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There is no doubt that the SM is incomplete since we cannot even account for a number
of basic observations:

• Neutrino physics: Only recently it has been possible to have some definite an-
swers about properties of neutrinos. We now know that they have a tiny mass,
which can be naturally accommodated in extensions of the SM, featuring for ex-
ample a see-saw mechanism. We do not yet know if the neutrinos have a Dirac
or a Majorana nature.

• Origin of bright and dark mass: Leptons, quarks and the gauge bosons medi-
ating the weak interactions possess a rest mass. Within the SM this mass can be
accounted for by the Higgs mechanism, which constitutes the electroweak sym-
metry breaking sector of the SM. However, the associated Higgs particle has not
yet been discovered. Besides, the SM cannot account for the observed large frac-
tion of dark mass of the universe. What is interesting is that in the universe the
dark matter is about five times more abundant than the known baryonic matter,
i.e. bright matter. We do not know why the ratio of dark to bright matter is of
order unity.

• Matter-antimatter asymmetry: From our everyday experience we know that
there is very little bright antimatter in the universe. The SM fails to predict the
observed excess of matter.

These arguments do not imply that the SM is necessarily incorrect, but it must be
extended to answer any of the questions raised above. The truth is that we do not have
an answer to the basic question: What lies beneath the SM?

A number of possible generalizations have been conceived (see [2, 3, 4, 5, 6, 7] for
reviews). Such extensions are introduced on the base of one or more guiding principles
or prejudices. Two technical reviews are [8, 9].

In the models we will consider here the electroweak symmetry breaks via a fermion
bilinear condensate. The Higgs sector of the SM becomes an e�ective description of a
more fundamental fermionic theory. This is similar to the Ginzburg-Landau theory of
superconductivity. If the force underlying the fermion condensate driving electroweak
symmetry breaking is due to a strongly interacting gauge theory these models are
termed Technicolor (TC).

TC, in brief, is an additional non-abelian and strongly interacting gauge theory
augmented with (techni)fermions transforming under a given representation of the
gauge group. The Higgs Lagrangian is replaced by a suitable new fermion sector
interacting strongly via a new gauge interaction (technicolor). Schematically:

LHiggs ⇤ �
1
4

Fµ⇤Fµ⇤ + iQ̄�µDµQ + . . . , (1.14)

where, to be as general as possible, we have left unspecified the underlying nonabelian
gauge group and the associated technifermion (Q) representation. The dots represent
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quarks and leptons without introducing Flavor Changing Neutral Currents (FCNC)s
at the tree level. The Higgs sector of the SM possesses, when the gauge couplings are
switched o�, an SU(2)L ⇤ SU(2)R symmetry. The full symmetry group can be made
explicit when re-writing the Higgs doublet field

H =
1⌦
2

⇤
⇤2 + i⇤1
⌅ � i⇤3

⌅
(1.1)

as the right column of the following two by two matrix:

1⌦
2

�
⌅ + i⌦⇧ · ⌦⇤⇥ ⇧M . (1.2)

The first column can be identified with the column vector i⇧2H⌅ while the second with
H. ⇧2 is the second Pauli matrix. The SU(2)L⇤SU(2)R group acts linearly on M according
to:

M⌃ gLMg†R and gL/R � SU(2)L/R . (1.3)

One can verify that:

M
�
1 � ⇧3⇥

2
= (0 , H) . M

�
1 + ⇧3⇥

2
= (i ⇧2H⌅ , 0) . (1.4)

The SU(2)L symmetry is gauged by introducing the weak gauge bosons Wa with a =
1, 2, 3. The hypercharge generator is taken to be the third generator of SU(2)R. The
ordinary covariant derivative acting on the Higgs, in the present notation, is:

DµM =  µM � i g WµM + i g⌥M Bµ , with Wµ =Wa
µ
⇧a

2
, Bµ = Bµ

⇧3

2
. (1.5)

The Higgs Lagrangian is

L =
1
2

Tr
⇧
DµM†DµM

⌃
�

m2
M

2
Tr
⇧
M†M

⌃
� �

4
Tr
⇧
M†M

⌃2
. (1.6)

At this point one assumes that the mass squared of the Higgs field is negative and this
leads to the electroweak symmetry breaking. Except for the Higgs mass term the other
SM operators have dimensionless couplings meaning that the natural scale for the SM
is encoded in the Higgs mass1. We recall that the Higgs Lagrangian has a familiar
form since it is identical to the linear ⌅ Lagrangian which was introduced long ago to
describe chiral symmetry breaking in QCD with two light flavors.

