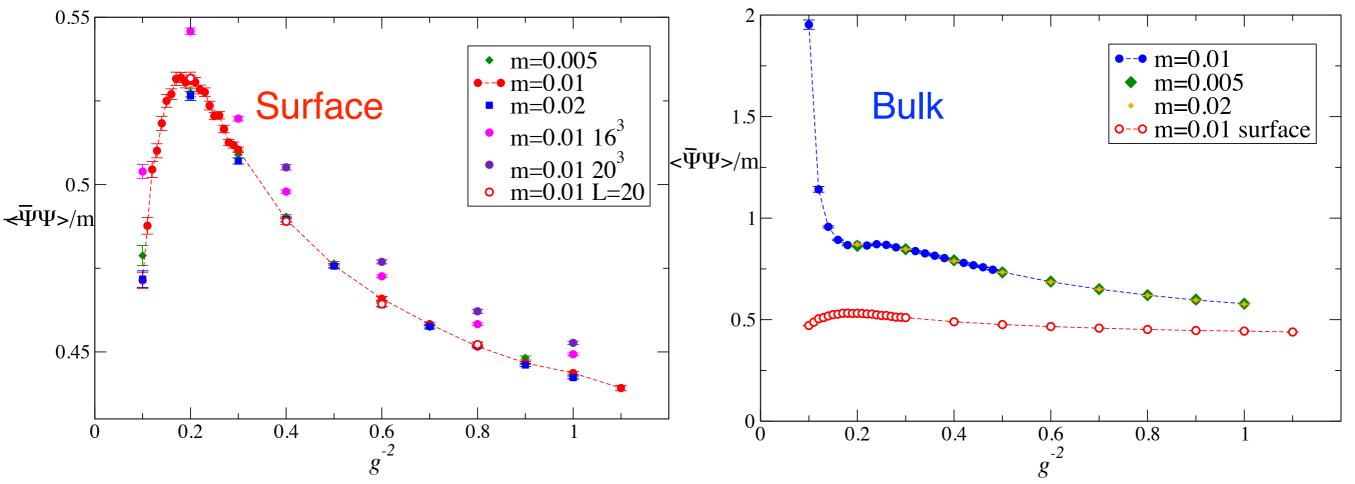
Bulk formulation

$$[\partial_3, D_\mu] = [\partial_3, \hat{D}^2] = 0$$

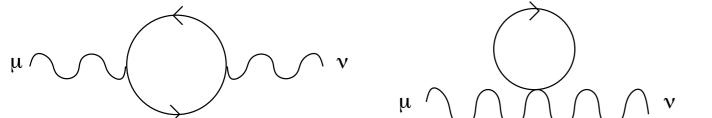
but $[\partial_3, \hat{\partial}_3^2] \neq 0$ on walls obstruction to proving $\det \mathcal{D} > 0$ for N=1

→ need RHMC algorithm for N=1

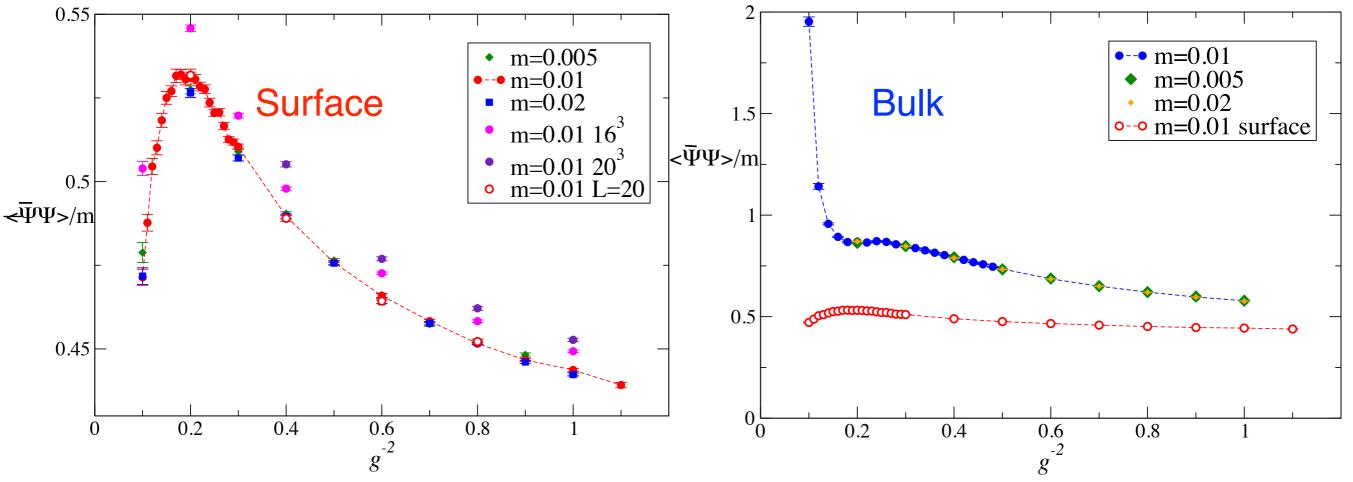
HMC Results with N_f=2 on 12³×16



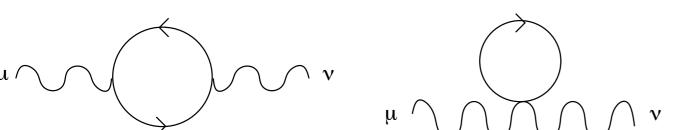
- Breakdown of reflection positivity for strong coupling ag-2≈0.2?
- Strong volume dependence for surface model
- Results at L_s=16 and L_s=20 are consistent
- No evidence of spontaneous symmetry breaking anywhere along g-2 axis



