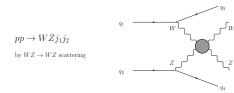
Collider phenomenology of vector resonances in WZ scattering processes

Presented by **Rafael L. Delgado**A.Dobado, D.Espriu, C.Garcia-Garcia, M.J.Herrero,
X.Marcano and J.J.Sanz-Cillero

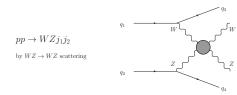


Based on JHEP**1711**, 098

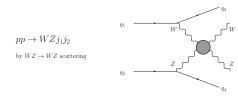
XIIIth Quark Confinement and the Hadron Spectrum
2nd August 2018, Maynooth University, Ireland



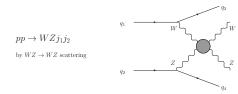
- We are interested in $WZ \rightarrow WZ$. Isovector channel (IJ = 11).
- The Inverse Amplitude Method (IAM) is used. We do not use the ET in this study, i.e., we consider gauge bosons W and Z in the external legs.
- We couple with initial pp collider states via MadGraph v5 [JHEP**1711**, 098]. Final states: WZjj or $l_1^+ l_1^- l_2^+ \nu jj$.
- We use a Proca 4-vector formalism to obtain an effective theory that MadGraph can process. Proca parameters are computed from the original EFT ones. No additional parameters needed.



- We are interested in $WZ \rightarrow WZ$. Isovector channel (IJ = 11).
- The Inverse Amplitude Method (IAM) is used. We do not use the ET in this study, i.e., we consider gauge bosons W and Z in the external legs.
- We couple with initial pp collider states via MadGraph v5 [JHEP**1711**, 098]. Final states: WZjj or $l_1^+ l_1^- l_2^+ \nu jj$.
- We use a Proca 4-vector formalism to obtain an effective theory that MadGraph can process. Proca parameters are computed from the original EFT ones. No additional parameters needed.



- We are interested in $WZ \rightarrow WZ$. Isovector channel (IJ = 11).
- The Inverse Amplitude Method (IAM) is used. We do not use the ET in this study, i.e., we consider gauge bosons W and Z in the external legs.
- We couple with initial pp collider states via MadGraph v5 [JHEP**1711**, 098]. Final states: WZjj or $l_1^+ l_1^- l_2^+ \nu jj$.
- We use a Proca 4-vector formalism to obtain an effective theory that MadGraph can process. Proca parameters are computed from the original EFT ones. No additional parameters needed.



- We are interested in $WZ \rightarrow WZ$. Isovector channel (IJ = 11).
- The Inverse Amplitude Method (IAM) is used. We do not use the ET in this study, i.e., we consider gauge bosons W and Z in the external legs.
- We couple with initial pp collider states via MadGraph v5 [JHEP**1711**, 098]. Final states: WZjj or $l_1^+ l_1^- l_2^+ \nu jj$.
- We use a Proca 4-vector formalism to obtain an effective theory that MadGraph can process. Proca parameters are computed from the original EFT ones. No additional parameters needed.

- We are interested in the collider phenomenology of Vector Bosons Scattering ($WZ \rightarrow WZ$), since it is very sensitive to new physics in the EW sector in the LHC.
- Bottom to Top approach: we construct an EFT for the EW sector. $SU(2)_L \times SU(2)_R$, EChL copy of ChPT in QCD.
- Degrees of freedom: Gauge Bosons W^{\pm} , Z + Higgs-like particle (h)
- 4 considered parameters: $a, b = a^2, a_4, a_5$.
- The NLO-computed EFT grows with the CM energy like $A \sim s^2$. Hence, it will eventually reach the unitarity bound, becoming non-perturbative. Options:
 - Limit the validity range of the EFT to the perturbative region.
 Consider it as a useful parameterization of slight deviations from the SM in the range under the TeV scale.
 - Take advantage of the analytical properties of the S-Matrix (encoded inside dispersion relations and unitarization procedures) to study the non-perturbative region (TeV scale) of the theory.

- We are interested in the collider phenomenology of Vector Bosons Scattering ($WZ \rightarrow WZ$), since it is very sensitive to new physics in the EW sector in the LHC.
- Bottom to Top approach: we construct an EFT for the EW sector. $SU(2)_L \times SU(2)_R$, EChL copy of ChPT in QCD.
- Degrees of freedom: Gauge Bosons W^{\pm} , Z + Higgs-like particle (h)
- 4 considered parameters: $a, b = a^2, a_4, a_5$.
- The NLO-computed EFT grows with the CM energy like $A \sim s^2$. Hence, it will eventually reach the unitarity bound, becoming non-perturbative. Options:

