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In this talk I will 
• discuss quantum field theories of  

relativistic fermions in 2+1d focussing  
on the U(2N)-invariant Thirring model 

• review critically old simulation results for QCPs 
obtained with staggered lattice fermions  

•  show that domain wall fermions capture the 
relevant global symmetries more accurately 

•  present simulation results showing that DWF 
tell a very different story to staggered 



Relativistic Fermions in 2+1d

Several applications
in condensed matter physics

• Nodal fermions in 
d-wave superconductors

• Spin liquids in 
Heisenberg AFM

• surface states of 
topological insulators

• ….and graphene
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r ≫ (g2Nf)−1

ψψ̄

Σ(Nf)/g2, ⟨ψ̄ψ(Nf)⟩/g4

S =

∫

d3x Ψ̄(γµ∂µ)Ψ + mΨ̄Ψ
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Free reducible fermions in 3 spacetime dimensions

L = ψ̄i(∂/ + m)ψi +
g2

2Nf
(ψ̄iγµψi)

2

i = 1, . . . , Nf

ψi, ψ̄i

{γµ, γν} = 2δµν

[L] = d ⇒ [ψ] = [ψ̄] =
d − 1

2
; [g2] = 2 − d

L = ψ̄i(∂/ + i
g√
Nf

Aµγµ + m)ψi +
1

2
AµAµ

LQED = ψ̄i(∂/ + igAµγµ + m)ψi +
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This paper explores the application of formulations originally developed to optimise

the reproduction of global symmetries in lattice QCD, namely Ginsparg-Wilson (GW)

fermions [30] and, principally, domain wall fermions [31, 32], to reducible fermion models in

2+1d. After reviewing the relevant symmetries and identifying three distinct but physically

equivalent formulations of the mass term in the next section, in section 3 we generalise the

GW relation to fermions in 2+1d and identify remnant quasi-global symmetries, which

recover the desired U(2Nf ) form only in the continuum limit a → 0. A realisation of the

GW symmetries by an overlap operator [33] is given. In section 4 we define a domain

wall fermion operator in 2+1+1d which permits the definition of fermi fields localised on

domain walls at either end of the newly introduced 3 direction which purport to satisfy

the U(2Nf ) symmetry in the limit that the wall separation Ls → ∞. An important

component of the argument is the reformulation of the three distinct mass terms given in

section 2. Section 5 presents results from numerical investigations of the Nf = 1 domain

wall operator in the context of quenched non-compact QED3, which permits the use of

either weak, strong, or intermediate coupling. While there is no attempt to explore either

continuum or thermodynamic limits, we calculate both bilinear condensates (section 5.1)

and meson propagators (section 5.2) using each of the three alternative mass terms, and

show that in almost all cases as Ls → ∞ the results are in accord with a scenario in

which U(2) symmetry is broken to U(1)⊗U(1). Interestingly, the most rapid convergence

to the U(2)-symmetric limit is obtained for the case of a “twisted” mass term imψ̄γ3ψ. For

intermediate coupling the results for the condensate ⟨ψ̄ψ⟩ are compatible in the massless

limit with old results obtained with staggered fermions [35]. Finally in section 6 we present

a summary of the findings and an outlook for future investigations. We also discuss the

intriguing possibility that for reducible theories of fermions in 2+1d the overlap and domain

wall approaches may not coincide except in the continuum limit.

2 Relativistic fermions in 2+1d

I begin by reviewing the continuum formulation of a gauge theory with fermion fields

Ψ, Ψ̄ in a reducible representation of the spinor algebra, based on 4 × 4 Euclidean Dirac

matrices γµ with {γµ, γν} = 2δµν , µ, ν = 0, 1, 2, and having a parity-invariant mass. The

weakly-interacting long-wavelength limit of staggered lattice fermions naturally reproduces

this formulation with Nf = 2 flavors [20] — in what follows flavor indices are suppressed.

The action can be written (for convenience, the necessary
∫

d3x is omitted in all action

definitions)

S = Ψ̄DΨ+mΨ̄Ψ (2.1)

where the covariant derivative operator D can be expanded as

D = γ0D0 + γ1D1 + γ2D2 = −D†. (2.2)

This has global symmetries

Ψ (→ eiαΨ ; Ψ̄ (→ Ψ̄e−iα, (2.3)

Ψ (→ eαγ3γ5Ψ ; Ψ̄ (→ Ψ̄e−αγ3γ5 , (2.4)

– 3 –

For m=0   S is invariant under global U(2N) symmetry generated by 

For m≠0             γ3 and γ5 rotations no longer symmetries
⇒   U(2N) → U(N)⊗U(N)

Mass term           is hermitian & invariant under parity xµ ↦ -xµ

Two physically equivalent antihermitian 
“twisted” or “Kekulé” mass terms:
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The “Haldane” mass is not parity-invariant
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where γ3 and γ5 are two additional traceless, hermitian, and linearly independent 4×4 ma-

trices which anticommute with all the γµ (see (2.8), (2.9) below), and as usual in Euclidean

matric γ5 ≡ γ0γ1γ2γ3. For fermion mass m = 0 there are two additional symmetries

Ψ #→ eiαγ5Ψ ; Ψ̄ #→ Ψ̄eiαγ5 , (2.5)

Ψ #→ eiαγ3Ψ ; Ψ̄ #→ Ψ̄eiαγ3 . (2.6)

These four rotations generate a global U(2) invariance, which generalises to U(2Nf ) for sev-

eral flavors. The mass term explicitly breaks the symmetry from U(2Nf ) → U(Nf )⊗U(Nf ).

It will prove interesting to explore different forms of the mass term, which are simply

accessed by changing integration variables in the path integral. Since there is no axial

anomaly in 2 + 1d, this procedure is straightforward in the continuum and the resulting

action describes identical physics. If, however, the representations of the Dirac matrices are

tied to the particular form of the underlying lattice, as is the case for staggered fermions

or graphene, then due to discretisation effects the mass terms are not equivalent and

correspond to distinct patterns of symmetry breaking (see the discussion following eq. (2.17)

for an example). Let’s recast the continuum action (2.1) in terms of two two-component

spinors u and d:

S = ūD̃u− d̄D̃d+mūu+md̄d , (2.7)

where D̃ = −D̃† = σ1D0+σ2D1+σ3D2 and the σi are Pauli matrices. The link with (2.1)

requires the identification

γ0 =

(

σ1
−σ1

)

; γ1 =

(

σ2
−σ2

)

; γ2 =

(

σ3
−σ3

)

, (2.8)

implying

γ3 =

(

−i

i

)

; γ5 =

(

1

1

)

; iγ3γ5 =

(

1

−1

)

. (2.9)

We now define an important discrete symmetry, parity, here specified for convenience in

terms of reversal of all three spacetime axes xµ #→ −xµ (in general parity must invert

an odd number of axes, since flipping an even number is equivalent to a rotation: the

Euclidean parity operation which flips just one axis is formally equivalent to the time-

reversal operation frequently discussed in condensed matter physics). In fact it can be

realised in two ways:

ū #→ d̄; d̄ #→ −ū; u #→ d; d #→ −u; i.e. Ψ #→ iγ3Ψ; Ψ̄ #→ −iΨ̄γ3 (2.10)

ū #→ −id̄; d̄ #→ −iū; u #→ id; d #→ iu; i.e. Ψ #→ iγ5Ψ; Ψ̄ #→ −iΨ̄γ5 . (2.11)

This should be no surprise, since both γ3 and γ5 behave identically with respect to the γµ
appearing in (2.1). In either case the parity operation effectively exchanges the u and d

fields, absorbing the sign change of D̃ under x → −x, but keeping the mass term invariant.