HMC Results with N_f=2 on 12³×16

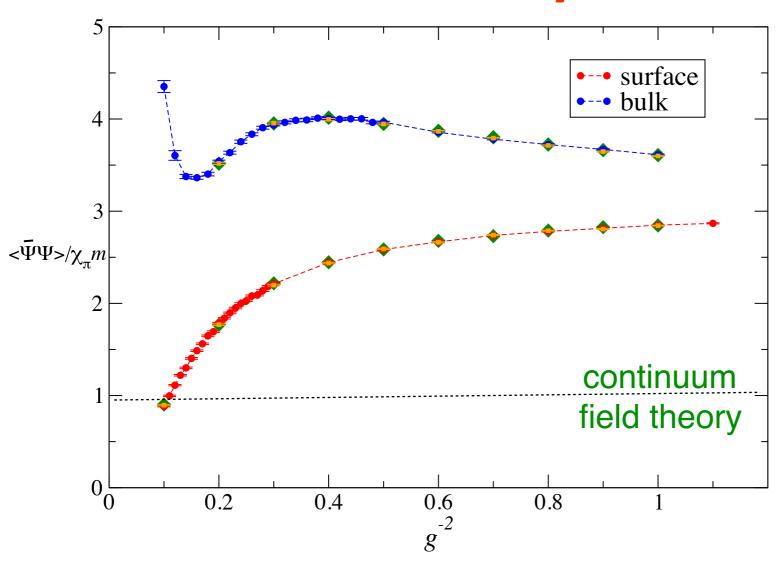


- Breakdown of reflection positivity for strong coupling ag-2≈0.2?
- Strong volume dependence for surface model
- Results at L_s=16 and L_s=20 are consistent
- No evidence of spontaneous symmetry breaking anywhere along g-2 axis



big disparity with previous staggered results

Axial Ward Identity

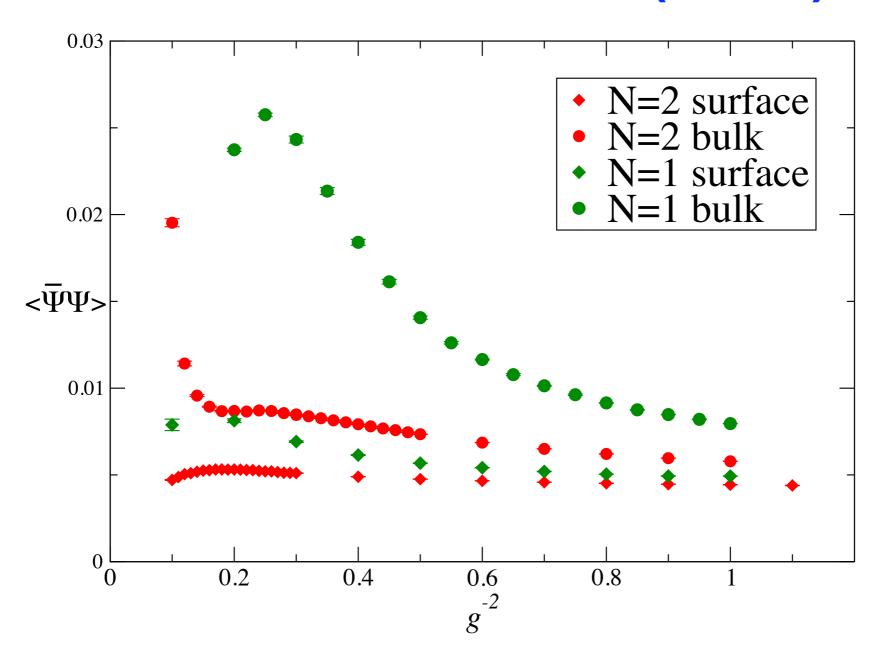


Ratio of order parameter to susceptibility is predicted constant by WI

$$\frac{\langle \bar{\psi}\psi\rangle}{m} = \sum_{x} \langle \bar{\psi}\gamma_3\psi(0)\bar{\psi}\gamma_3\psi(x)\rangle$$

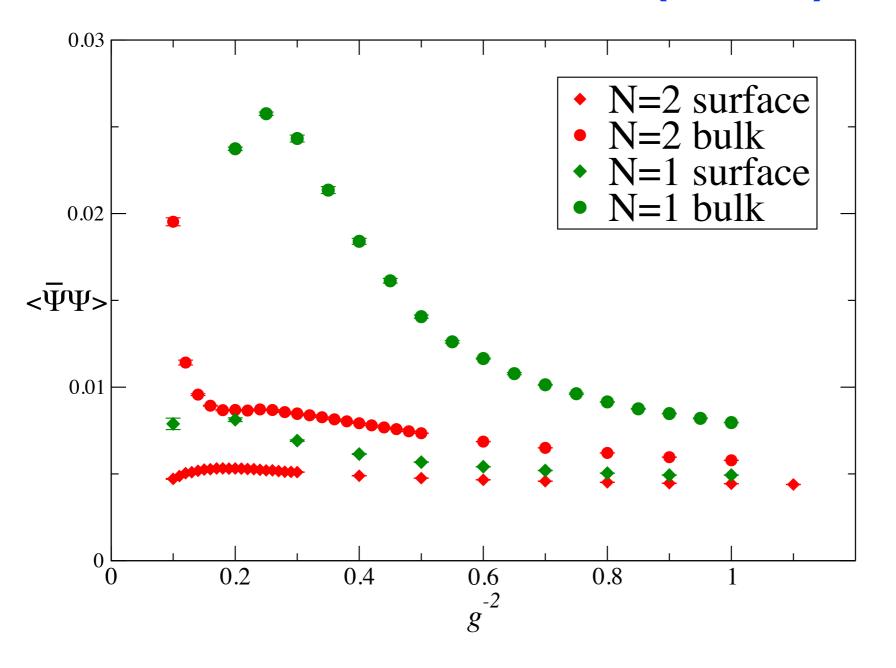
Strong-coupling behaviour suggests
neither Surface nor Bulk model optimal:
work still needed to specify 2+1d states Ψ with control over normalisation

Cf. 2+1d Gross-Neveu model, where Ward Identity is respected, spectroscopy under control...