- We are interested in the collider phenomenology of Vector Bosons Scattering ($WZ \rightarrow WZ$), since it is very sensitive to new physics in the EW sector in the LHC.
- Bottom to Top approach: we construct an EFT for the EW sector. $SU(2)_L \times SU(2)_R$, EChL copy of ChPT in QCD.
- Degrees of freedom: Gauge Bosons W^{\pm} , Z + Higgs-like particle (h).
- 4 considered parameters: a, $b = a^2$, a_4 , a_5 .
- The NLO-computed EFT grows with the CM energy like $A \sim s^2$. Hence, it will eventually reach the unitarity bound, becoming non-perturbative. Options:

Effective Lagrangian: considered parameters

$$\begin{split} \mathcal{L}_2 &= \frac{v^2}{4} \left[1 + 2 a \frac{h}{v} + b \left(\frac{h}{v} \right)^2 + \ldots \right] \mathsf{Tr} (D_\mu U^\dagger D_\mu U) + \frac{1}{2} \partial_\mu h \partial^\mu h + \ldots \\ \mathcal{L}_4 &= a_4 [\mathsf{Tr} (V_\mu V_\nu)] [\mathsf{Tr} (V^\mu V^\nu)] + a_5 [\mathsf{Tr} (V_\mu V^\mu)] [\mathsf{Tr} (V_\nu V^\nu)] + \ldots \\ V_\mu &= (D_\mu U) U^\dagger, \qquad U = \exp \left(\frac{i \omega^a \tau^a}{v} \right) \end{split}$$

Bosons hysics in

sector.

article (h).

- 4 considered parameters: a, $b = a^2$, a_4 , a_5 .
- The NLO-computed EFT grows with the CM energy like $A \sim s^2$. Hence, it will eventually reach the unitarity bound, becoming non-perturbative. Options:

◆□▶ ◆□▶ ◆필▶ ◆필□ 釣९♡

- We are interested in the collider phenomenology of Vector Bosons Scattering ($WZ \rightarrow WZ$), since it is very sensitive to new physics in the EW sector in the LHC.
- Bottom to Top approach: we construct an EFT for the EW sector. $SU(2)_L \times SU(2)_R$, EChL copy of ChPT in QCD.
- Degrees of freedom: Gauge Bosons W^{\pm} , Z + Higgs-like particle (h).
- 4 considered parameters: a, $b = a^2$, a_4 , a_5 .
- The NLO-computed EFT grows with the CM energy like $A \sim s^2$. Hence, it will eventually reach the unitarity bound, becoming non-perturbative. Options:
 - Limit the validity range of the EFT to the perturbative region.
 Consider it as a useful parameterization of slight deviations from the SM in the range under the TeV scale.
 - Take advantage of the analytical properties of the S-Matrix (encoded inside dispersion relations and unitarization procedures) to study the non-perturbative region (TeV scale) of the theory.

- We are interested in the collider phenomenology of Vector Bosons Scattering ($WZ \rightarrow WZ$), since it is very sensitive to new physics in the EW sector in the LHC.
- Bottom to Top approach: we construct an EFT for the EW sector. $SU(2)_L \times SU(2)_R$, EChL copy of ChPT in QCD.
- Degrees of freedom: Gauge Bosons W^{\pm} , Z + Higgs-like particle (h).
- 4 considered parameters: a, $b = a^2$, a_4 , a_5 .
- The NLO-computed EFT grows with the CM energy like $A \sim s^2$. Hence, it will eventually reach the unitarity bound, becoming non-perturbative. Options:
 - Limit the validity range of the EFT to the perturbative region.
 Consider it as a useful parameterization of slight deviations from the SM in the range under the TeV scale.
 - Take advantage of the analytical properties of the S-Matrix (encoded inside dispersion relations and unitarization procedures) to study the non-perturbative region (TeV scale) of the theory.

- We are interested in the collider phenomenology of Vector Bosons Scattering ($WZ \rightarrow WZ$), since it is very sensitive to new physics in the EW sector in the LHC.
- Bottom to Top approach: we construct an EFT for the EW sector. $SU(2)_L \times SU(2)_R$, EChL copy of ChPT in QCD.
- Degrees of freedom: Gauge Bosons W^{\pm} , Z + Higgs-like particle (h).
- 4 considered parameters: a, $b = a^2$, a_4 , a_5 .
- The NLO-computed EFT grows with the CM energy like $A\sim s^2$. Hence, it will eventually reach the unitarity bound, becoming non-perturbative. Options:
 - Limit the validity range of the EFT to the perturbative region.
 Consider it as a useful parameterization of slight deviations from the SM in the range under the TeV scale.
 - Take advantage of the analytical properties of the S-Matrix (encoded inside dispersion relations and unitarization procedures) to study the non-perturbative region (TeV scale) of the theory.