Now consider a change of basis

ψ =
1√
2
(u+ d); χ =

1√
2
(−u+ d); ψ̄ =

1√
2
(ū− d̄); χ̄ =

1√
2
(ū+ d̄) (2.12)

– 4 –

SHLS =

∫

d3x ψ̄(∂µ + iAµ)ψ +
1

2g2
(Aµ − ∂µϕ)2

ψ "→ eiαψ; Aµ "→ Aµ + ∂µϕ; ϕ "→ ϕ + α

⟨ψ̄ψ⟩
m

=
∑

x

⟨ψ̄γ3ψ(0)ψ̄γ3ψ(x)⟩

γ3Aγ3 = γ5Aγ5 = A†

µ = 0, 1, 2

15
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The Thirring Model in 2+1d

L = ψ̄i(∂/ + m)ψi +
g2

2Nf
(ψ̄iγµψi)
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i = 1, . . . , Nf

ψi, ψ̄i

{γµ, γν} = 2δµν

[L] = d ⇒ [ψ] = [ψ̄] =
d − 1

2
; [g2] = 2 − d

L = ψ̄i(∂/ + i
g√
Nf

Aµγµ + m)ψi +
1

2
AµAµ

1

four-fermi form

bosonised form

•   Interacting QFT 
•   expansion in g2 non-renormalisable 
•   Hidden Local Symmetry  
        if Stückelberg scalar field φ introduced 
•   expansion in 1/Nf exactly renormalisable for 2<d<4 
          ⟨AμAν⟩ ∝ δμν/kd-2  in “Feynman gauge” 
•    dynamical chiral symmetry breaking for g2 > gc2; Nf < Nfc? 
•    Quantum Critical Point at gc2(N<Nfc)? 

SHLS =

∫

d3x ψ̄γµ(∂µ + iAµ)ψ +
1

2g2
(Aµ − ∂µϕ)2

ψ "→ eiαψ; Aµ "→ Aµ + ∂µα; ϕ "→ ϕ + α

⟨ψ̄ψ⟩
m

=
∑

x

⟨ψ̄γ3ψ(0)ψ̄γ3ψ(x)⟩

γ3Aγ3 = γ5Aγ5 = A†

µ = 0, 1, 2

Σ =
Nfm

g2
χπ

M0− = M0+ ≈ 2mf ≈ 2Σ

15

eg. Nfc=4.32 strong coupling Schwinger-Dyson  
(ladder approximation)

Itoh, Kim, Sugiura & Yamawaki
Prog. Theor. Phys. 93 (1995) 417

Determination of Nfc is a non-perturbative problem in QFT

SJH PRD51 (1995) 5816



Numerical Lattice Approach

M

Λ
∝ exp

[

−
2π

√

Nfc
Nf

− 1

]

Nfc =
128

3π2
≃ 4.32 (d = 3)

⟨ψ̄ψ⟩ ̸= 0

ψ '→ Uψ; ψ̄ '→ ψ̄U−1γ5γ3; U ∈ U(2Nf)

Slatt =
1

2

∑

xµi

χ̄i
xηµx(1 + iAµx)χ

i
x+µ̂ − χ̄i

xηµx(1 − iAµx−µ̂)χ
i
x−µ̂

+ m
∑

xi

χ̄i
xχ

i
x +

N

4g2

∑

xµ

A2
µx

6

Aµx

7

auxiliary vector field
defined on link between x and x+μ

Aµx

ηµx ≡ (−1)x0+···+xµ−1

7

Chiral symmetry:   U(N)⊗U(N) → U(N)  (if m, Σ≠0)

In weak coupling continuum limit 
 U(2Nf) symmetry is recovered, with Nf = 2N

ψ̄ψ

[(ψ̄ψ)2] = 2(d − 1) − 2γψ̄ψ = d − 2 + η = 2

∏

!

ηηηη = −1

14

⇒
π-flux

Del Debbio, SJH, Mehegan 
NPB502 (1997) 269; B552 (1999) 339

auxiliary boson 
couples linearly

Early work used staggered fermions

resembles abelian  gauge theory, but link field is NOT unit modulus!



Strong coupling limit     g2➞∞
The lattice regularisation does not respect current conservation

Both diagrams needed to ensure transversity,    
(ie. WT identity                           )  in lattice QED                   ∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

9

⇒  1/Nf expansion yields additive  
renormalisation of g-2

∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

g2
R =

g2

1 − g2/g2
lim

9

⇒ lattice strong coupling limit as g2→glim2(Nf)
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⇒ lattice strong coupling limit as g2→glim2(Nf)

Only the left hand diagram is present for the 
 lattice Thirring model with linear coupling to auxiliary



Results in effective strong-coupling limit 
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Nfc=6.6(1),     δ(Nfc)=6.90(3)

Chiral symmetry unbroken for all g2 for Nf >Nfc

Cf. SDE:      Nfc=4.32,     δ(Nfc)=1 
“conformal phase transition”

Christofi, SJH, Strouthos, PRD75 (2007) 101701
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Staggered Thirring Summary
M

Λ
∝ exp

[

−
2π

√

Nfc
Nf

− 1

]

Nfc =
128

3π2
≃ 4.32 (d = 3)
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ψ '→ Uψ; ψ̄ '→ ψ̄U−1γ5γ3; U ∈ U(2Nf)
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∑

xµi

χ̄i
xηµx(1 + iAµx)χ

i
x+µ̂ − χ̄i

xηµx(1 − iAµx−µ̂)χ
i
x−µ̂

+ m
∑

xi

χ̄i
xχ

i
x +

N

4g2

∑

xµ

A2
µx

i = 1, . . . , N

χi
x, χ̄i

x

6

∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

g2
R =

g2

1 − g2/g2
lim

⟨ψ̄ψ⟩ = 0

9

• Chiral symmetry broken for small Nf , large g2

• Each point (for Nf integer) defines a UV fixed point of RG
• Distinct critical exponents ⇔ distinct interacting QFT 

• δ increases with Nf,    δ(Nfc)≈7 

• Non-covariant form used as EFT for graphene ⟹ Nfc ≈ 5

Christofi, SJH, Strouthos, PRD75 (2007) 101701

SJH, Strouthos, PRB78 (2008)165423; Armour, SJH, Strouthos, PRB81 (2010)125105

SJH, Lucini, PLB461 (1999) 263



 Fermion Bag Algorithm with minimal Nf = 2

Thirring Model:    ν=0.85(1),  η=0.65(1),  ηψ=0.37(1)

Chandrasekharan & Li, PRL 108 (2012) 140404; PRD88 (2013) 021701 

U(1) GN Model:  ν=0.849(8), η=0.633(8), ηψ=0.373(3)

Interactions between staggered fields χ, χ spread over elementary cubes. 
Only difference between Thirring & GN is body-diagonal term
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FIG. 1. A pictorial representation of the bond couplings UL (left),
UF (center) and UB (right) discussed in the text. Each bond refers to
the four-fermion interaction term of the form χxχx χyχy .

that live at the center of cubes and couple to fermions on the
corners [22]. After integrating over the auxiliary fields we ob-
tain four-fermion models that couple fermion fields within a
hypercube. Their action can be written as

S =
∑

x,y

χ(x) Dxy χ(y) −
∑

⟨xy⟩

U⟨xy⟩χxχx χyχy (1)

where χ(x),χ(x) denote two Grassmann valued fermion
fields at the lattice site x andD is the free massless staggered
fermion matrix defined by

Dxy =
1

2

∑

α

ηx,α [δx+α,y − δx,y+α] , (2)

in which α labels the three directions and ηx,α =
e(iπζa·x), ζ1 = (0, 0, 0), ζ2 = (1, 0, 0), ζ3 = (1, 1, 0) are
the staggered fermion phase factors [41]. The four-fermion
interaction term involves the sum over three types bonds de-
noted by ⟨xy⟩ (see Fig. 1): (1) link bonds L (where x, y are
nearest neighbor sites), (2) face bonds F (where x, y are sites
diagonally across faces of squares), (3) body bonds B (where
x, y are sites diagonally across the bodies of cubes).
In a general lattice four-fermion model the three couplings

UL, UF and UB will be arbitrary. However, in our study they
are constrained since the action (1) is obtained by integrating
over auxiliary fields from a model that contains a single cou-
pling. In the Gross-Neveu model with Z2 chiral symmetry,
we find UL = 2UF = 4UB ≡ U , while with U(1) chiral sym-
metry we find UL = 4UB ≡ U,UF = 0 [33]. In other words,
face diagonal bonds break the U(1) symmetry to Z2. In ad-
dition to chiral symmetries, models with action (1) have an
SU(2) flavor symmetry which is hidden in the auxiliary field
approach and was not appreciated earlier [42]. Indeed, when
UF = 0 it is easy to verify that the action (1) is invariant under
the following SU(2)× U(1) symmetry,
(