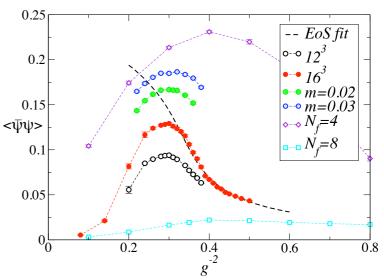
arXiv:1708.07686

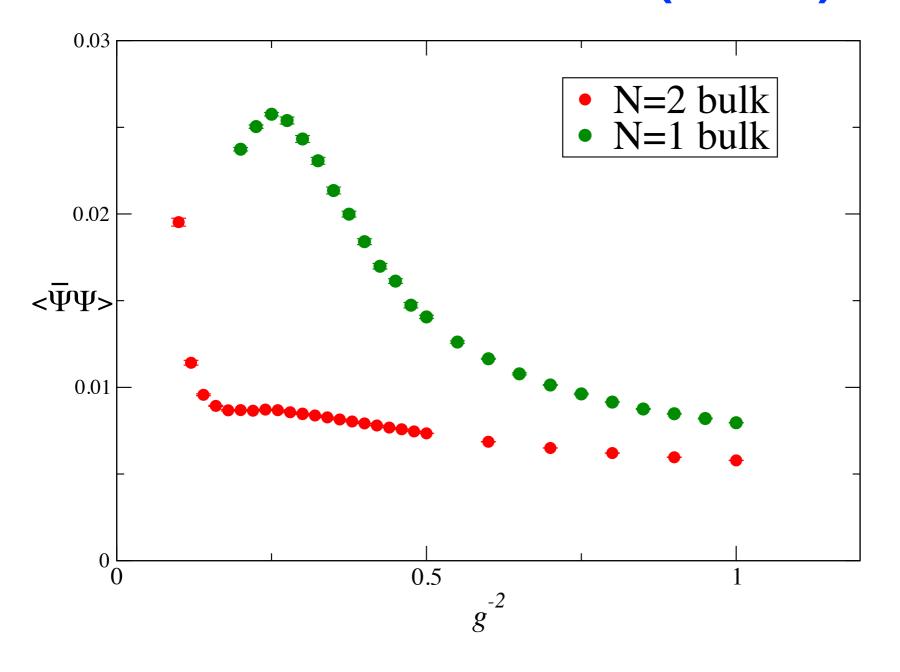
N=1 simulations
performed with
weight det(M†M)½
using RHMC
algorithm with 25
partial fractions



arXiv:1708.07686

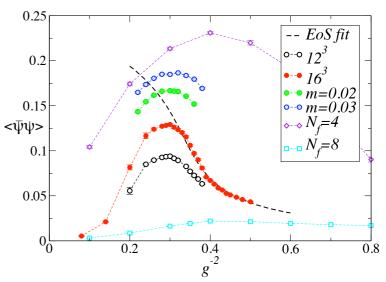
N=1 simulations
performed with
weight det(M†M)½
using RHMC
algorithm with 25
partial fractions

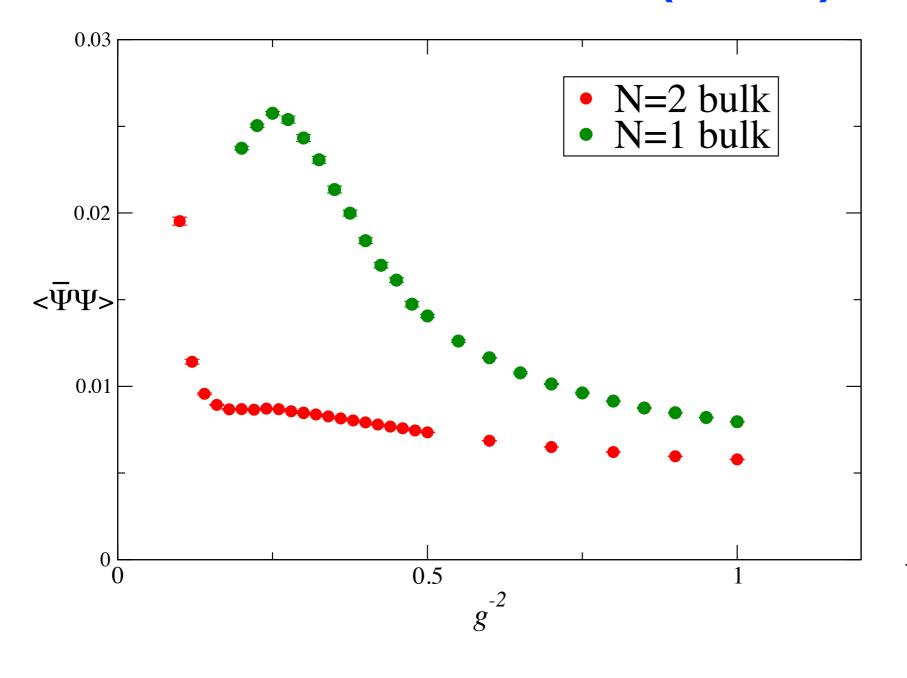




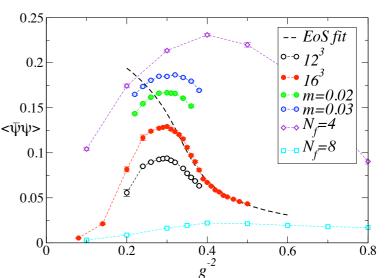
arXiv:1708.07686

N=1 simulations
performed with
weight det(M†M)½
using RHMC
algorithm with 25
partial fractions





N=1 simulations
performed with
weight det(M†M)½
using RHMC
algorithm with 25
partial fractions