- VBS amplitude rises with energy, eventually leading to violation of unitarity at some new physics state.
- This leads to an OVERESTIMATED number of events in VBS due to an unphysical prediction of EFT. That is, amplitudes cannot grow uncontrolled.
- Exception, MSM: Higgs exchange exactly cancels this energy rise in VBS, restoring unitarity event at LO.
- Two options:
 - Set up a low-energy cut-off on the theory, due to the validity limits of the EFT itself. This limit, indeed, comes from the UV completion, whose specification would require to pick up a full (renormali. and unitar.) model from the theory zoo.
 - Consider the EFT a valid low-energy limit and take advantage of the analytical properties of the scattering amplitudes, encoded in the so-called unitarization procedures, to extend the validity regime of the EFT. These techniques are well known from hadron physics.

- VBS amplitude rises with energy, eventually leading to violation of unitarity at some new physics state.
- This leads to an OVERESTIMATED number of events in VBS due to an unphysical prediction of EFT. That is, amplitudes cannot grow uncontrolled.
- Exception, MSM: Higgs exchange exactly cancels this energy rise in VBS, restoring unitarity event at LO.
- Two options:

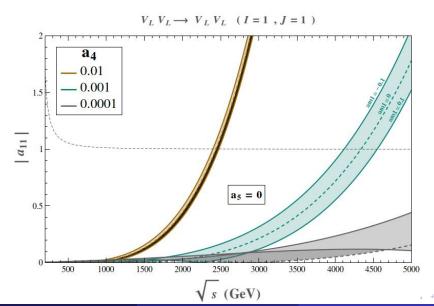
- VBS amplitude rises with energy, eventually leading to violation of unitarity at some new physics state.
- This leads to an OVERESTIMATED number of events in VBS due to an unphysical prediction of EFT. That is, amplitudes cannot grow uncontrolled.
- Exception, MSM: Higgs exchange exactly cancels this energy rise in VBS, restoring unitarity event at LO.
- Two options:

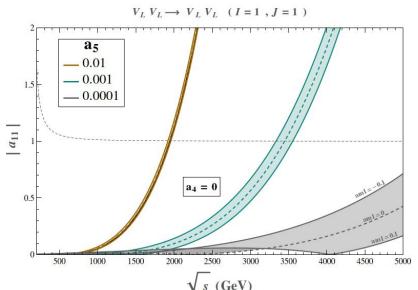
- VBS amplitude rises with energy, eventually leading to violation of unitarity at some new physics state.
- This leads to an OVERESTIMATED number of events in VBS due to an unphysical prediction of EFT. That is, amplitudes cannot grow uncontrolled.
- Exception, MSM: Higgs exchange exactly cancels this energy rise in VBS, restoring unitarity event at LO.
- Two options:
 - Set up a low-energy cut-off on the theory, due to the validity limits of the EFT itself. This limit, indeed, comes from the UV completion, whose specification would require to pick up a full (renormali. and unitar.) model from the theory zoo.
 - Consider the EFT a valid low-energy limit and take advantage of the analytical properties of the scattering amplitudes, encoded in the so-called *unitarization procedures*, to extend the validity regime of the EFT. These techniques are well known from hadron physics.

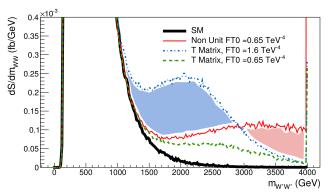
- VBS amplitude rises with energy, eventually leading to violation of unitarity at some new physics state.
- This leads to an OVERESTIMATED number of events in VBS due to an unphysical prediction of EFT. That is, amplitudes cannot grow uncontrolled.
- Exception, MSM: Higgs exchange exactly cancels this energy rise in VBS, restoring unitarity event at LO.
- Two options:
 - Set up a low-energy cut-off on the theory, due to the validity limits of the EFT itself. This limit, indeed, comes from the UV completion, whose specification would require to pick up a full (renormali. and unitar.) model from the theory zoo.
 - Consider the EFT a valid low-energy limit and take advantage of the analytical properties of the scattering amplitudes, encoded in the so-called *unitarization procedures*, to extend the validity regime of the EFT. These techniques are well known from hadron physics.

◆ロト ◆団ト ◆豆ト ◆豆ト 芝油 釣り(で)

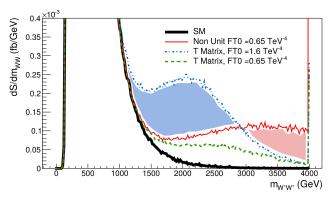
- VBS amplitude rises with energy, eventually leading to violation of unitarity at some new physics state.
- This leads to an OVERESTIMATED number of events in VBS due to an unphysical prediction of EFT. That is, amplitudes cannot grow uncontrolled.
- Exception, MSM: Higgs exchange exactly cancels this energy rise in VBS, restoring unitarity event at LO.
- Two options:
 - Set up a low-energy cut-off on the theory, due to the validity limits of the EFT itself. This limit, indeed, comes from the UV completion, whose specification would require to pick up a full (renormali. and unitar.) model from the theory zoo.
 - Consider the EFT a valid low-energy limit and take advantage of the analytical properties of the scattering amplitudes, encoded in the so-called *unitarization procedures*, to extend the validity regime of the EFT. These techniques are well known from hadron physics.