χe

χe

)

→ eiθV

(

χe

χe

)

,
(

χo χo

)

→
(

χo χo

)

V †e−iθ,

(3)
where the subscripts e and o refer to even and odd sites and V
is an SU(2) matrix. When UF ̸= 0 the symmetry is restricted
to θ = π/2 and the action is invariant only under an SU(2)×
Z2 symmetry.
Since four-fermion couplings are perturbatively irrelevant

in three dimensions, models with action (1) have a massless

0 5 10 15 20 25 30 35 40 45
L

0.42

0.44

0.46

χU
/L
3

0.94

0.95

0.96

0.97

χU
/L
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FIG. 2. Plot of the chiral susceptibility at U = ∞ for the Z2 (top)
and U(1) (bottom) models. The solid curve in the top graph is a
fit to the constant for L ≥ 16, while in the bottom graph it is a fit
to the finite size scaling form (5) for L ≥ 10 obtained from chiral
perturbation theory.

fermion phase at small couplings U . As the coupling in-
creases, a second order phase transition to a massive fermion
phase accompanied by spontaneous breaking of chiral sym-
metries occurs at a critical coupling Uc. Our goal is to study
the critical exponents at this transition. However, before fo-
cusing on the transition region, it is useful to understand qual-
itatively the physics of the massive phase at large U . There is
an important difference between spontaneous breaking of Z2

and U(1) symmetries; the former does not produce massless
Goldstone bosons while the latter does. It is important to dis-
tinguish this feature in our results. For this purpose we have
computed the chiral condensate susceptibility,

χ =
1

L3

∑

x,y

⟨χxχxχyχy⟩, (4)

as a function of the lattice size L at U = ∞. At infinite
coupling our models can be mapped into a statistical model
of closed packed dimers and can be updated efficiently us-
ing worm algorithms [43]. Results obtained are shown in
Fig. 2. As expected, finite size effects are enhanced in the
U(1) invariant model due to the presence of massless Gold-
stone bosons. Results for L ≥ 10 fit well to the leading order
chiral perturbation theory form [44]

χ/L3 =
Σ2

2

(

1 + 0.224/(ρsL)
)

, (5)

with Σ2 = 0.844(1), ρs = 0.381(3) and χ2/d.o.f = 0.4.
In contrast, the Z2 model shows very small finite size effects
which indicates the absence of massless modes, and the data
for L ≥ 16 fits the constant 0.971(1) with a χ2/d.o.f = 1.7.
In order to uncover the properties of the quantum critical

point we focus on the chiral susceptibility (4) and the fermion
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UF = 0 it is easy to verify that the action (1) is invariant under
the following SU(2)× U(1) symmetry,
(
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(3)
where the subscripts e and o refer to even and odd sites and V
is an SU(2) matrix. When UF ̸= 0 the symmetry is restricted
to θ = π/2 and the action is invariant only under an SU(2)×
Z2 symmetry.
Since four-fermion couplings are perturbatively irrelevant

in three dimensions, models with action (1) have a massless
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FIG. 2. Plot of the chiral susceptibility at U = ∞ for the Z2 (top)
and U(1) (bottom) models. The solid curve in the top graph is a
fit to the constant for L ≥ 16, while in the bottom graph it is a fit
to the finite size scaling form (5) for L ≥ 10 obtained from chiral
perturbation theory.

fermion phase at small couplings U . As the coupling in-
creases, a second order phase transition to a massive fermion
phase accompanied by spontaneous breaking of chiral sym-
metries occurs at a critical coupling Uc. Our goal is to study
the critical exponents at this transition. However, before fo-
cusing on the transition region, it is useful to understand qual-
itatively the physics of the massive phase at large U . There is
an important difference between spontaneous breaking of Z2

and U(1) symmetries; the former does not produce massless
Goldstone bosons while the latter does. It is important to dis-
tinguish this feature in our results. For this purpose we have
computed the chiral condensate susceptibility,

χ =
1

L3

∑

x,y

⟨χxχxχyχy⟩, (4)

as a function of the lattice size L at U = ∞. At infinite
coupling our models can be mapped into a statistical model
of closed packed dimers and can be updated efficiently us-
ing worm algorithms [43]. Results obtained are shown in
Fig. 2. As expected, finite size effects are enhanced in the
U(1) invariant model due to the presence of massless Gold-
stone bosons. Results for L ≥ 10 fit well to the leading order
chiral perturbation theory form [44]

χ/L3 =
Σ2

2

(

1 + 0.224/(ρsL)
)

, (5)

with Σ2 = 0.844(1), ρs = 0.381(3) and χ2/d.o.f = 0.4.
In contrast, the Z2 model shows very small finite size effects
which indicates the absence of massless modes, and the data
for L ≥ 16 fits the constant 0.971(1) with a χ2/d.o.f = 1.7.
In order to uncover the properties of the quantum critical

point we focus on the chiral susceptibility (4) and the fermion
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Chandrasekharan & Li, PRL 108 (2012) 140404; PRD88 (2013) 021701 

U(1) GN Model:  ν=0.849(8), η=0.633(8), ηψ=0.373(3)

Interactions between staggered fields χ, χ spread over elementary cubes. 
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FIG. 1. A pictorial representation of the bond couplings UL (left),
UF (center) and UB (right) discussed in the text. Each bond refers to
the four-fermion interaction term of the form χxχx χyχy .
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are constrained since the action (1) is obtained by integrating
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we find UL = 2UF = 4UB ≡ U , while with U(1) chiral sym-
metry we find UL = 4UB ≡ U,UF = 0 [33]. In other words,
face diagonal bonds break the U(1) symmetry to Z2. In ad-
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to θ = π/2 and the action is invariant only under an SU(2)×
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fit to the constant for L ≥ 16, while in the bottom graph it is a fit
to the finite size scaling form (5) for L ≥ 10 obtained from chiral
perturbation theory.
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creases, a second order phase transition to a massive fermion
phase accompanied by spontaneous breaking of chiral sym-
metries occurs at a critical coupling Uc. Our goal is to study
the critical exponents at this transition. However, before fo-
cusing on the transition region, it is useful to understand qual-
itatively the physics of the massive phase at large U . There is
an important difference between spontaneous breaking of Z2

and U(1) symmetries; the former does not produce massless
Goldstone bosons while the latter does. It is important to dis-
tinguish this feature in our results. For this purpose we have
computed the chiral condensate susceptibility,

χ =
1
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as a function of the lattice size L at U = ∞. At infinite
coupling our models can be mapped into a statistical model
of closed packed dimers and can be updated efficiently us-
ing worm algorithms [43]. Results obtained are shown in
Fig. 2. As expected, finite size effects are enhanced in the
U(1) invariant model due to the presence of massless Gold-
stone bosons. Results for L ≥ 10 fit well to the leading order
chiral perturbation theory form [44]

χ/L3 =
Σ2

2
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1 + 0.224/(ρsL)
)
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with Σ2 = 0.844(1), ρs = 0.381(3) and χ2/d.o.f = 0.4.
In contrast, the Z2 model shows very small finite size effects
which indicates the absence of massless modes, and the data
for L ≥ 16 fits the constant 0.971(1) with a χ2/d.o.f = 1.7.
In order to uncover the properties of the quantum critical

point we focus on the chiral susceptibility (4) and the fermion
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Basic idea as Ls→∞: 

• zero-modes of DDWF localised on walls are ± eigenmodes of γs
• Modes propagating in bulk can be decoupled (with cunning)

“Physical” fields
in 2+1d target space 

Fermions propagate freely along a 
fictitious third direction 

of extent Ls with open boundaries

Domain Wall Fermions
Fermions propagate freely along a 
fictitious third direction of extent Ls

the only coupling between the walls
is proportional to explicit massgap

State-of-the-Art for QCD:
“Domain Wall Fermions”

U(2Nf)➞U(Nf)⨂U(Nf)
recovered on the walls

as Ls→∞
SJH: JHEP 1509 (2015) 047; 

Phys.Lett. B754 (2016) 264-269
First graphene results out soon….
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coordinates of a lattice site and s = 1, . . . , Ls its coordinate along the extra dimension,

here labelled 3. The kinetic term in the action is then

SDW =
∑

x,y

∑

s,r

Ψ̄(x, s)DDW(x, s|y, r)Ψ(y, r) , (4.1)

with domain wall Dirac operator

DDW(x, s|y, r) = δs,rD(x|y) + δx,yD
DW
3 (s|r). (4.2)

The first term is the orthodox 2 + 1d Wilson operator

D(x|y) =
1

2

∑

µ=0,1,2

[

(1− γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U
†
µ(y)δx−µ̂,y

]

+ (M − 3)δx,y (4.3)

with gauge link variables Uµ(x), and DDW
3 controls hopping in the 3 direction:

DDW
3 (s|s′) =

1

2

[

(1− γ3)δs+1,s′(1− δs′,Ls
) + (1 + γ3)δs−1,s′(1− δs′,1)− 2δs,s′

]

. (4.4)

Note there are Dirichlet boundary conditions imposed in direction 3, at s = 1 and s = Ls.