1The mass of the proton is due mainly to strong interactions, however its value cannot be determined
within QCD since the associated renormalization group invariant scale must be fixed to an hadronic
observable.
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near-conformal strongly coupled gauge theory

fermions (Q) in gauge group reps in flavor/color space:

                                                                     light scalar separated from

                                  unlike QCD                  multi-TeV resonance spectrum

                                  requires BSM field theory tools for LHC apps
                                  dilaton with broken scale symmetry and chiSB?

spontaneous symmetry breaking
Higgs mechanism

What is the composite scalar (a.k.a. Higgs) paradigm?

elementary scalar? 



Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking

2

 SCGT Theory Space 
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 SCGT Theory Space 

dilaton?

dilaton?

would be exciting field theory

Standard Model: Charged currents in SU(2)L � U(1)Y sector

Julius Kuti, University of California at San Diego USQCD Collaboration Meeting, Je�erson Laboratory, April 4 - 5, 2008, 15/19

walking coupling separates 
two scales?

target of lattice BSM?

running coupling 

QCD-like 
far from conformal window

near-conformal light Higgs (dilaton-like?) sextet rep

target of lattice BSM?

m=0
fermion mass

scale symmetry breakingchiral symmetry breaking

near-conformal        

(ψψ )Δ  deforming the would be IRFP

L = 1
2
∂µ χ ∂µ χ −Vd (χ ) +

fπ
2

4
χ
fd

⎛

⎝⎜
⎞

⎠⎟

2

tr ∂µΣ
† ∂µΣ⎡⎣ ⎤⎦ −

fπ
2mπ

2

4
χ
fd

⎛

⎝⎜
⎞

⎠⎟

y

tr Σ + Σ†( )

fd > fπ



based on: DOI:10.1103/PhysRevD.94.091501, arXiv:1712.08594, arXiv:1710.09262,  
arXiv:1711.04833,arXiv:1711.05299, PLB B779 (2018) 230-236

•  walking 𝛽-functions in 𝜒SB phase? which models are dilaton candidates?

•  linear 𝜎-model with low mass m𝜋 ≳ m𝜎  requires extensions ➙ dilaton? 

•  dilaton signatures in the p-regime of the sextet model   2017 BU workshop: while we are 
struggling with the sextet analysis, Appelquist et al.: it works for nf=8 anyway. Hmmm …. 

•  dilaton signatures in the 𝜀-regime ? 

•  simulating the effective potential of the composite scalar     

http://dx.doi.org/10.1103/PhysRevD.94.091501
http://arxiv.org/abs/arXiv:1712.08594
http://arxiv.org/abs/arXiv:1710.09262
http://arxiv.org/abs/arXiv:1711.04833
http://arxiv.org/abs/arXiv:1711.05299


if I get carried away: 

(from Julius Caesar, spoken by Marc Antony) 

I come to bury Caesar, not to praise him.
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 SCGT Theory Space 

SU(4)+4 PNGB?

testing scale-dependent BSM gauge couplings and 𝛽-functions:

1 2 3 4 5 6 7 8

 g2  (scale-dependent renormalized coupling) 

-0.5

0

0.5

1

1.5

2

(g
2 (s

L)
-g

2 (L
))/

lo
g(

s2 )

  BSM quest for light scalar (dilaton?) and near-conformal -function 

nf=4
5-loop

m /F  6

nf=8
5-loop

m /F  4
nf = 10
5-loop

nf = 12
5-loopsextet

5-loop
m /F < 3 (?)

new

SU(4) PNGB?

SU(4)+6 

SU(4)+8 PNGB conformal?

• with established 𝜒SB, sextet model closest to CW in explored range of  𝛽-function 

• nf=10 is not conformal in explored 𝛽-function range of our analysis    

• nf=12 is not conformal in explored 𝛽-function range of our analysis   new check 

• nf=13 is conformal      

• sextet SU(2) flavor group simplest with light 0++ scalar  —  dilaton analysis

light 0++ scalar 
emerging 



5.5 6 6.5 7 7.5

 g2(L) 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(g
2 (s

L)
-g

2 (L
))/

lo
g(

s2 )
 s=2    c=0.20    SSC scheme    continuum step -function 

Ref. 3  IRFP

precision tuning and targeted interpolation combined

a4/L4 cutoff effects included

4-loop

5-loop

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 a2/L2 10-3

-0.4
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-0.2
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0
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(g
2 (2