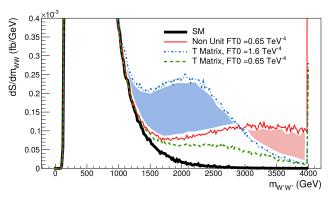


- T-matrix unit., [Sekulla et.al., Particle Phenomen. Seminar, 24/01/2017]
- T_{S_1}/Λ^2 , [-21.0, 21.8] (CNIS, 13 TeV), [-50.0, 00.3] (1-matrix)
 - $O(M_0/N)$, [-0.7, 9.1] (CMS, 15 TeV), [-1.55, 1.00] (T-matrix
 - $-17_0/N$, [-1.55,1.00] (1-matrix)

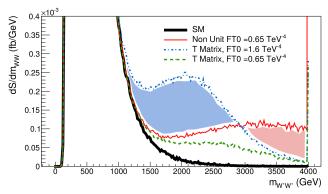


- T-matrix unit., [Sekulla et.al., Particle Phenomen. Seminar, 24/01/2017]
- f_{S_1}/Λ^4 , [-21.6, 21.8] (CMS, 13 TeV), [-50.0, 60.3] (T-matrix)
- f_{M_0}/Λ^4 , [-8.7, 9.1] (CMS, 13 TeV), [-1.35, 1.60] (T-matrix) • f_{T_0}/Λ^4 [-0.62, 0.65] (CMS, 13 TeV). [-1.35, 1.60] (T-matrix)

6 / 12

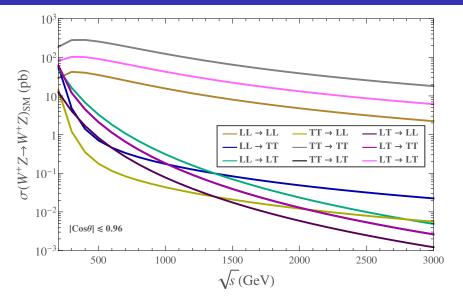


- T-matrix unit., [Sekulla et.al., Particle Phenomen. Seminar, 24/01/2017]
- f_{S_1}/Λ^4 , [-21.6, 21.8] (CMS, 13 TeV), [-50.0, 60.3] (T-matrix) • f_{M_0}/Λ^4 , [-8.7, 9.1] (CMS, 13 TeV), [-1.35, 1.60] (T-matrix)
- f_{T_0}/Λ^4 , [-0.62, 0.65] (CMS, 13 TeV), [-1.35, 1.60] (T-matrix)

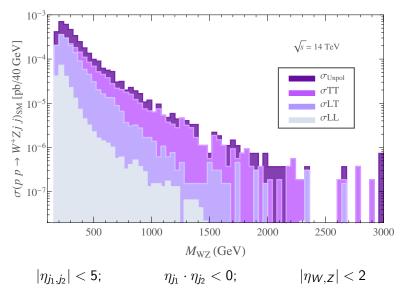


- T-matrix unit., [Sekulla et.al., Particle Phenomen. Seminar, 24/01/2017]
- Timatik amen, [sekana edan, Fartiste Friendrich: sehimar, 21/61/2011]
- f_{S_1}/Λ^4 , [-21.6, 21.8] (CMS, 13 TeV), [-50.0, 60.3] (T-matrix)
- f_{M_0}/Λ^4 , [-8.7, 9.1] (CMS, 13 TeV), [-1.35, 1.60] (T-matrix)
- f_{T_0}/Λ^4 , [-0.62, 0.65] (CMS, 13 TeV), [-1.35, 1.60] (T-matrix)

Polarization: SM, integrated $|\cos \theta| \le 0.90$



Polarization: SM background, $pp \rightarrow W^+Zjj$



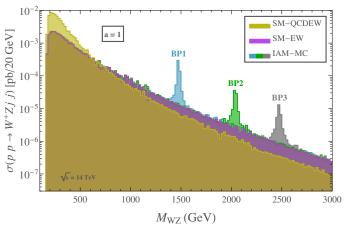
Isovector Resonance JHEP1711, 098

ВР	$M_V({ m GeV})$	$\Gamma_V({ m GeV})$	$g_V(M_V^2)$	а	$a_4 \cdot 10^4$	$a_5 \cdot 10^4$
BP1	1476	14	0.033	1	3.5	-3
BP2	2039	21	0.018	1	1	-1
BP3	2472	27	0.013	1	0.5	-0.5
BP1'	1479	42	0.058	0.9	9.5	-6.5
BP2'	1980	97	0.042	0.9	5.5	-2.5
BP3'	2480	183	0.033	0.9	4	-1

These BPs have been selected for vector resonances emerging at mass and width values that are of phenomenological interest for the LHC.