The inclusion of DDW
3 explicitly destroys the equivalence of γ3 and γ5 in the dynamics

described by the action (4.1), so it will be important to test whether and how this is

recovered in practice.

The key idea [31] is that the dynamics generated by (4.3) and (4.4), with suitably

chosen M , results in fermion zeromodes localised on domain walls at s = 1, Ls, which are

also respectively ∓ eigenmodes of γ3. The 2+1d physics we wish to describe is formulated

entirely using these localised modes (the Wilson terms in (4.3), (4.4) render the would-be

zeromodes due to unwanted doubler species non-normalisable in the limit Ls → ∞ [31]).

In particular we need to define 2+1d fermion mass terms corresponding to their continuum

counterparts in (2.1), (2.14) and (2.17). To this end, define fermion fields ψ(x), ψ̄(x) living

in 2+1d:

ψ(x) = P−Ψ(x, 1) + P+Ψ(x, Ls);

ψ̄(x) = Ψ̄(x, Ls)P− + Ψ̄(x, 1)P+, (4.5)

where from now on P± ≡ 1
2(1±γ3). We thus consider actions of the form (4.1) supplemented

by three alternative mass terms:

mhSh = mhψ̄ψ = mh[Ψ̄(x, Ls)P−Ψ(x, 1) + Ψ̄(x, 1)P+Ψ(x, Ls)]; (4.6)

m3S3 = im3ψ̄γ3ψ = im3[Ψ̄(x, Ls)γ3P−Ψ(x, 1) + Ψ̄(x, 1)γ3P+Ψ(x, Ls)]; (4.7)

m5S5 = im5ψ̄γ5ψ = im5[Ψ̄(x, Ls)γ5P+Ψ(x, Ls) + Ψ̄(x, 1)γ5P−Ψ(x, 1)]. (4.8)

It is interesting to note that Sh has the same form as the fermion mass term for domain

wall formulations of 3 + 1d physics, and couples fields from opposite walls; S3 also couples

opposite walls, but S5 couples fields living on the same wall.

In the next section we will examine the numerical consequences of the three terms (4.6)–

(4.8) and in particular check whether they yield compatible, U(2)-symmetric results in the

Ls → ∞ limit.

– 9 –

with P±=½(1±γs)

∂sγs

coupling between the walls
proportional to explicit massgap m

Ls



Bottom Up View…

• Modes localised on walls carry U(2N)-invariant physics 
• Fermion doublers don’t contribute to normalisable modes 

• Bulk modes can be made to decouple

in DWF approach we simulate 
2+1+1d fermions

Desiderata…

Claim…
It appears to work for…. 

• carefully-chosen domain wall height M 
• smooth gauge field background 



Are DWF in 2+1+1d U(2N) symmetric?
Issue: wall modes are eigenstates of γ3 as Ls→∞,

but: U(2N) symmetry demands equivalence 
under rotations generated by both γ3 and γ5 

ie. U(2N) → U(N)⊗U(N) symmetry-breaking mass terms 
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Figure 1. Residual errors as a function of Ls for bilinear condensates evaluated using point spatial
sources on 243 at β = 0.5.

γ5 do not appear in (4.1) on an equal footing. By hypothesis, however, U(2) symmetry

should be recovered as Ls → ∞.

To begin, we present results obtained using a spatial point source on a configuation

generated at β = 0.5 (in fact, the numbers result from averaging over 10 spatial sources);

the systematics are easiest to expose at the strongest coupling. Note from (4.6)–(4.8) that

each condensate gets contributions from two terms: for ⟨ψ̄ψ⟩ and i⟨ψ̄γ3ψ⟩ the two terms

arise from four-dimensional propagators running from s = 1 to Ls and Ls to 1 respectively;

for i⟨ψ̄γ5ψ⟩ each contribution is from a propagator starting and ending on the same domain

wall. Within the working numerical precison each contribution is the complex conjugate of

the other, so the sum is real. However, it turns out the imaginary component parametrises

the approach to the U(2)-symmetric limit. Define i⟨Ψ̄(1)γ3Ψ(Ls)⟩ = i
2⟨ψ̄γ3ψ⟩Ls

+ i∆h(Ls)

(where the first term is real, and the spatial coordinate x is suppressed), and then write:

1

2
⟨ψ̄ψ⟩Ls

=
i

2
⟨ψ̄γ3ψ⟩LS→∞ +∆h(Ls) + ϵh(Ls); (5.3)

i

2
⟨ψ̄γ3ψ⟩Ls

=
i

2
⟨ψ̄γ3ψ⟩LS→∞ + ϵ3(Ls); (5.4)

i

2
⟨ψ̄γ5ψ⟩Ls

=
i

2
⟨ψ̄γ3ψ⟩LS→∞ + ϵ5(Ls). (5.5)

The residuals ∆h and ϵi must vanish for a U(2)-invariant limit.

Figure 1 plots the residuals for Ls = 16, . . . , 40; note that ∆h is measured directly

as the imaginary component of i⟨ψ̄γ3ψ⟩ using just the + components of Ψ, Ψ̄, while to

estimate the ϵi the value of i⟨ψ̄γ3ψ⟩Ls→∞ is taken to be that measured at Ls = 48. Several

features are apparent:

• The dominant correction by almost an order of magnitude is ∆h, which contributes to

the hermitian condensate ⟨ψ̄ψ⟩ but not, as a result of the twist, to the antihermitian

i⟨ψ̄γ3,5ψ⟩. Indeed, at the weakest coupling β = 2.0 ∆h is the only residual large

enough to measure.
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By construction GW is satisfied by the 2+1d overlap operator
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and

D =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1 0
...

... 1
. . .

0 C+ − (T −1)Ls C−

⎤

⎥⎥⎥⎥⎥⎥⎦
. (15)

Again, note L  ̸= L(mh), and detL = detU = 1. We conclude

det[D(1)−1 D(mh)]
= det[D̃(1)−1 D̃(mh)] = det[DLs,Ls (1)−1DLs,Ls (mh)], (16)

where the 4V Nc × 4V Nc matrix DLs,Ls is the Schur complement 
of D̃:

DLs,Ls (mh) = C+ − (T −1)Ls C−

= (1 + T −1)γ3
1
2

[
(1 + mh) − (1 − mh)γ3

1 − T
1 + T

]

= DLs,Ls (1)
1
2

[
(1 + mh) − (1 − mh)γ3

1 − T
1 + T

]
, (17)

with T ≡ T Ls . We now multiply both sides of (17) by D−1
Ls,Ls

(1)
to find that the combination of domain wall fermion determinants 
det[D(1)−1 D(mh)] is the same as the determinant of the truncated 
overlap operator

D Ls[H] = 1
2

⎡

⎢⎣(1 + mh) − (1 − mh)γ3

1 −
(

1−H
1+H

)Ls

1 +
(

1−H
1+H

)Ls

⎤

⎥⎦ (18)

≡ 1
2

[
(1 + mh) − (1 − mh)γ3 tanh(Ls tanh−1 H)

]
. (19)

In order for the tanh function to be defined by a power series the 
second equality (19) requires H to be a bounded operator, namely 
|H | < 1. The factor D(1)−1 can be thought of as modelling Pauli–
Villars boson fields which cancel the contributions of the fermions 
from the 4d bulk. Now, tanh(Ls tanh−1(x)) is an analytic approxi-
mation to the signum function sgn(x) which becomes exact in the 
limit Ls → ∞. So long as H is hermitian and bounded, we there-
fore recover the overlap operator [9]:

lim
Ls→∞

D Ls = Dov

= 1
2

[
(1 + mh) − (1 − mh)γ3sgn

(
−γ3

DW − M
2 + (DW − M)

)]

= 1
2

[
(1 + mh) + (1 − mh)

A√
A† A

]
, (20)

where the unphysical nature of the sign of γ3 is manifest. For 
mh → 0 (20) coincides with the 2 + 1d overlap operator given 
in [7].