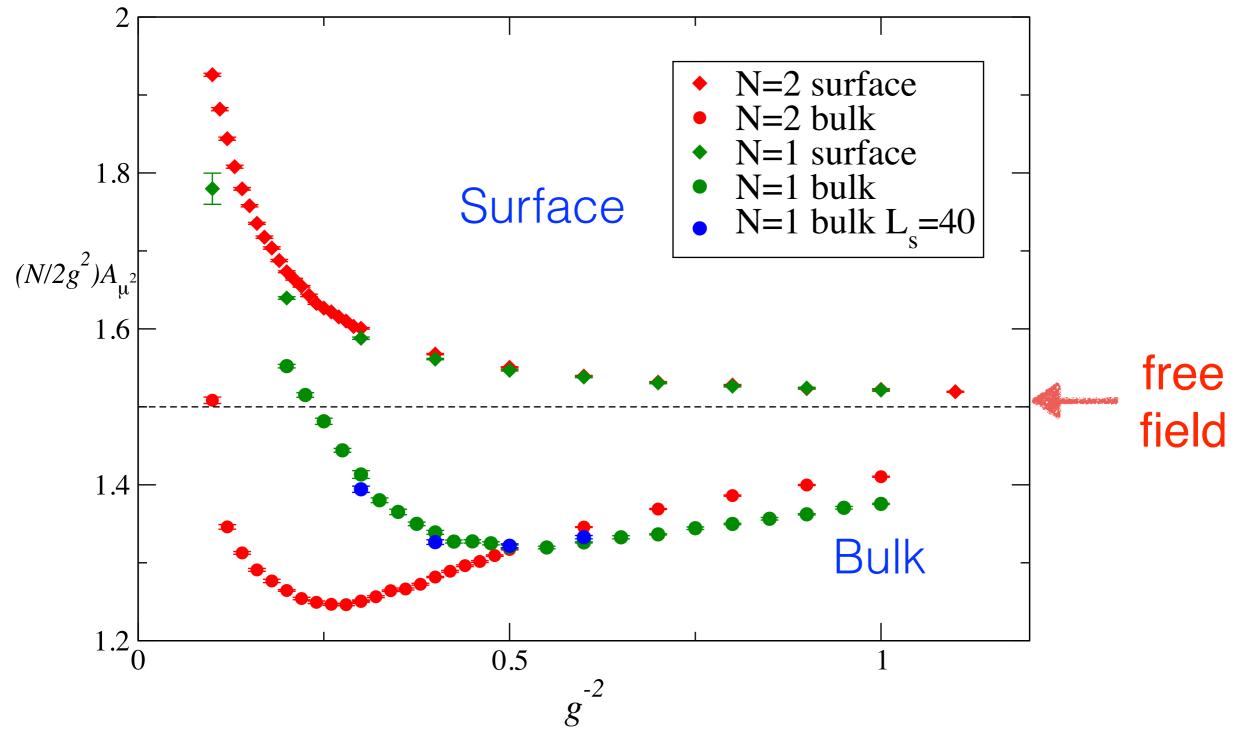


Henceforth focus on **bulk**

Evidence for enhanced pairing for N=1 and $ag^{-2} < 0.5$?

Boson Action

an interesting diagnostic

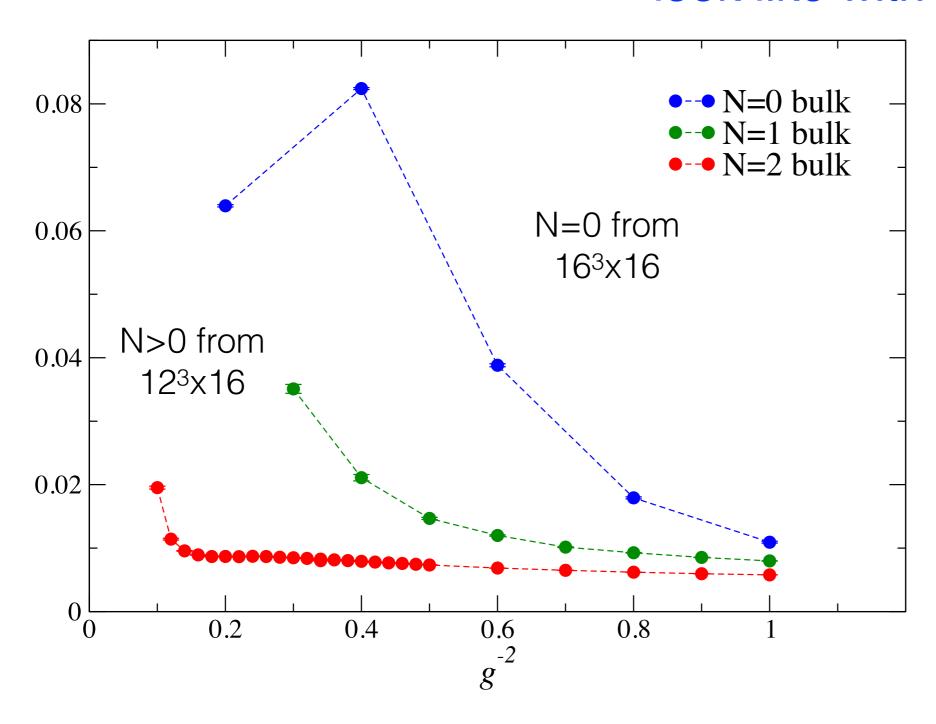


Surface and Bulk models show different behaviour

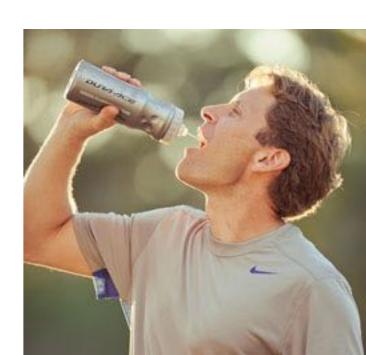
N=1: change of behaviour for $ag^{-2} < 0.5$?

Quenched Interlude

what does U(2N) symmetry-breaking look like with DWF?



comparison of **bulk** models with N=0,1,2 with L_s=16, ma=0.01

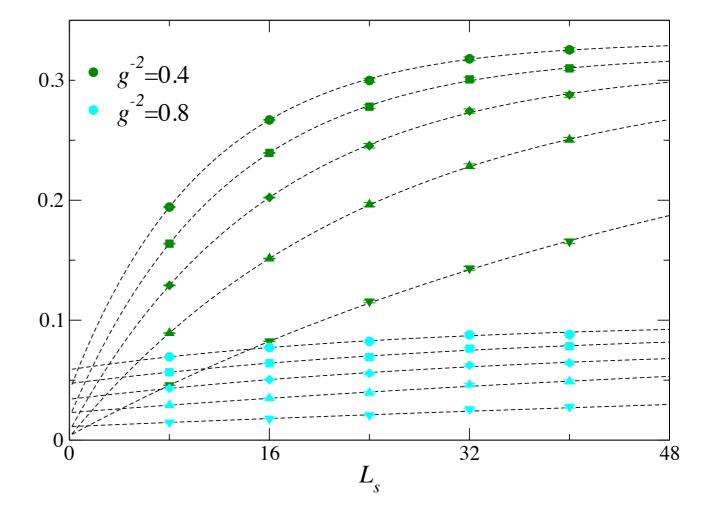


$0.4 \\ g^{-2} = 0.2 \\ g^{-2} = 0.4 \\ 0.3 \\ g^{-2} = 0.8 \\ g^{-2} = 1.0 \\ 0.1 \\ 0.1 \\ 0 \\ 16 \\ L_{S}$ ma = 0.05