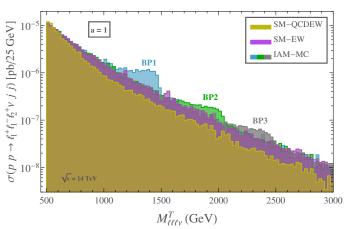
Considered backgrounds: The pure SM-EW background, of order $\mathcal{O}(\alpha_{\rm em}^2)$. The mixed SM-QCDEW background, of order $\mathcal{O}(\alpha_{\rm em}\alpha_{\rm s})$.

Isovector Resonance: WZ in final state JHEP1711, 098



a = 1; $a_4 \cdot 10^4 = 3.5$ (BP1), 1 (BP2), 0.5 (BP3); $-a_5 \cdot 10^4 = 3$ (BP1), 1 (BP2), 0.5 (BP3).

Isovector Resonance: leptonic final state JHEP1711, 098



a = 1; $a_4 \cdot 10^4 = 3.5$ (BP1), 1 (BP2), 0.5 (BP3); $-a_5 \cdot 10^4 = 3$ (BP1), 1 (BP2), 0.5 (BP3).

- Studied 2 \rightarrow 2 scattering processes within the EWSBS: $WZ \rightarrow WZ$.
- We provide a MadGraph v5 model for the unitarized EChL using the Inverse Amplitude Method (IAM). We do not rely on the naive K-matrix.
- We are able to reproduce collider signals, as required by experimentalists.
- We present realistic predictions of $(III\nu jj)$ events at LHC from V resonance production via WZ scat. and compare with backgs.
- Prospects for the Benchmark Points at the LHC (14 TeV):

- Studied 2 \rightarrow 2 scattering processes within the EWSBS: $WZ \rightarrow WZ$.
- We provide a MadGraph v5 model for the unitarized EChL using the Inverse Amplitude Method (IAM). We do not rely on the naive K-matrix.
- We are able to reproduce collider signals, as required by experimentalists.
- We present realistic predictions of $(III\nu jj)$ events at LHC from V resonance production via WZ scat. and compare with backgs.
- Prospects for the Benchmark Points at the LHC (14 TeV):

- Studied 2 \rightarrow 2 scattering processes within the EWSBS: $WZ \rightarrow WZ$.
- We provide a MadGraph v5 model for the unitarized EChL using the Inverse Amplitude Method (IAM). We do not rely on the naive K-matrix.
- We are able to reproduce collider signals, as required by experimentalists.
- We present realistic predictions of $(III\nu jj)$ events at LHC from V resonance production via WZ scat. and compare with backgs.
- ullet Prospects for the Benchmark Points at the LHC (14 ${
 m TeV}$):

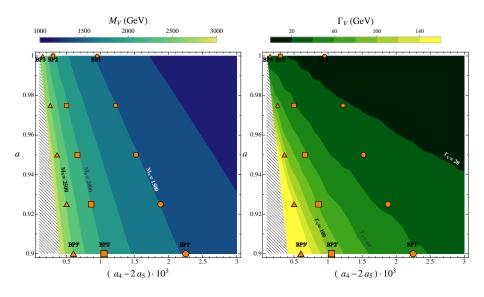
- Studied 2 \rightarrow 2 scattering processes within the EWSBS: $WZ \rightarrow WZ$.
- We provide a MadGraph v5 model for the unitarized EChL using the Inverse Amplitude Method (IAM). We do not rely on the naive K-matrix.
- We are able to reproduce collider signals, as required by experimentalists.
- We present realistic predictions of $(III\nu jj)$ events at LHC from V resonance production via WZ scat. and compare with backgs.
- ullet Prospects for the Benchmark Points at the LHC (14 ${
 m TeV}$):

- Studied 2 \rightarrow 2 scattering processes within the EWSBS: $WZ \rightarrow WZ$.
- We provide a MadGraph v5 model for the unitarized EChL using the Inverse Amplitude Method (IAM). We do not rely on the naive K-matrix.
- We are able to reproduce collider signals, as required by experimentalists.
- We present realistic predictions of $(III\nu jj)$ events at LHC from V resonance production via WZ scat. and compare with backgs.
- ullet Prospects for the Benchmark Points at the LHC (14 ${
 m TeV}$):

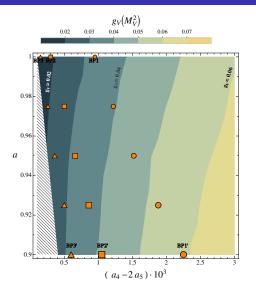
	$\mathcal{L}=300\mathrm{fb^{-1}}$			$\mathcal{L} =$	= 1000 fb	$^{-1}$	$\mathcal{L} = 3000 \mathrm{fb^{-1}}$		
	N _I IAM	$N_l^{\rm SM}$	$\sigma_I^{\rm stat}$	$N_I^{\rm IAM}$	$N_l^{\rm SM}$	$\sigma_I^{\rm stat}$	N _I IAM	$N_l^{\rm SM}$	$\sigma_I^{\rm stat}$
BP1	2	1	0.6	6	4	1.1	19	13	1.8
BP2	0.6	0.4	-	1	1	0	4	3	0.1
BP3	0.1	0.1	-	0.4	0.3	-	1	1	0
BP1'	6	2	2.3	19	8	4.2	57	23	7.2
BP2'	2	0.9	1	6	3	1.8	19	9	3.7
BP3'	0.8	0.4	-	3	1	1.1	8	4	1.8