Next let’s check the overlap operator (20) has the expected 
weak-coupling limit. For link fields Uµ = 1, and with lattice spac-
ing set to unity, in momentum space DW = i 

∑
µ γµ sin pµ +∑

µ(1 − cos pµ), implying propagator poles at pµ ≈ 0 and near 
the Brillouin Zone corners pµ ≈ π . At the origin DW ≈ iγµpµ so

sgn(H) = H√
H2

≈ −γ3
(i/p − M)

(2 − M)

(2 − M)

M
= −γ3

[
i/p
M

− 1
]

(21)

so that the overlap operator

Dov ≈ i/p
(1 − mh)

2M
+ mh. (22)

Taking into account a benign wavefunction renormalisation, this 
is the propagator for a continuum species with mass proportional 
to mh . By contrast near a doubler pole p̃µ = pµ − (i, j, k)π ≈ 0, 
i, j, k ∈ {+1, −1},

sgn(H) ≈ −γ3
i/̃p + (2n − M)

(2n − M)
= −γ3

[
i/̃p

(2n − M)
+ 1

]

(23)

with n = |i| + | j| + |k|, so the overlap is

Dov ≈ 1 + (1 − mh)

2(2n − M)
i/̃p. (24)

So long as (2n − M) is not too small, the species has a mass of 
O(1) in cutoff units, and decouples from low-energy physics.

Since mh and M have opposite signs, for strong enough cou-
pling there is the possibility of the system entering a parity-
breaking Aoki phase signalled by a bilinear condensate with the 
quantum numbers of an isotriplet pion. This was investigated in 
the context of a 3d Gross–Neveu model in [15], where it was found 
that the Aoki phase was manifest for mh < 0 with the width of the 
parity-broken region vanishing exponentially as Ls → ∞.

3. Equivalence of γ3 and γ5

Despite the manifest independence of the overlap operator Dov
(20) of which matrix γ3 or γ5 is used to define the hermitian 
argument H of the signum function, for finite Ls it remains un-
clear whether the distinction is important or not [7], since clearly 
the definition (4) of the domain wall operator D3 distinguishes 
them. We can address this using the analytic approximation for 
signum (19).

First, the series expansion for tanh−1 H is well-defined since 
H = γ3 A is a bounded operator, i.e. |H | = M/(2 − M) < 1 for 0 <
M < 11:

tanh−1 H = H + H3

3
+ H5

5
+ · · · (25)

Each term is an odd power, so can be reexpressed using
γ3 Aγ3 = A†:

H2n+1 = γ3 A(A† A)n. (26)

The signum approximation is then

tanh(Lsγ3 A
∑

n

bn(A† A)n) = sinh(Lsγ3 A
∑

n bn(A† A)n)

cosh(Lsγ3 A
∑
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(27)

with bn = (2n + 1)−1. In the McLaurin series expansions of the hy-
perbolic functions on the RHS of (27), expansion of the argument 
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and

D =
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⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1 0
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... 1
. . .

0 C+ − (T −1)Ls C−

⎤

⎥⎥⎥⎥⎥⎥⎦
. (15)

Again, note L  ̸= L(mh), and detL = detU = 1. We conclude

det[D(1)−1 D(mh)]
= det[D̃(1)−1 D̃(mh)] = det[DLs,Ls (1)−1DLs,Ls (mh)], (16)

where the 4V Nc × 4V Nc matrix DLs,Ls is the Schur complement 
of D̃:

DLs,Ls (mh) = C+ − (T −1)Ls C−

= (1 + T −1)γ3
1
2
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1 + T
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= DLs,Ls (1)
1
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[
(1 + mh) − (1 − mh)γ3
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1 + T

]
, (17)

with T ≡ T Ls . We now multiply both sides of (17) by D−1
Ls,Ls

(1)
to find that the combination of domain wall fermion determinants 
det[D(1)−1 D(mh)] is the same as the determinant of the truncated 
overlap operator
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(1 + mh) − (1 − mh)γ3 tanh(Ls tanh−1 H)

]
. (19)

In order for the tanh function to be defined by a power series the 
second equality (19) requires H to be a bounded operator, namely 
|H | < 1. The factor D(1)−1 can be thought of as modelling Pauli–
Villars boson fields which cancel the contributions of the fermions 
from the 4d bulk. Now, tanh(Ls tanh−1(x)) is an analytic approxi-
mation to the signum function sgn(x) which becomes exact in the 
limit Ls → ∞. So long as H is hermitian and bounded, we there-
fore recover the overlap operator [9]:

lim
Ls→∞
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2

[
(1 + mh) + (1 − mh)
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]
, (20)

where the unphysical nature of the sign of γ3 is manifest. For 
mh → 0 (20) coincides with the 2 + 1d overlap operator given 
in [7].

Next let’s check the overlap operator (20) has the expected 
weak-coupling limit. For link fields Uµ = 1, and with lattice spac-
ing set to unity, in momentum space DW = i 

∑
µ γµ sin pµ +∑

µ(1 − cos pµ), implying propagator poles at pµ ≈ 0 and near 
the Brillouin Zone corners pµ ≈ π . At the origin DW ≈ iγµpµ so
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Taking into account a benign wavefunction renormalisation, this 
is the propagator for a continuum species with mass proportional 
to mh . By contrast near a doubler pole p̃µ = pµ − (i, j, k)π ≈ 0, 
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So long as (2n − M) is not too small, the species has a mass of 
O(1) in cutoff units, and decouples from low-energy physics.

Since mh and M have opposite signs, for strong enough cou-
pling there is the possibility of the system entering a parity-
breaking Aoki phase signalled by a bilinear condensate with the 
quantum numbers of an isotriplet pion. This was investigated in 
the context of a 3d Gross–Neveu model in [15], where it was found 
that the Aoki phase was manifest for mh < 0 with the width of the 
parity-broken region vanishing exponentially as Ls → ∞.

3. Equivalence of γ3 and γ5

Despite the manifest independence of the overlap operator Dov
(20) of which matrix γ3 or γ5 is used to define the hermitian 
argument H of the signum function, for finite Ls it remains un-
clear whether the distinction is important or not [7], since clearly 
the definition (4) of the domain wall operator D3 distinguishes 
them. We can address this using the analytic approximation for 
signum (19).

First, the series expansion for tanh−1 H is well-defined since 
H = γ3 A is a bounded operator, i.e. |H | = M/(2 − M) < 1 for 0 <
M < 11:

tanh−1 H = H + H3
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+ · · · (25)

Each term is an odd power, so can be reexpressed using
γ3 Aγ3 = A†:

H2n+1 = γ3 A(A† A)n. (26)

The signum approximation is then
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∑
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∑
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cosh(Lsγ3 A
∑

n bn(A† A)n)
(27)

with bn = (2n + 1)−1. In the McLaurin series expansions of the hy-
perbolic functions on the RHS of (27), expansion of the argument 
yields a general term of the form
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For the sinh series, m is an odd integer so that the term in square 
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1 For free fermions the most stringent limit on M comes from the origin of mo-
mentum space. In practice on any finite lattice with antiperiodic temporal boundary 
conditions M = 1 is safe since |H| = 1/

√
5 − 4 cos π

Lt
< 1 for Lt < ∞.