L)
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2 (L
))/
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g(

s2 )

 SSC  s=2   c=0.2  target F  continuum limit

 (g2(sL) - g2(L))/log(s2) = c0 + c1  a2/L2 

c0=  0.143  0.038

c1=  -98.1  39

2/dof= 0.39
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 target F   s=2     c=0.2    tuning

g2 (tuned) =  6.9842  0.0014
2/dof = 0.3    Q = 0.91

new L=32->64 

LatHC PLB B779 (2018) 230-236  arXiv:1710.09262

confirmed with new updated results:


L=32 -> L=64 step at three tuned g^2 targets

adds further evidence against nf=12 IRFP 


staggered “non-universality argument” based on 
3d spin models is misguided 

New Boulder-BU poster with DW fermions so far 
is not in contradiction with our Nf=12 analysis

+ a^4/L^4 term

nf=12 new

nf=12 new

consistent with published

http://arxiv.org/abs/arXiv:1710.09262


Lattice 2018  K Holland

g2(L)
2.5 3 3.5 4 4.5 5 5.5 6 6.5

 ( 
g2 (s

L)
 - 

g2 (L
) )

/lo
g(

s2 ) 

-0.1

-0.05

0

0.05

0.1

Nf = 13   SSC  c = 0.20  s = 3/2   beta function

quadratic continuum extrapolation across range of  
renormalized couplings

physical property: slope of beta function at IRFP

MS-bar loop 
order

Ryttov-Shrock 
delta order

2 0.087 2 0.051

3 0.078 3 0.072

4 0.075 4 0.069

5 0.037 5 0.067

�0 �0

g2 = 4 π2 a
s

0 1 2 3 4 5 6 7 8

 β
(g

2 ) 

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Nf = 13

5 loop MS-bar
∆5 β derivative
lattice

perturbative results quite close to lattice data

5-loop MS-bar beta function less steep than lower 
orders

�0 = d�/dg2|g2
⇤

nf=13 newnf=13 new



I add a remark concerning the model of Hanhart, Peláez and Ríos [32], who apply
the inverse amplitude method to improve the one loop approximation to the chiral
perturbation series of SU(2)×SU(2). In the original formulation of the model, the chiral
expansion t00(s) = t2(s)+t4(s)+ . . . is unitarized with t00(s) = t2(s)/{1−t4(s)/t2(s)}, but
this recipe fails in the vicinity of the Adler zero, because the term t4(s) does not vanish
there. The deficiency is readily cured. It suffices to replace the IAM formula with

t00(s) =
t̃2(s)

1− t̃4(s)/t̃2(s)
, t̃2(s) = t2(s)− t2(sA4) , t̃4(s) = t4(s)+ t2(sA4) , (6)

where sA4 is the position of the Adler zero in one loop approximation. Since t2(sA4)
represents a term of O(p4), the chiral expansion of (6) reproduces the one loop approx-
imation of χPT, also in the vicinity of the Adler zero. A similar recipe is used in [32].
The model exclusively involves the coupling constants Fπ ,ℓ1, . . . ,ℓ4 of the effective

Lagrangian. As discussed above, ℓ3 and ℓ4 are known quite well; ℓ1 and ℓ2 can be
determined on phenomenological grounds [11]. The result for the phase shift obtained
by inserting the numerical values in the above formula is indicated on the right panel of
Fig. 4. This shows that the model yields a decent approximation only below 500 MeV.
The parametrization used by Hanhart eta al. [32] is better, because these authors treat the
coupling constants ℓ1 and ℓ2 as free parameters. This extends the range of energies where
the IAM parametrization makes sense, but since the model does not account for the sharp
increase in the phase towardsKK̄ threshold, it can at best give a semi-quantitative picture
of the σ . For the parameter values adopted in [32], the zero of the denominator in (6)
occurs at 444(6) - i 218(10) MeV: the mass is OK, but the width is too low by 100 MeV.
Inserting the observed values of ℓ1 and ℓ2, the zero moves to 413(12) - i 269(12) MeV:
now the width is OK, but the mass is too low.
ad 3. Finally, I turn to the contributions of the third category: higher energies and

other partial waves. Among these, the one from the P-wave, for example, is by no means
negligible, but, as mentioned above, this wave is known very well. In fact, in the vicinity
of the zero of S00(s), the sum of the contributions of this category can be worked out
quite accurately. In [1], we estimated the net uncertainty in the pole position from this
source at ± 4 ± i 6 MeV. As a check, we can simply replace our central representation
for the contributions of category 3 by the one in [30], retaining our own representation
only for the remainder. The operation shifts the pole position by - 0.6 - i 1.2 MeV, well
within the estimated range.
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Adding the errors up in square, the result for the pole position becomes [1]
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−12.5 MeV . (7)