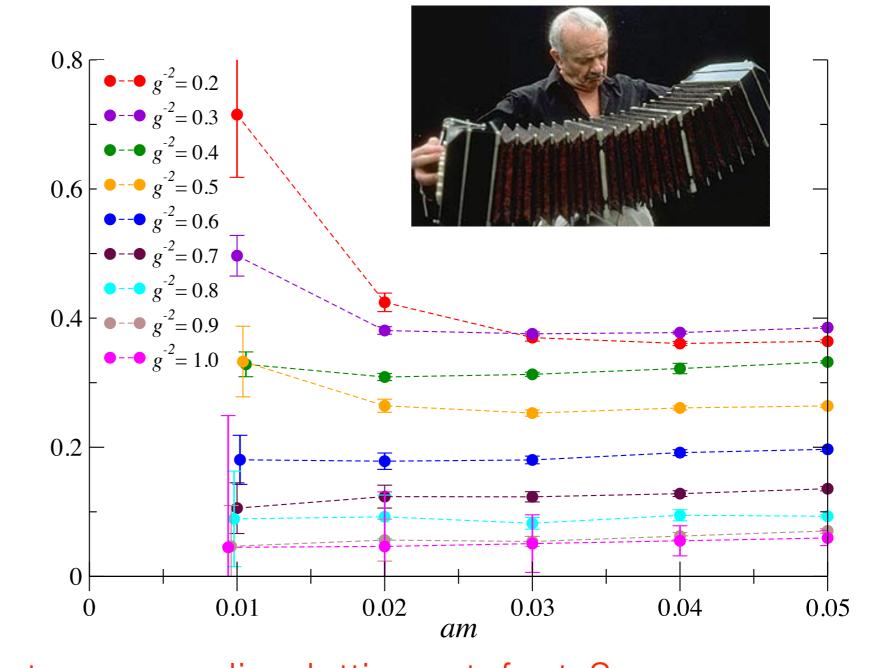
Finite-L_s corrections much more significant in quenched simulations

$$\langle \bar{\psi}\psi \rangle_{L_s} = \langle \bar{\psi}\psi \rangle_{\infty} - A(m, g^2)e^{-\Delta(m, g^2)L_s}$$

Amplitude A & decay constant Δ both increase with size of signal



for quenched theory



 $ag^{-2} \leq 0.2$

strong coupling lattice artefacts?

ag⁻² ≥ 0.8 $m\rightarrow 0$ limit hard to extract, consistent with zero

ag⁻² \in (0.3,0.7) $m\rightarrow 0$ has non-vanishing intercept consistent with symmetry breaking

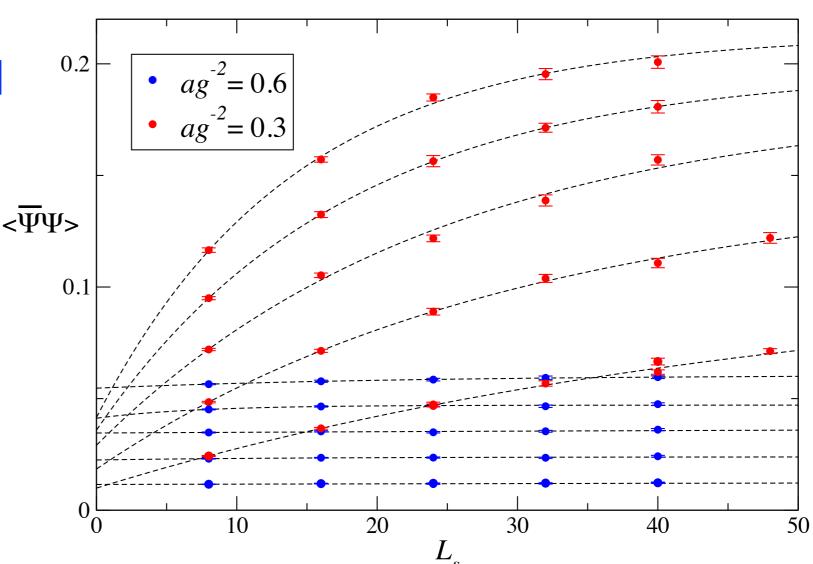
Cf. quenched QED4 in the old days....

 $\Rightarrow N_c > 0$?

Kocić, SJH, Kogut, Dagotto, NPB 347(1990)217

Have now repeated analysis for N=1,123xLs

lines are exponential extrapolations Ls→∞



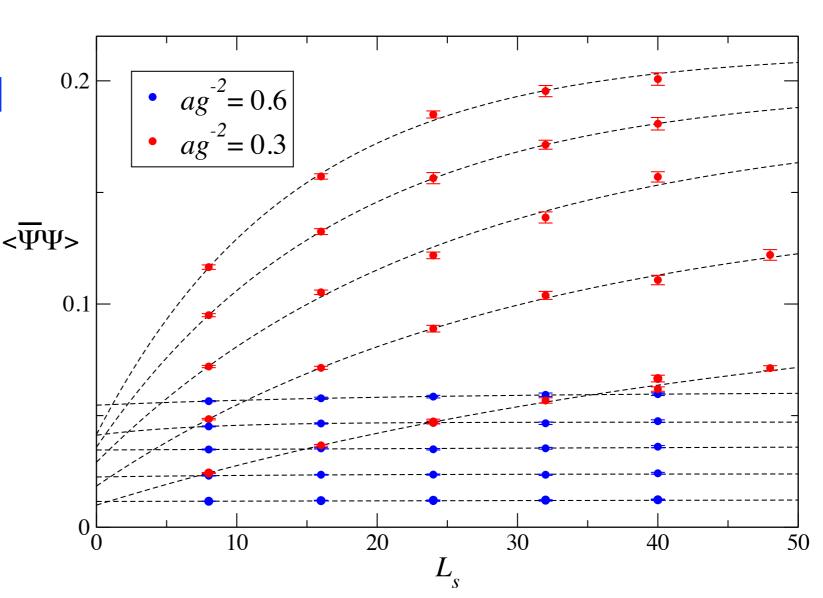
Again, a big contrast weak ag-2=0.6 vs. strong ag-2=0.3