Backup Slides

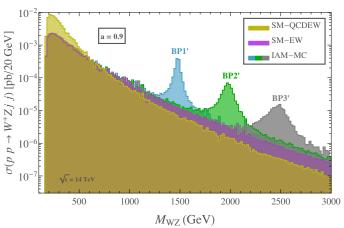
Election of the benchmark points



Election of the benchmark points

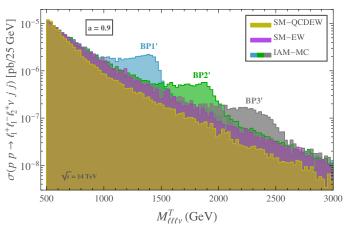


Isovector Resonance: WZ in final state JHEP1711, 098



a = 0.9; $a_4 \cdot 10^4 = 3.5$ (BP1'), 1 (BP2'), 0.5 (BP3'); $-a_5 \cdot 10^4 = 3$ (BP1'), 1 (BP2'), 0.5 (BP3').

Isovector Resonance: leptonic final state JHEP1711, 098



a = 0.9; $a_4 \cdot 10^4 = 3.5$ (BP1'), 1 (BP2'), 0.5 (BP3'); $-a_5 \cdot 10^4 = 3$ (BP1'), 1 (BP2'), 0.5 (BP3').

• Options for searching BSM physics:

- From Top to Bottom: construct a full theory (renormalizable and UV complete). Describe the TeV scale in terms of the parameters of the BSM Lagrangian. I.e.: MSSM has ~ 100 free parameters.
 - Advantage: a full model. Renormalizability
 - Problems: no hints about the UV completion chosen by nature.
 - Examples: MSSM (~ 100 free parameters), non-MSSM SUSY.
 Technicolor, KK,...
- From Bottom to Top: construct an Effective Field Theory (EFT), based on the symmetries and available degrees of freedom at low energy.
 - Advantage: we do not rely on a specific UV completion.
 - Disadvantage: valid only at certain energy scale. Non-renormalizable in the classical QFT sense, but in the ChPT one.
 - The usual EFT approach breaks when the low energy EFT reaches the unitarity bound becoming non-perturbative.
 - For phenomenology, EETs with the BSM physics (resonances) as explicit degrees of freedom are used.

- Options for searching BSM physics:
- \bullet From Top to Bottom: construct a full theory (renormalizable and UV complete). Describe the TeV scale in terms of the parameters of the BSM Lagrangian. I.e.: MSSM has ~ 100 free parameters.
 - Advantage: a full model. Renormalizability.
 - Problems: no hints about the UV completion chosen by nature
 - \bullet Examples: MSSM (\sim 100 free parameters), non-MSSM SUSY, Technicolor, KK,...
- From Bottom to Top: construct an Effective Field Theory (EFT), based on the symmetries and available degrees of freedom at low energy.

- Options for searching BSM physics:
- \bullet From Top to Bottom: construct a full theory (renormalizable and UV complete). Describe the TeV scale in terms of the parameters of the BSM Lagrangian. I.e.: MSSM has ~ 100 free parameters.
 - Advantage: a full model. Renormalizability.
 - Problems: no hints about the UV completion chosen by nature.
 - \bullet Examples: MSSM (\sim 100 free parameters), non-MSSM SUSY, Technicolor, KK,...
- From Bottom to Top: construct an Effective Field Theory (EFT), based on the symmetries and available degrees of freedom at low energy.

- Options for searching BSM physics:
- \bullet From Top to Bottom: construct a full theory (renormalizable and UV complete). Describe the TeV scale in terms of the parameters of the BSM Lagrangian. I.e.: MSSM has ~ 100 free parameters.
 - Advantage: a full model. Renormalizability.
 - Problems: no hints about the UV completion chosen by nature.
 - \bullet Examples: MSSM (\sim 100 free parameters), non-MSSM SUSY, Technicolor, KK,...
- From Bottom to Top: construct an Effective Field Theory (EFT), based on the symmetries and available degrees of freedom at low energy.

- Options for searching BSM physics:
- \bullet From Top to Bottom: construct a full theory (renormalizable and UV complete). Describe the TeV scale in terms of the parameters of the BSM Lagrangian. I.e.: MSSM has ~ 100 free parameters.
 - Advantage: a full model. Renormalizability.
 - Problems: no hints about the UV completion chosen by nature.
 - \bullet Examples: MSSM (\sim 100 free parameters), non-MSSM SUSY, Technicolor, KK,...
- From Bottom to Top: construct an Effective Field Theory (EFT), based on the symmetries and available degrees of freedom at low energy.