The error bars account for all sources of uncertainty and are an order of magnitude
smaller than for the crude estimate √sσ = (400 - 1200) - i (250 - 500) MeV quoted by
the Particle Data Group [25]. The dispersive representation of the S-matrix element also
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for the contributions of category 3 by the one in [30], retaining our own representation
only for the remainder. The operation shifts the pole position by - 0.6 - i 1.2 MeV, well
within the estimated range.
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Adding the errors up in square, the result for the pole position becomes [1]
√
sσ = 441+16
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well as for the P-wave. According to figure 2a in [97], the resulting fit yields
δ0
0(sA) ≃ 87◦. In view of the relatively large errors attached to the phase shift

in [96], this result must come with a sizable uncertainty and may thus not
be inconsistent with the range obtained in [80], but it is on the high side.
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Figure 9: Behaviour of δ0
0 below KK̄ threshold

The parametrizations of Kamiński, Peláez and Ynduráin [88] yield even
higher values: δ0

0(sA) = 90.7◦ ± 0.7 (A), δ0
0(sA) = 90.5◦ ± 0.7 (B). In view of

the remarkably small error, these results disagree with those obtained from
δ1
1(sA) − δ0

0(sA) [80] or from a Roy equation fit to the data of [94]. One of
the reasons for arriving at such a high value is that the authors include the
result for the phase difference δ0

0(M
2
K)− δ2

0(M
2
K) obtained from K → ππ [53]

in their fitting procedure. This pulls the value of δ0
0(sA) up. The response of

the Roy equations to this change in the input value for δ0
0(sA) is an increase in

δ0
0(M

2
K)−δ2

0(M
2
K) of 2◦. The fit obtained in KPYIII yields a somewhat larger

shift: the value for δ0
0(M

2
K) − δ2

0(M
2
K) is 50.9◦ ± 1.2◦, higher than our result

by 3.2◦. The difference is produced by the kink mentioned in the preceding
section, which can also be seen in figure 9. The kink generates a violation
of causality and hence of the Roy equations: while our amplitude or the
one of Kamiński, Leśniak and Loiseau [97] do represent decent approximate
solutions of the Roy equations, the one in KPYIII does not: in the region
between 0.7 and 1 GeV, the difference between input and output for the real
parts of the S-waves is of order 0.1. Quite irrespective of these details, the
increase in the phase difference δ0

0(M
2
K) − δ2

0(M
2
K) produced by an increase
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the failure of old Higgs-less technicolor:
0++ scalar in QCD     (bad Higgs impostor)

estimate in Particle Data Book

π-π phase shift in 0++ “Higgs” channel 

Leutwyler:   
dispersion theory combined with ChiPT

broad Mσ ~ 1.5 TeV in old technicolor, based 
on scaled up QCD, hence the tag “Higgs-less” 

beautiful lattice study of 0++ from JLAB group

This is expected to be different in near-
conformal strongly coupled gauge theories

The light 0++ scalar        QCD (aka old TC)   80’, 90’



light 0++ scalar and spectrum   sextet model   LatHC 
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(connected)

0++ singlet state
(disconnected)

Mt/s = at/s + bt/s m   (fitting functions)     β=3.2     323× 64

F       = 0.0279 (4) setting the EWSB scale

MH/F ~ 1−3 range

 Triplet and singlet masses from 0++ correlators  

0++ is tracking the Goldstone pion
 

mπ
2 ≥ mσ

2   

Light scalar sigma particle or dilaton ?
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Cnon-singlet(t):

Nf=12

Lowest non-singlet scalar from connected correlator

aMnon-singlet = 0.420(2)
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Csinglet(t)  ~ exp(-M0++�t)  fitting function:

Nf=12 Lowest 0++ scalar state from singlet correlator

aM0++=0.304(18)

243x48 lattice  simulation 

200 gauge configs

�=2.2   am=0.025

+



generalize linear O(4) 𝜎-model in low mass                 range  
➞ nonlinear 𝜎-model, perhaps dilaton?