 L_s =48, am=0.01, ag⁻²=0.3:

RHMC Hamiltonian step requires ~9500 QMR iterations

Have now repeated analysis for N=1,123xLs

lines are exponential extrapolations Ls→∞



Again, a big contrast weak ag-2=0.6 vs. strong ag-2=0.3

 L_s =48, am=0.01, ag⁻²=0.3:

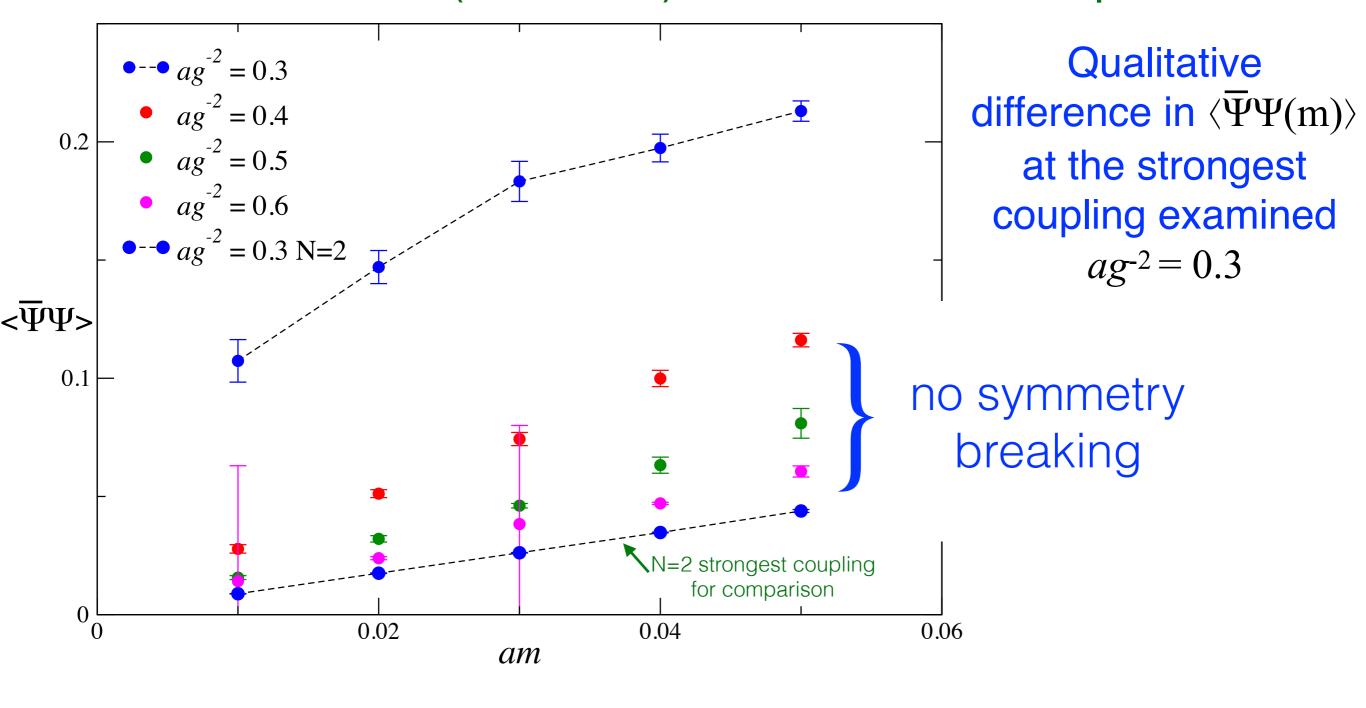
RHMC Hamiltonian step requires ~9500 QMR iterations

No-one said strong coupling would be easy....

$N=1 L_s \rightarrow \infty$

 $12^{3}xL_{s}, L_{s}=8,...,40(48); ag^{-2}=0.6,5,4,3;$ ma = 0.01,2,3,4,5 \Leftrightarrow