DWF provide a 
regularisation of overlap with 

a local kernel in 2+1+1d
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Dov not manifestly local
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by Ginsparg-Wilson relations 

RHS is O(aD), so U(2N) recovered in long-wavelength limit if D local

By construction GW is satisfied by the 2+1d overlap operator
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0 C+ − (T −1)Ls C−

⎤

⎥⎥⎥⎥⎥⎥⎦
. (15)

Again, note L  ̸= L(mh), and detL = detU = 1. We conclude

det[D(1)−1 D(mh)]
= det[D̃(1)−1 D̃(mh)] = det[DLs,Ls (1)−1DLs,Ls (mh)], (16)

where the 4V Nc × 4V Nc matrix DLs,Ls is the Schur complement 
of D̃:

DLs,Ls (mh) = C+ − (T −1)Ls C−

= (1 + T −1)γ3
1
2

[
(1 + mh) − (1 − mh)γ3

1 − T
1 + T

]

= DLs,Ls (1)
1
2

[
(1 + mh) − (1 − mh)γ3

1 − T
1 + T

]
, (17)

with T ≡ T Ls . We now multiply both sides of (17) by D−1
Ls,Ls

(1)
to find that the combination of domain wall fermion determinants 
det[D(1)−1 D(mh)] is the same as the determinant of the truncated 
overlap operator

D Ls[H] = 1
2
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⎢⎣(1 + mh) − (1 − mh)γ3

1 −
(

1−H
1+H

)Ls

1 +
(

1−H
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⎤

⎥⎦ (18)

≡ 1
2

[
(1 + mh) − (1 − mh)γ3 tanh(Ls tanh−1 H)

]
. (19)

In order for the tanh function to be defined by a power series the 
second equality (19) requires H to be a bounded operator, namely 
|H | < 1. The factor D(1)−1 can be thought of as modelling Pauli–
Villars boson fields which cancel the contributions of the fermions 
from the 4d bulk. Now, tanh(Ls tanh−1(x)) is an analytic approxi-
mation to the signum function sgn(x) which becomes exact in the 
limit Ls → ∞. So long as H is hermitian and bounded, we there-
fore recover the overlap operator [9]:

lim
Ls→∞

D Ls = Dov

= 1
2

[
(1 + mh) − (1 − mh)γ3sgn

(
−γ3

DW − M
2 + (DW − M)

)]

= 1
2

[
(1 + mh) + (1 − mh)

A√
A† A

]
, (20)

where the unphysical nature of the sign of γ3 is manifest. For 
mh → 0 (20) coincides with the 2 + 1d overlap operator given 
in [7].

Next let’s check the overlap operator (20) has the expected 
weak-coupling limit. For link fields Uµ = 1, and with lattice spac-
ing set to unity, in momentum space DW = i 

∑
µ γµ sin pµ +∑

µ(1 − cos pµ), implying propagator poles at pµ ≈ 0 and near 
the Brillouin Zone corners pµ ≈ π . At the origin DW ≈ iγµpµ so

sgn(H) = H√
H2

≈ −γ3
(i/p − M)

(2 − M)

(2 − M)

M
= −γ3

[
i/p
M

− 1
]

(21)

so that the overlap operator

Dov ≈ i/p
(1 − mh)

2M
+ mh. (22)

Taking into account a benign wavefunction renormalisation, this 
is the propagator for a continuum species with mass proportional 
to mh . By contrast near a doubler pole p̃µ = pµ − (i, j, k)π ≈ 0, 
i, j, k ∈ {+1, −1},

sgn(H) ≈ −γ3
i/̃p + (2n − M)

(2n − M)
= −γ3

[
i/̃p

(2n − M)
+ 1

]

(23)

with n = |i| + | j| + |k|, so the overlap is

Dov ≈ 1 + (1 − mh)

2(2n − M)
i/̃p. (24)

So long as (2n − M) is not too small, the species has a mass of 
O(1) in cutoff units, and decouples from low-energy physics.

Since mh and M have opposite signs, for strong enough cou-
pling there is the possibility of the system entering a parity-
breaking Aoki phase signalled by a bilinear condensate with the 
quantum numbers of an isotriplet pion. This was investigated in 
the context of a 3d Gross–Neveu model in [15], where it was found 
that the Aoki phase was manifest for mh < 0 with the width of the 
parity-broken region vanishing exponentially as Ls → ∞.

3. Equivalence of γ3 and γ5

Despite the manifest independence of the overlap operator Dov
(20) of which matrix γ3 or γ5 is used to define the hermitian 
argument H of the signum function, for finite Ls it remains un-
clear whether the distinction is important or not [7], since clearly 
the definition (4) of the domain wall operator D3 distinguishes 
them. We can address this using the analytic approximation for 
signum (19).

First, the series expansion for tanh−1 H is well-defined since 
H = γ3 A is a bounded operator, i.e. |H | = M/(2 − M) < 1 for 0 <
M < 11:

tanh−1 H = H + H3

3
+ H5

5
+ · · · (25)

Each term is an odd power, so can be reexpressed using
γ3 Aγ3 = A†:

H2n+1 = γ3 A(A† A)n. (26)

The signum approximation is then

tanh(Lsγ3 A
∑

n

bn(A† A)n) = sinh(Lsγ3 A
∑

n bn(A† A)n)

cosh(Lsγ3 A
∑

n bn(A† A)n)
(27)

with bn = (2n + 1)−1. In the McLaurin series expansions of the hy-
perbolic functions on the RHS of (27), expansion of the argument 
yields a general term of the form
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· · ·
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⎞

⎠
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For the sinh series, m is an odd integer so that the term in square 
brackets reads
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1 For free fermions the most stringent limit on M comes from the origin of mo-
mentum space. In practice on any finite lattice with antiperiodic temporal boundary 
conditions M = 1 is safe since |H| = 1/

√
5 − 4 cos π

Lt
< 1 for Lt < ∞.
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and
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0 1 0
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... 1
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0 C+ − (T −1)Ls C−

⎤
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. (15)

Again, note L  ̸= L(mh), and detL = detU = 1. We conclude

det[D(1)−1 D(mh)]
= det[D̃(1)−1 D̃(mh)] = det[DLs,Ls (1)−1DLs,Ls (mh)], (16)

where the 4V Nc × 4V Nc matrix DLs,Ls is the Schur complement 
of D̃:

DLs,Ls (mh) = C+ − (T −1)Ls C−

= (1 + T −1)γ3
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1 + T

]
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, (17)

with T ≡ T Ls . We now multiply both sides of (17) by D−1
Ls,Ls

(1)
to find that the combination of domain wall fermion determinants 
det[D(1)−1 D(mh)] is the same as the determinant of the truncated 
overlap operator

D Ls[H] = 1
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. (19)

In order for the tanh function to be defined by a power series the 
second equality (19) requires H to be a bounded operator, namely 
|H | < 1. The factor D(1)−1 can be thought of as modelling Pauli–
Villars boson fields which cancel the contributions of the fermions 
from the 4d bulk. Now, tanh(Ls tanh−1(x)) is an analytic approxi-
mation to the signum function sgn(x) which becomes exact in the 
limit Ls → ∞. So long as H is hermitian and bounded, we there-
fore recover the overlap operator [9]:

lim
Ls→∞

D Ls = Dov

= 1
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−γ3
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, (20)

where the unphysical nature of the sign of γ3 is manifest. For 
mh → 0 (20) coincides with the 2 + 1d overlap operator given 
in [7].

Next let’s check the overlap operator (20) has the expected 
weak-coupling limit. For link fields Uµ = 1, and with lattice spac-
ing set to unity, in momentum space DW = i 

∑
µ γµ sin pµ +∑

µ(1 − cos pµ), implying propagator poles at pµ ≈ 0 and near 
the Brillouin Zone corners pµ ≈ π . At the origin DW ≈ iγµpµ so

sgn(H) = H√
H2

≈ −γ3
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= −γ3

[
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− 1
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so that the overlap operator

Dov ≈ i/p
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Taking into account a benign wavefunction renormalisation, this 
is the propagator for a continuum species with mass proportional 
to mh . By contrast near a doubler pole p̃µ = pµ − (i, j, k)π ≈ 0, 
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with n = |i| + | j| + |k|, so the overlap is
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So long as (2n − M) is not too small, the species has a mass of 
O(1) in cutoff units, and decouples from low-energy physics.

Since mh and M have opposite signs, for strong enough cou-
pling there is the possibility of the system entering a parity-
breaking Aoki phase signalled by a bilinear condensate with the 
quantum numbers of an isotriplet pion. This was investigated in 
the context of a 3d Gross–Neveu model in [15], where it was found 
that the Aoki phase was manifest for mh < 0 with the width of the 
parity-broken region vanishing exponentially as Ls → ∞.