- Options for searching BSM physics:
- \bullet From Top to Bottom: construct a full theory (renormalizable and UV complete). Describe the TeV scale in terms of the parameters of the BSM Lagrangian. I.e.: MSSM has ~ 100 free parameters.
 - Advantage: a full model. Renormalizability.
 - Problems: no hints about the UV completion chosen by nature.
 - \bullet Examples: MSSM (\sim 100 free parameters), non-MSSM SUSY, Technicolor, KK,...
- From Bottom to Top: construct an Effective Field Theory (EFT), based on the symmetries and available degrees of freedom at low energy.
 - Advantage: we do not rely on a specific UV completion.
 - Disadvantage: valid only at certain energy scale. Non-renormalizable in the classical QFT sense, but in the ChPT one.
 - The usual EFT approach breaks when the low energy EFT reaches the unitarity bound, becoming non-perturbative.
 - For phenomenology, EFTs with the BSM physics (resonances) as explicit degrees of freedom are used.

- Options for searching BSM physics:
- \bullet From Top to Bottom: construct a full theory (renormalizable and UV complete). Describe the TeV scale in terms of the parameters of the BSM Lagrangian. I.e.: MSSM has ~ 100 free parameters.
 - Advantage: a full model. Renormalizability.
 - Problems: no hints about the UV completion chosen by nature.
 - \bullet Examples: MSSM (\sim 100 free parameters), non-MSSM SUSY, Technicolor, KK,...
- From Bottom to Top: construct an Effective Field Theory (EFT), based on the symmetries and available degrees of freedom at low energy.
 - Advantage: we do not rely on a specific UV completion.
 - Disadvantage: valid only at certain energy scale. Non-renormalizable in the classical QFT sense, but in the ChPT one.
 - The usual EFT approach breaks when the low energy EFT reaches the unitarity bound, becoming non-perturbative.
 - For phenomenology, EFTs with the BSM physics (resonances) as explicit degrees of freedom are used.

- Options for searching BSM physics:
- \bullet From Top to Bottom: construct a full theory (renormalizable and UV complete). Describe the TeV scale in terms of the parameters of the BSM Lagrangian. I.e.: MSSM has ~ 100 free parameters.
 - Advantage: a full model. Renormalizability.
 - Problems: no hints about the UV completion chosen by nature.
 - \bullet Examples: MSSM (\sim 100 free parameters), non-MSSM SUSY, Technicolor, KK,...
- From Bottom to Top: construct an Effective Field Theory (EFT), based on the symmetries and available degrees of freedom at low energy.
 - Advantage: we do not rely on a specific UV completion.
 - Disadvantage: valid only at certain energy scale. Non-renormalizable in the classical QFT sense, but in the ChPT one.
 - The usual EFT approach breaks when the low energy EFT reaches the unitarity bound, becoming non-perturbative.
 - For phenomenology, EFTs with the BSM physics (resonances) as explicit degrees of freedom are used.

- Options for searching BSM physics:
- \bullet From Top to Bottom: construct a full theory (renormalizable and UV complete). Describe the TeV scale in terms of the parameters of the BSM Lagrangian. I.e.: MSSM has ~ 100 free parameters.
 - Advantage: a full model. Renormalizability.
 - Problems: no hints about the UV completion chosen by nature.
 - \bullet Examples: MSSM (\sim 100 free parameters), non-MSSM SUSY, Technicolor, KK,...
- From Bottom to Top: construct an Effective Field Theory (EFT), based on the symmetries and available degrees of freedom at low energy.
 - Advantage: we do not rely on a specific UV completion.
 - Disadvantage: valid only at certain energy scale. Non-renormalizable in the classical QFT sense, but in the ChPT one.
 - The usual EFT approach breaks when the low energy EFT reaches the unitarity bound, becoming non-perturbative.
 - For phenomenology, EFTs with the BSM physics (resonances) as explicit degrees of freedom are used.

- Options for searching BSM physics:
- \bullet From Top to Bottom: construct a full theory (renormalizable and UV complete). Describe the TeV scale in terms of the parameters of the BSM Lagrangian. I.e.: MSSM has ~ 100 free parameters.
 - Advantage: a full model. Renormalizability.
 - Problems: no hints about the UV completion chosen by nature.
 - \bullet Examples: MSSM (\sim 100 free parameters), non-MSSM SUSY, Technicolor, KK,...
- From Bottom to Top: construct an Effective Field Theory (EFT), based on the symmetries and available degrees of freedom at low energy.
 - Advantage: we do not rely on a specific UV completion.
 - Disadvantage: valid only at certain energy scale. Non-renormalizable in the classical QFT sense, but in the ChPT one.
 - The usual EFT approach breaks when the low energy EFT reaches the unitarity bound, becoming non-perturbative.
 - For phenomenology, EFTs with the BSM physics (resonances) as explicit degrees of freedom are used.