O(6 months) on cluster, 4 cores per run

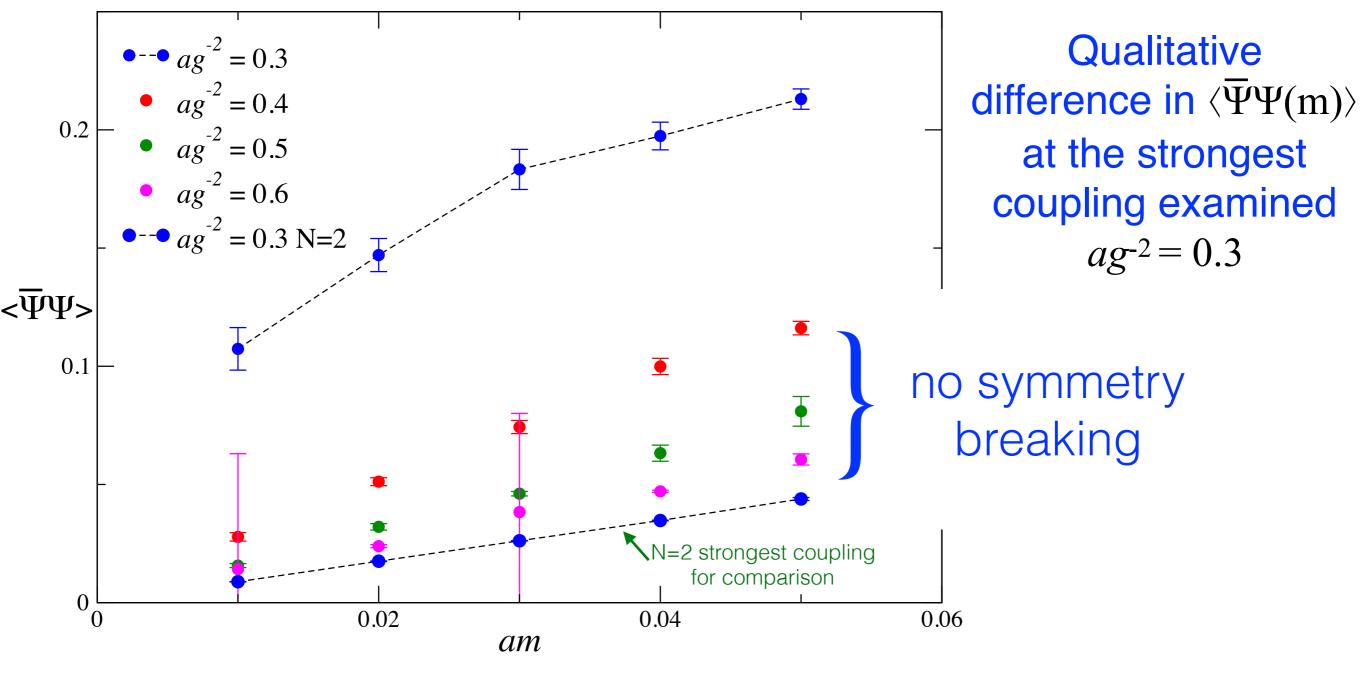


 \rightarrow 1 < N_c < 2 ? 0.3 < ag_c^{-2} < 0.4 ??

N=1 $L_s \rightarrow \infty$

 $12^{3}xL_{s}, L_{s}=8,...,40(48); ag^{-2}=0.6,5,4,3;$ ma = 0.01,2,3,4,5 \Leftrightarrow

O(6 months) on cluster, 4 cores per run

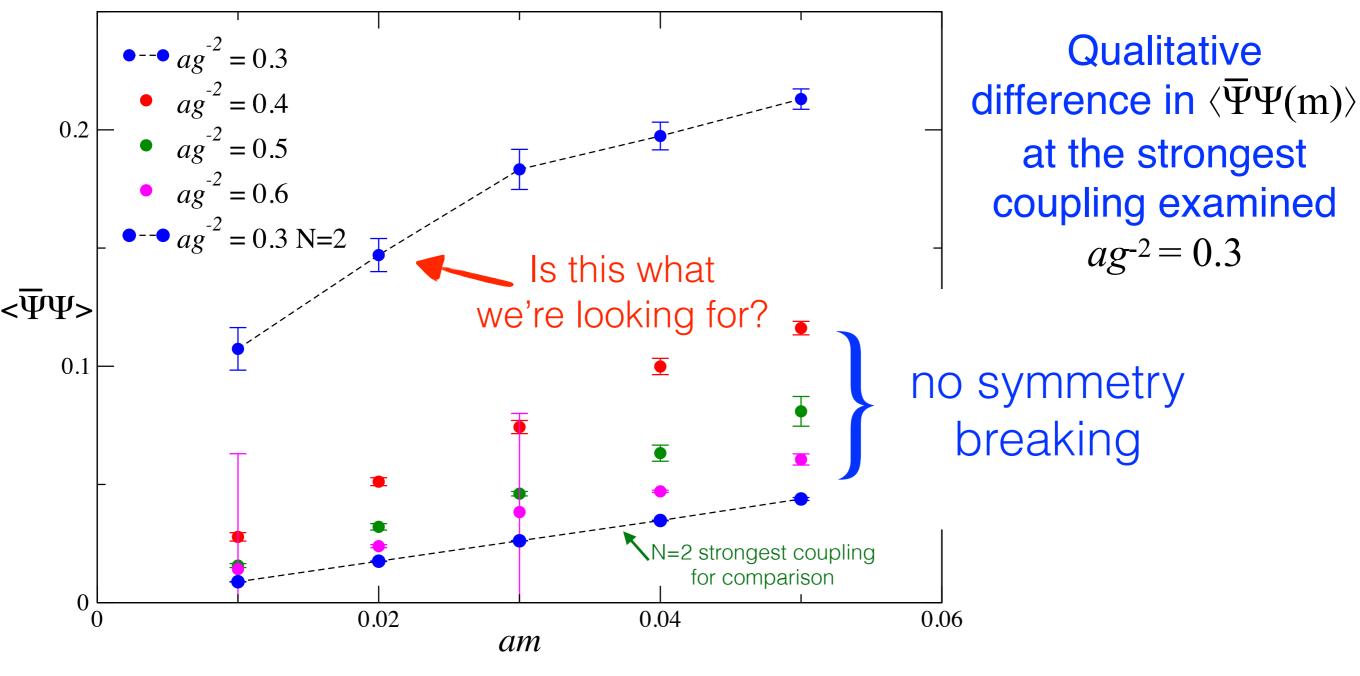


$$\Rightarrow$$
 1 < N_c < 2 ? 0.3 < ag_c^{-2} < 0.4 ??