3. Equivalence of γ3 and γ5

Despite the manifest independence of the overlap operator Dov
(20) of which matrix γ3 or γ5 is used to define the hermitian 
argument H of the signum function, for finite Ls it remains un-
clear whether the distinction is important or not [7], since clearly 
the definition (4) of the domain wall operator D3 distinguishes 
them. We can address this using the analytic approximation for 
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First, the series expansion for tanh−1 H is well-defined since 
H = γ3 A is a bounded operator, i.e. |H | = M/(2 − M) < 1 for 0 <
M < 11:
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Each term is an odd power, so can be reexpressed using
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yields a general term of the form
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 Formulational issues for the Thirring Model with DWF 
(a) Formulate interaction terms in terms of vector auxiliary 

Aµ(x) defined just on walls at x3 = 1, Ls:     “Surface”

(b) By analogy with QCD, formulate with Aµ(x) throughout bulk 
which are “static” ie. ∂3Aµ=0:     “Bulk”

Technical/cost advantage: no Pauli-Villars determinant needed to cancel bulk modes
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Bulk

• Breakdown of reflection positivity for strong coupling ag-2≈0.2?
• Strong volume dependence for surface model
• Results at Ls=16 and Ls=20 are consistent 
• No evidence of spontaneous symmetry breaking anywhere 

along g-2 axis

HMC Results with Nf=2 on 123×16

Surface
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Figure 10: Bilinear condensate i⟨ψ̄γ3ψ⟩/m3 vs. g−2 for various am3, volume, and Ls, for the surface
model (14).

where Πµν is the vacuum polarisation tensor. Transversity originates in Ward-Takahashi
(WT) identities arising from an underlying gauge symmetry, which on a lattice implies
the link field is represented by eiAµ rather than simply Aµ. In QED3 the WT identity
follows from a cancellation of an O(a−1) divergence between the two diagrams shown in
Fig. 11. With a linearised interaction of the form (14) the right hand diagram is absent

µ

µ ν

ν

Figure 11: Leading order 1/N contributions to the vacuum polarisation tensor in lattice QED.

because there is no 2-fermion 2-boson vertex. The resulting linear divergence is absorbed
by an additive renormalisation of the coupling: g−2

R = g−2 − J(m, N)a−1. The physical
strong coupling limit g−2

R → 0 is thus found at non-zero g−2; in practice its location
must be determined by numerical simulation [20]. For g−2

R < 0 the vector correlator in
the 1/N expansion becomes negative, signalling violation of reflection positivity.

Now, the WT identity is independent of the details of the lattice fermion regulari-
sation; even without a detailed calculation of the diagrams in Fig. 11 using DWF it is
reasonable to apply the same arguments to the current case. Hence we interpret the peak
in Fig. 10 as evidence that the effective strong coupling limit lies at ag−2 ≈ 0.2, and that
the simulations have thus explored a range of couplings up to this limit. The variation
of i⟨ψ̄γ3ψ⟩ with g−2 shows clear evidence for interaction effects. We now observe that
data taken with am3 = 0.005, 0.01, 0.02 lie on top of each other, or in other words, there

21

is no evidence to contradict the hypothesis that limm3→0 i⟨ψ̄γ3ψ⟩ = 0 for all values of
the coupling. This is in marked contrast with results obtained using staggered fermions
on the same volume with comparable lattice parameters; compare Fig. 7 of Ref. [18].
We conclude that a spontaneous symmetry breaking U(2N) →U(N)⊗U(N) is absent in
the Thirring model defined by (14) for N = 2.
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Figure 12: Bilinear condensate i⟨ψ̄γ3ψ⟩/m3 vs. g−2 for various am3 for the bulk model (15). Surface
model results from Fig. 10 are plotted for comparison.

Fig. 12 shows the results of a similar study for the bulk model (15), this time using
the pseudofermion action (18) to perform the HMC simulation. The magnitude of
i⟨ψ̄γ3ψ⟩/m3 is considerably larger, reflecting the fact that the two lattice models are
different regularisations of a field theory. Again, there is evidence for g−2-dependence,
and a local maximum at ag2 ≈ 0.2, this time followed by a steep rise at stronger
couplings. Data taken at different m3 lie on top of each other following rescaling, once
again consistent with the absence of symmetry breaking. An interesting contrast between
the two formulations is highlighted in Fig. 13 plotting the boson action g−2A2

µ per
lattice site. For non-interacting fields the expected value is 3

2 . In the surface model
the action density stored in the auxiliary fields exceeds the free-field value and increases
with coupling strength, whereas the bulk model exhibits the opposite trend, starting from
the right below the free-field value and decreasing up to the effective strong coupling
limit at ag−2 >

∼ 0.2. Large UV artifacts might be expected for the expectation value
of a composite operator, and indeed this is the preferred interpretation for what are
ostensibly two different regularisations of the same theory. Nonetheless, the contrast
between surface and bulk models may prove a useful diagnostic. For comparison the
corresponding quantity g−2σ2 is plotted for the Z2 GN model of Sec. 4. Here there is a
clear distinction between near free-field behaviour at weak coupling and a sharp upward
rise in the symmetry-broken phase, readily understood since σ is also an order parameter

22

SJH JHEP 11(2016)015



Bulk

• Breakdown of reflection positivity for strong coupling ag-2≈0.2?
• Strong volume dependence for surface model
• Results at Ls=16 and Ls=20 are consistent 
• No evidence of spontaneous symmetry breaking anywhere 

along g-2 axis

HMC Results with Nf=2 on 123×16

Surface

big disparity with 
previous staggered results

0 0.2 0.4 0.6 0.8 1
g-2

0.45

0.5

0.55

<ΨΨ>/m

m=0.005
m=0.01
m=0.02
m=0.01 163

m=0.01 203

m=0.01 L=20

Figure 10: Bilinear condensate i⟨ψ̄γ3ψ⟩/m3 vs. g−2 for various am3, volume, and Ls, for the surface
model (14).

where Πµν is the vacuum polarisation tensor. Transversity originates in Ward-Takahashi
(WT) identities arising from an underlying gauge symmetry, which on a lattice implies
the link field is represented by eiAµ rather than simply Aµ. In QED3 the WT identity
follows from a cancellation of an O(a−1) divergence between the two diagrams shown in
Fig. 11. With a linearised interaction of the form (14) the right hand diagram is absent

µ

µ ν

ν

Figure 11: Leading order 1/N contributions to the vacuum polarisation tensor in lattice QED.

because there is no 2-fermion 2-boson vertex. The resulting linear divergence is absorbed
by an additive renormalisation of the coupling: g−2

R = g−2 − J(m, N)a−1. The physical
strong coupling limit g−2

R → 0 is thus found at non-zero g−2; in practice its location
must be determined by numerical simulation [20]. For g−2

R < 0 the vector correlator in
the 1/N expansion becomes negative, signalling violation of reflection positivity.

Now, the WT identity is independent of the details of the lattice fermion regulari-
sation; even without a detailed calculation of the diagrams in Fig. 11 using DWF it is
reasonable to apply the same arguments to the current case. Hence we interpret the peak
in Fig. 10 as evidence that the effective strong coupling limit lies at ag−2 ≈ 0.2, and that
the simulations have thus explored a range of couplings up to this limit. The variation
of i⟨ψ̄γ3ψ⟩ with g−2 shows clear evidence for interaction effects. We now observe that
data taken with am3 = 0.005, 0.01, 0.02 lie on top of each other, or in other words, there

21

is no evidence to contradict the hypothesis that limm3→0 i⟨ψ̄γ3ψ⟩ = 0 for all values of
the coupling. This is in marked contrast with results obtained using staggered fermions
on the same volume with comparable lattice parameters; compare Fig. 7 of Ref. [18].
We conclude that a spontaneous symmetry breaking U(2N) →U(N)⊗U(N) is absent in
the Thirring model defined by (14) for N = 2.

0 0.2 0.4 0.6 0.8 1
g-2

0

0.5

1

1.5

2

<ΨΨ>/m

m=0.01
m=0.005
m=0.02
m=0.01 surface

Figure 12: Bilinear condensate i⟨ψ̄γ3ψ⟩/m3 vs. g−2 for various am3 for the bulk model (15). Surface
model results from Fig. 10 are plotted for comparison.