mπ ≥ mσ

Mπ
2 = M 2 1− 1

2
M 2

16π 2F2 l3 +O(M
4 )⎧

⎨
⎩

⎫
⎬
⎭

Fπ = F 1+ M 2

16π 2F2 l4 +O(M
4 )⎧

⎨
⎩

⎫
⎬
⎭

l3 =
16π 2

gR
− lnMπ

2

MR
2 −
14
3

l4 =
8π 2

gR
− lnMπ

2

MR
2 −
1
3

L = F
2

4
tr ∂µΣ

† ∂µΣ( ) − F
2M 2

4
tr Σ + Σ†( )

pion field Σ=eiπaτ a /F  with τ a Pauli matrices,
tree level pion mass M 2 = 2Bm

1
2

Mπ
2

16π 2F2 l3 < 0.5 ⇒ Mσ

M
> 2  with the condition Mσ

F
= 2

similar condition from l4 =
8π 2

gR
− ln Mπ

2

MR
2 −

1
3

SU(2)⊗ SU(2) ∼O(4)  for sextet model

L = 1
2

∂µ
!π( )2

+ 1
2

∂µσ( )2
− 1

2
µ2 σ 2 + !π 2( )+ 1

4
g σ 2 + !π 2( )2

− εσ

linear 𝜎-model in simulations in low mass range with m𝜋 ≳ m𝜎 requires extension 

mσ
2 ≥ 3mπ

2   tree level relation

mσ
2 ≥ 2mπ

2   1-loop relation

triviality analysis 

(and loop expansion) 

circa 1987-1988 



L = 1
2
∂µh∂µh −V (h) + v

2

4
DµΣ

†DµΣ( ) ⋅ 1+ 2a h
v
+ b h

2

v2 + b3
h3

v3 + ...
⎛
⎝⎜

⎞
⎠⎟

Σ=eiπ
aτ a /v  with τ a Pauli matrices

V (h) = 1
2
mh

2 ⋅h2 + d3
mh

2

2v
⎛
⎝⎜

⎞
⎠⎟
⋅h3 + d4

mh
2

8v2

⎛
⎝⎜

⎞
⎠⎟
⋅h4 + ...

σ -model limit (SM):  a = b = d3 = d4 = 1     (or more relaxed in χSB framework)
dilaton model limit:   a = b2,  b3 = 0            scale symmetry breaking set by  fd     (in far IR χSB can be triggered)

π σ

fπ

extended EFT of σ-𝜋 entanglement in the BSM Higgs sector:

Mπ , Fπ , Mσ  are calculated to 1-loop:  extended SU(2) flavor chiral dynamics

We have been analyzing the small pion mass region in the Mπ = 0.07- 0.015 range 

of the p-regime, also targeting the ε-regime 
linear sigma model limit in of χPT p-regime simulations requires very small pion masses
mπ ≪ mσ  not reached in p-regime simulations 

Soto et al.  targeting QCD

Nuclear Physics B 866 (2013) 270–292 

Sanino et al. added new terms for BSM

light 0++ scalar: 

σ-particle or dilaton? 

dilaton, or non-linear σ-model 
parameters



L = 1
2
∂µ χ ∂µ χ −Vd (χ ) +

fπ
2

4
χ
fd

⎛

⎝⎜
⎞

⎠⎟

2

tr ∂µΣ
† ∂µΣ⎡⎣ ⎤⎦ −

fπ
2mπ

2

4
χ
fd

⎛

⎝⎜
⎞

⎠⎟

y

tr Σ + Σ†( )
y = 3− γ  where γ  is the mass anomalous dimension

χ(x) = fd e
σ (x )/ fd  describes the dilaton field σ (x) 

pion field Σ=eiπ
aτ a / fπ  with τ a Pauli matrices,  tree level pion mass mπ

2 = 2Bm

Vd1 =
md

2

2 fd
2

χ 2

2
−
fd

2

2

⎛

⎝⎜
⎞

⎠⎟

2

  relevant deformation of IRFP theory

Vd2 =
md

2

16 fd
2 χ

4 4ln
χ
fd
−1

⎛

⎝⎜
⎞

⎠⎟
nearly marginal deformation  

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

after long early history, recent: 
Golterman and Shamir 
Appelquist et al., LatHC 
Matsuzaki and Yamawaki 
LatKMI …

two different dilaton potentials
illustrate scope of the analysis

Low energy effective theory of the 𝜎(x) dilaton field and the 𝜋a(x) Goldstone bosons 
separated from the higher resonance states with SU(2) flavor in sextet model:

Appelquist et al. test Nf=8 fundamental rep and  
fit obsolete sextet data with paper and pencil!

test V ~  𝜒p  for large 𝜒 
Golterman and Shamir 
Appelquist et al.