- The ω^a and h fit in a left SU(2) doublet.
- The Higgs always appears in the combination h + v.
- Typical situation when h is a fundamental field.
- Based in a **cutoff** Λ **expansion**: $\mathcal{O}(d)/\Lambda^{d-4}$, d and operator of dimension d=4,6,8,...
- The usual approach, based on considering a full basis, allows to make a well-defined biyection between basis and is less model depending, at the price of reaching a high number of operators ($>10^3$ for dim-8).

- The ω^a and h fit in a left SU(2) doublet.
- The Higgs always appears in the combination h + v.
- Typical situation when h is a fundamental field.
- Based in a **cutoff** Λ **expansion**: $\mathcal{O}(d)/\Lambda^{d-4}$, d and operator of dimension d=4,6,8,...
- The usual approach, based on considering a full basis, allows to make a well-defined biyection between basis and is less model depending, at the price of reaching a high number of operators ($> 10^3$ for dim-8).

- The ω^a and h fit in a left SU(2) doublet.
- The Higgs always appears in the combination h + v.
- Typical situation when *h* is a fundamental field.
- Based in a **cutoff** Λ **expansion**: $\mathcal{O}(d)/\Lambda^{d-4}$, d and operator of dimension d=4,6,8,...
- The usual approach, based on considering a full basis, allows to make a well-defined biyection between basis and is less model depending, at the price of reaching a high number of operators ($> 10^3$ for dim-8).

- The ω^a and h fit in a left SU(2) doublet.
- The Higgs always appears in the combination h + v.
- Typical situation when h is a fundamental field.
- Based in a **cutoff** Λ **expansion**: $\mathcal{O}(d)/\Lambda^{d-4}$, d and operator of dimension d = 4, 6, 8, ...
- The usual approach, based on considering a full basis, allows to make a well-defined biyection between basis and is less model depending, at the price of reaching a high number of operators ($> 10^3$ for dim-8).

- The ω^a and h fit in a left SU(2) doublet.
- The Higgs always appears in the combination h + v.
- Typical situation when h is a fundamental field.
- Based in a cutoff Λ expansion: $\mathcal{O}(d)/\Lambda^{d-4}$, d and operator of dimension d=4,6,8,...
- The usual approach, based on considering a full basis, allows to make a well-defined biyection between basis and is less model depending, at the price of reaching a high number of operators ($>10^3$ for dim-8).

$$SU(2)_L \times SU(2)_R / SU(2)_V = SU(2) = S^3$$

- ECLh with F(h) insertions.
- Derivative expansion.
- Some higher order operators, like a₄ and a₅, that were dim-8 in the linear representation, can contribute to a lower order in the non-linear one.
- Appropriate for composite models of the SBS (h as a GB).
- Strongly interacting and consistent with the presence of the GAP.

$$SU(2)_L \times SU(2)_R / SU(2)_V = SU(2) = S^3$$

- ECLh with F(h) insertions.
- Derivative expansion.
- Some higher order operators, like a₄ and a₅, that were dim-8 in the linear representation, can contribute to a lower order in the non-linear one.
- Appropriate for composite models of the SBS (h as a GB).
- Strongly interacting and consistent with the presence of the GAP.

$$SU(2)_L \times SU(2)_R / SU(2)_V = SU(2) = S^3$$

- ECLh with F(h) insertions.
- Derivative expansion.
- Some higher order operators, like a₄ and a₅, that were dim-8 in the linear representation, can contribute to a lower order in the non-linear one.
- Appropriate for composite models of the SBS (h as a GB).
- Strongly interacting and consistent with the presence of the GAP.

$$SU(2)_L \times SU(2)_R / SU(2)_V = SU(2) = S^3$$

- ECLh with F(h) insertions.
- Derivative expansion.
- Some higher order operators, like a_4 and a_5 , that were dim-8 in the linear representation, can contribute to a lower order in the non–linear one.
- Appropriate for composite models of the SBS (h as a GB).
- Strongly interacting and consistent with the presence of the GAP.

$$SU(2)_L \times SU(2)_R / SU(2)_V = SU(2) = S^3$$

- ECLh with F(h) insertions.
- Derivative expansion.
- Some higher order operators, like a₄ and a₅, that were dim-8 in the linear representation, can contribute to a lower order in the non-linear one.
- Appropriate for composite models of the SBS (h as a GB).
- Strongly interacting and consistent with the presence of the GAP.

$$SU(2)_L \times SU(2)_R / SU(2)_V = SU(2) = S^3$$

- ECLh with F(h) insertions.
- Derivative expansion.
- Some higher order operators, like a₄ and a₅, that were dim-8 in the linear representation, can contribute to a lower order in the non-linear one.
- Appropriate for composite models of the SBS (h as a GB).
- Strongly interacting and consistent with the presence of the GAP.