Fig. 12 shows the results of a similar study for the bulk model (15), this time using
the pseudofermion action (18) to perform the HMC simulation. The magnitude of
i⟨ψ̄γ3ψ⟩/m3 is considerably larger, reflecting the fact that the two lattice models are
different regularisations of a field theory. Again, there is evidence for g−2-dependence,
and a local maximum at ag2 ≈ 0.2, this time followed by a steep rise at stronger
couplings. Data taken at different m3 lie on top of each other following rescaling, once
again consistent with the absence of symmetry breaking. An interesting contrast between
the two formulations is highlighted in Fig. 13 plotting the boson action g−2A2

µ per
lattice site. For non-interacting fields the expected value is 3

2 . In the surface model
the action density stored in the auxiliary fields exceeds the free-field value and increases
with coupling strength, whereas the bulk model exhibits the opposite trend, starting from
the right below the free-field value and decreasing up to the effective strong coupling
limit at ag−2 >

∼ 0.2. Large UV artifacts might be expected for the expectation value
of a composite operator, and indeed this is the preferred interpretation for what are
ostensibly two different regularisations of the same theory. Nonetheless, the contrast
between surface and bulk models may prove a useful diagnostic. For comparison the
corresponding quantity g−2σ2 is plotted for the Z2 GN model of Sec. 4. Here there is a
clear distinction between near free-field behaviour at weak coupling and a sharp upward
rise in the symmetry-broken phase, readily understood since σ is also an order parameter

22

SJH JHEP 11(2016)015



Ratio of order parameter 
to susceptibility is 
predicted constant by WI

SHLS =

∫

d3x ψ̄(∂µ + iAµ)ψ +
1

2g2
(Aµ − ∂µϕ)2

ψ "→ eiαψ; Aµ "→ Aµ + ∂µϕ; ϕ "→ ϕ + α

⟨ψ̄ψ⟩
m

=
∑

x

⟨ψ̄γ3ψ(0)ψ̄γ3ψ(x)⟩

15

Strong-coupling behaviour suggests 
neither Surface nor Bulk model optimal:

work still needed to specify 2+1d states ψ with control over normalisation
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Figure 14: Ratio i⟨ψ̄γ3ψ⟩/χπm3 testing axial Ward identity over a range of g−2 for both surface and
bulk Thirring models, on 123 × 16 with am3 = 0.005, .01, .02. Symbols are defined as in Fig. 12.

Fig. 14 plots the ratio i⟨ψ̄γ3ψ⟩/m3χπ as a function of g−2, which should take the value
unity if the axial Ward identity is preserved by the lattice formulation, for both surface
and bulk models. There are clear problems both in terms of the ratio’s magnitude and
also its variation with g−2, which is smooth but significant in the regime g−2

R > 0. It is
interesting that the trend is opposite for surface and bulk models, again suggestive that
the g−2 variation is a UV artifact. There is no variation with m3.

The Ward identity is not respected because the bare action (3,14,15) is not U(2N)-
invariant. Possible causes of the breakdown could be that the correct fermion mass in
(41) is not simply related to the lattice parameter m3, or that the field identification (9)
needs modification, resulting in renormalisation of fermion bilinears, once interactions
are present. Whilst these are not fatal objections, they do make it clear that care will be
needed in applying DWF techniques to this strongly-interacting system. In particular,
Fig. 14 provides little guidance as to whether to choose bulk or surface formulations for
further study. One possible way forward is instead to regard the Ward identity as a
relation between renormalised quantities, so that m in (41) is replaced by mf , which as
a spectral quantity is much better-defined. The physical fermion mass was successfully
measured in Thirring model simulations using staggered fermions [18]. To this end
the fermion propagator on a 123 × 24 lattice with Ls = 16, am3 = 0.01 was studied
using 45000 HMC trajectories of the surface model, with measurements made every 5
trajectories using 5 randomly chosen sources. The best results were obtained with a
smeared source (39) with D⊥ incorporating a link connection of the form Uµ = eiAµ .
The resulting CΓ0(ag−2 = 0.8), where positive, is plotted in Fig. 72. While there is a

2The corresponding C̃Γ0
(x0) is constant for x0

>
∼ 5, showing that in contrast to GN a correct treat-

ment of phase fluctuations is essential to capture Thirring dynamics

24

Axial Ward Identity

Cf. 2+1d Gross-Neveu model, where Ward Identity 
is respected, spectroscopy under control…
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RHMC Results for N=1 (123x8)

N=1 simulations 
performed with 

weight det(M✝M)½ 

using RHMC 
algorithm with 25 
partial fractions
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RHMC Results for N=1 (123x8)
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Henceforth focus on bulk
Evidence for enhanced pairing for N=1 and  ag-2 < 0.5 ?
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Boson Action

free
field

Surface and Bulk models show different behaviour

N=1: change of behaviour for ag-2 < 0.5 ?

Surface

Bulk
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an interesting diagnostic



Quenched 
Interlude

what does U(2N) symmetry-breaking
look like with DWF?

comparison of bulk models with 
N=0,1,2 with Ls=16, ma=0.01
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Finite-Ls corrections
much more significant 

in quenched simulations

detDDWF(mi)

detDDWF(mh = 1)
= detDLs(mi)

{γ3, D} = 2Dγ3D

{γ5, D} = 2Dγ5D

[γ3γ5, D] = 0

[∂3, Dµ] = [∂3, D̂
2] = 0

[∂3, ∂̂
2
3 ] ̸= 0

detD > 0

⟨ψ̄ψ⟩Ls = ⟨ψ̄ψ⟩∞ − A(m, g2)e−∆(m,g2)Ls

16

ma=0.05

Amplitude A &
decay constant Δ 
both increase with 

size of signal



ag-2   ≲  0.2                 strong coupling lattice artefacts? 
ag-2 ≳   0.8       m→0 limit hard to extract, consistent with zero 
ag-2∈ (0.3,0.7)  m→0 has non-vanishing intercept consistent
                                                     with symmetry breaking 

⇒ Nc > 0?Cf. quenched QED4 in the old days….
Kocić, SJH, Kogut, Dagotto, NPB 347(1990)217
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Again, a big contrast  
weak ag-2=0.6 vs. strong ag-2=0.3 

Ls=48, am=0.01, ag-2=0.3:  
RHMC Hamiltonian step requires ~9500 QMR iterations 

lines are exponential 
extrapolations Ls→∞
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Again, a big contrast  
weak ag-2=0.6 vs. strong ag-2=0.3 

Ls=48, am=0.01, ag-2=0.3:  
RHMC Hamiltonian step requires ~9500 QMR iterations 

😦No-one said strong coupling would be easy….

lines are exponential 
extrapolations Ls→∞



N=1 Ls→∞ 123xLs, Ls=8,…,40(48);   ag-2=0.6,5,4,3;
ma = 0.01,2,3,4,5  ⇔ 

O(6 months) on cluster, 4 cores per run

}

⇒ 1 < Nc < 2  ? 0.3 < agc-2 <  0.4  ??
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no symmetry  
breaking 

N=2 strongest coupling 
for comparison
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N=1 Ls→∞ 123xLs, Ls=8,…,40(48);   ag-2=0.6,5,4,3;
ma = 0.01,2,3,4,5  ⇔ 

O(6 months) on cluster, 4 cores per run

Is this what  
we’re looking for?

}

⇒ 1 < Nc < 2  ? 0.3 < agc-2 <  0.4  ??
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and slow…
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and slow… 😦



Summary & Outlook
• No obstruction found to simulating U(2N) fermions 
• “twisted mass” im3ψγ3ψ optimises Ls→∞  
• Robust conclusion: Nfc<2 for both bulk and surface  
• Tentative evidence for SSB for N=1 at strong coupling 

     Cf. QED3 Nfc<1   Karthik & Narayanan PRD93 045020, D94 065026 (2016)

• Staggered Thirring Model shouldn’t be forgotten —     
      very non-trivial  sensitivity to N 

• Need to check V→∞, the effect of varying Mwall  

• Try Haldane mass m35≠0 ?  
• Need to examine locality of corresponding Dov  
• Analysis of critical scaling at QCP requires improved code! 

JHEP 1509 (2015) 047
PLB 754 (2016) 264
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⇒    1 < Nfc < 2  ? 