Fπ
Mπ

Fd  

Md   

⎫

⎬
⎪⎪

⎭
⎪
⎪

 with fermion mass deformations m 

fπ                  Goldstone decay constant 
mπ = 2mB    Goldstone pions
fd                  dilaton decay constant
md                 dilaton mass 

⎫

⎬
⎪⎪

⎭
⎪
⎪

 chiral limit   ⇒

dictionary for the effective dilaton theory coupled to Goldstone pions:

we adapt Appelquist et al.  
notation for comparison



How do we test dilaton theory?  General scaling laws: Golterman and Shamir 

Appelquist et al. nf=8 tests

Fd  minimum of dilaton potential after fermion mass m is turned on:

for Vd1  potential:   
Fd

2

fd
2

⎛

⎝⎜
⎞

⎠⎟

2− y/2

1−
Fd

2

fd
2

⎛

⎝⎜
⎞

⎠⎟
= 2yF 2

fd
2

mπ
2
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2

⎛

⎝⎜
⎞
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for Vd2  potential:   
Fd

2

fd
2

⎛

⎝⎜
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ln
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= 2yF 2
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Fπ
2  and Mπ

2  at finite fermion mass m :

Fπ
2

fπ
2 =

Fd
2

fd
2

Mπ
2

mπ
2 =

Fd
2

fd
2

⎛

⎝⎜
⎞
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y/2−1
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⎪
⎪
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⎪
⎪

    ⇒      Mπ
2 Fπ

2( )1− y/2
=  2Bπ fπ

2( )1− y/2

C   fitted
y   fitted 

! "## $##
⋅m     scaling test I:  non-chiPT Mπ

2  and Fπ
2

now we test this in the sextet model
independent of dilaton potential !

fπ
2mπ

2

4
χ
fd

⎛

⎝⎜
⎞

⎠⎟

y

⋅VΣ (χ ) ⋅ tr Σ + Σ†( )

fπ
2

4
χ
fd

⎛

⎝⎜
⎞

⎠⎟

2

⋅Vπ (χ ) ⋅ tr ∂µΣ
† ∂µΣ⎡⎣ ⎤⎦

spoiler alert: Vπ (χ ) and VΣ (χ ) set to one as higher 

order only in tripple 1/N expansion (Golterman/Shamir)
otherwise not determined 
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conformal power fit  =3.2

F  = cF m1/1+     
cF =  0.360  0.011

 =  1.560  0.034
2/dof = 0.40

fitted
not fitted
conformal fit

spoiler alert: 

Fitted range  conformal mass deformation? 

𝛄 is inconsistent between M and F fits! 

Not chiPT either 

dilaton scaling?
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m fit range:  0.0015 - 0.005



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

  a m 10-3

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

 (a
M

)2
 (a

F
)2-

y

 scaling test independent of the dilaton potential

  = 3.20    bare gauge coupling

 (a  M )2  (a F )2-y = C  m   

 C = 2a B (a f )2-y 

  = 3-y  anomalous dim.

 C and y fitted

y =  1.8519  0.0099

 = 1.1481  0.0099

C =  3.81  0.13
2/dof = 0.534
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 scaling test of the dilaton effective theory

  = 3.25    bare gauge coupling

 (a  M )2  (a F )2-y = C  m   

C = 2a B (a f )2-y 

 = 3-y anomalous dim.

C and y fitted

y =  1.980  0.024

 = 1.020  0.024

C =  4.86  0.40
2/dof = 3.18

scaling test (independent of the shape of the dilaton potential):

(aMπ )2 ⋅(aFπ )2− y = C ⋅am   with C = 2aBπ (afπ )2− y   

γ = 3− y  mass anomalous dimension (what scale?)
FSS and covariance matrix are used in the fits
for checks: Bayesian posterior y distribution is determined from 
Markov Chain Monte Carlo on the Maximum Likelihood Function

all is well?  cutoff-dependent γ * ?   if not, what γ  scale? 