N=1 $L_s \rightarrow \infty$

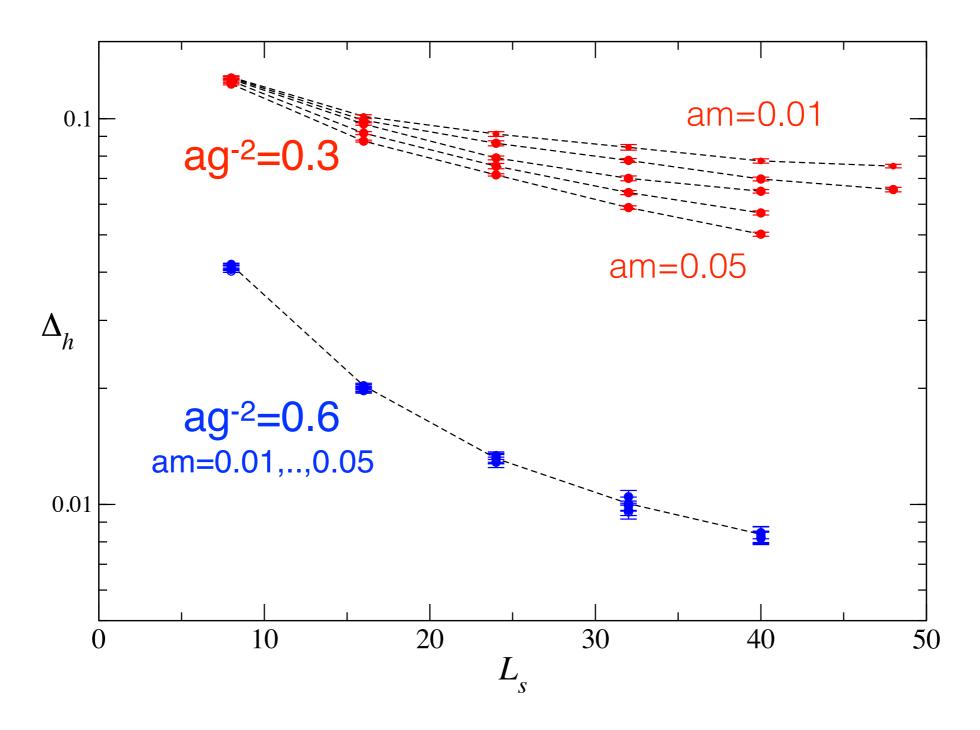
 $12^{3}xL_{s}, L_{s}=8,...,40(48); ag^{-2}=0.6,5,4,3;$ ma = 0.01,2,3,4,5 \Leftrightarrow

O(6 months) on cluster, 4 cores per run



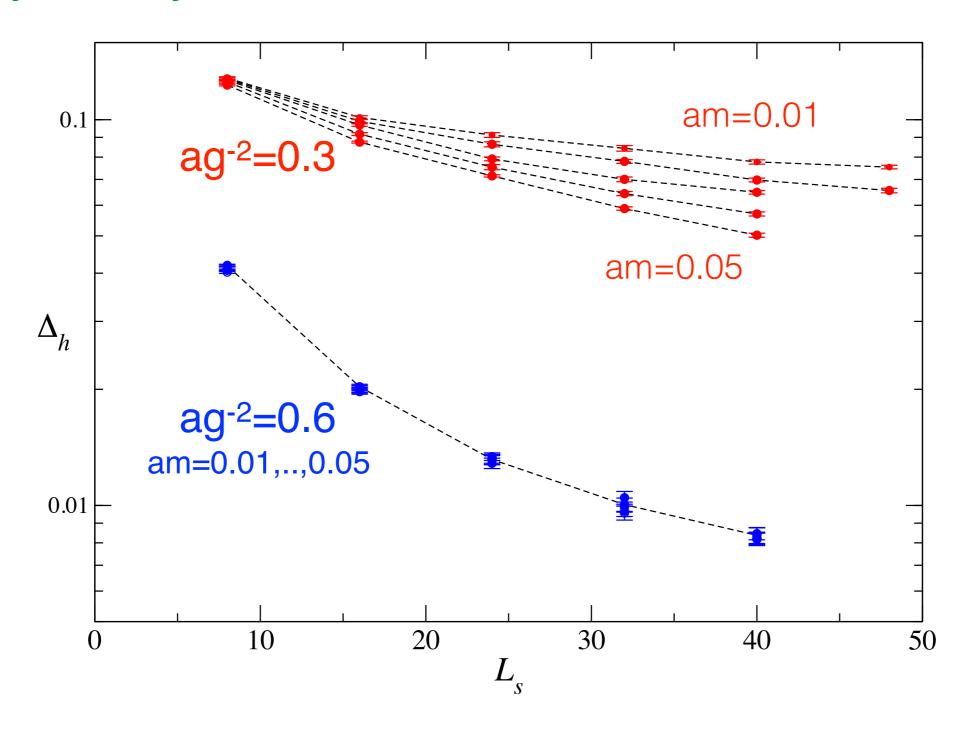
$$\Rightarrow$$
 1 < N_c < 2 ? 0.3 < ag_c^{-2} < 0.4 ??

U(2) symmetry restoration as $L_s \rightarrow \infty$



Qualitatively different at strong and weak coupling, and slow...

U(2) symmetry restoration as $L_s \rightarrow \infty$



Qualitatively different at strong and weak coupling, and slow...

Summary & Outlook

- No obstruction found to simulating U(2N) fermions
- "twisted mass" $im_3\overline{\psi}\gamma_3\psi$ optimises $L_s\to\infty$
- Robust conclusion: N_{fc} <2 for both bulk and surface
- Tentative evidence for SSB for N=1 at strong coupling

Cf. QED₃ N_{fc} <1 Karthik & Narayanan PRD93 045020, D94 065026 (2016)

- Staggered Thirring Model shouldn't be forgotten very non-trivial sensitivity to N
- Need to check $V\rightarrow \infty$, the effect of varying M_{wall}
- Try Haldane mass m₃₅≠0?
- Need to examine locality of corresponding $D_{ov}\,$
- Analysis of critical scaling at QCP requires improved code!

JHEP **1509** (2015) 047 PLB **754** (2016) 264 JHEP **1611** (2016) 015 arXiv:1708.07686

Summary & Outlook

- No obstruction found to simulating U(2N) fermions
- "twisted mass" $im_3\overline{\psi}\gamma_3\psi$ optimises $L_s\to\infty$
- Robust conclusion: N_{fc} <2 for both bulk and surface
- Tentative evidence for SSB for N=1 at strong coupling

$$\Rightarrow$$
 1 < N_{fc} < 2 ?

Cf. QED₃ N_{fc} <1 Karthik & Narayanan PRD93 045020, D94 065026 (2016)

- Staggered Thirring Model shouldn't be forgotten very non-trivial sensitivity to N
- Need to check $V\rightarrow \infty$, the effect of varying M_{wall}
- Try Haldane mass m₃₅≠0?
- $\bullet \ \ \ Need to examine locality of corresponding \ D_{ov}$
- Analysis of critical scaling at QCP requires improved code!

JHEP **1509** (2015) 047 PLB **754** (2016) 264 JHEP **1611** (2016) 015 arXiv:1708.07686