• Chebyshev expansion of mode number 

• infinite volume limit from FSS 

• m -> 0 chiral limit at fixed a 

• a -> 0 continuum limit 

 mass anomalous dimension γ from Dirac spectrum: sextet data
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 (a  M )2  (a F )2-p = B   
 p and B fitted
 p =  4.33  0.05
 B =  50.2  8.7
 2/dof = 18.9

scaling test II: from V (χ ) ≈ χ p  large χ  asymptotic shape 

of the dilaton potential: (aMπ )2 ⋅(aFπ )2− p = B 

covariance matrix is used in the fits shown
cross check:  p and B generated from ensembles of  Fpi and Mpi 
at each m in Markov Chain Monte Carlo of the exact 
Maximum Likelihood Function without covariance matrix approx.

these fits are failing  (what did "the other sextet analysis" do?)
controlof loop effects? 
cutoff effects? not prime suspect
missing dilaton potential terms? 
limited FSS at Q=0?  not prime suspect
what is the definition and fit consistency of y and γ ?

full analysis in Ricky Wong talk
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Figure 3: The potential V (φ) for a spontaneously broken symmetry in the presence of a
small explicit symmetry breaking term. The arrow indicates now the only possible choice of
vacuum.

The linear term in η can be removed by a small additional shift. This happened because the lowest

energy state is slightly shifted compared to the value v =
√

−µ2/λ. But more importantly, when we
expand the exponentials, we now find that the π(x)-field has gotten a small mass, small compared to
the mass of the η-field, and no longer has only derivative interactions. The π mass

m2
π ≈

2
√

2β

v
. (33)

is small and can be expanded in the small symmetry breaking parameter β. The particle corresponding
to it, is now called a pseudo-Goldstone boson. As long as the explicit symmetry breaking is small, we
can still use Goldstone’s theorem as a first approximation and then add the corrections systematically.
This is precisely what we do in ChPT when the light quark masses are explicitly included.

2.5 Spontaneous symmetry breaking in QCD

We already argued in Sect. 2.3 that the chiral symmetry of QCD cannot be realized in nature since
the predicted parity doublets do not occur. We thus expect the chiral symmetry to be realized in the
Nambu-Goldstone mode. What theoretical evidence do we have directly for this?

Most of the remainder of this paper is about the Goldstone bosons from the spontaneous chiral
symmetry breakdown and their properties. In this way, all those properties are strong indications that
the picture described below is correct. However let us first give the full theoretical arguments.

• It has been proven that the chiral symmetry is spontaneously broken in the limit of a large number
of colours and assuming confinement [31].

• The vector symmetries remain unbroken in a vectorlike symmetry as QCD [32].

• Assuming confinement, the anomalies in the effective low-energy theory must match those for the
underlying QCD theory. For two flavours, this can be done but not for three or more flavours.
We thus need spontaneous symmetry breaking in order to have a correct anomaly matching for
three or more flavours [33].

We thus believe that the flavour symmetry SU(nF )× SU(nF ) is spontaneously broken down to the
diagonal subgroup SU(nF )V = SU(nF )L+R also for the realistic case of three flavours. There are eight
broken generators and we thus expect eight Goldstone boson degrees of freedom. If we look at the
hadron spectrum there are eight natural candidates for this. The three pions, π0, π±, four kaons, K±,
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- Mixed regime RMT analysis: 

sea quarks earlier in p-regime this is changed now

spectrum in ϵ-regime


- taste breaking is handled in same framework 

James Osborne worked out


- thanks to James for the discussions and the 

opportunity for checking our software on the 

output of his code



dilaton “decoupling” in the 𝜀-regime

• simulations of the ε-regime are set up and running:


• staggered stout fermions at our medium fine lattice spacing


• dropping down from our lightest pion mass m*a ~ 0.07 in the p-regime


• one order of magnitude (2 orders of magnitude in the fermion mass)


• 64^4 lattice size running in the m=0.001- 0.00001 fermion mass range


• Mpi*L ~ 0.5 !! 


• F*L ~ 1 is  our projection  - important for ϵ-regime expansion




constraint effective potential

scalar field ϕ(x) elementary, or source of 
composite operator

probability distribution of order 
parameter in finite volume Ω

implementation with fermion fields:

composite 0++ scalar emergent from NJL: equivalent Yukawa model

jk, Lee Lin, Pietro Rossi, Yue Shen, NPB Proc. Suppl. 9 (1989) 99-104

HMC at fixed zero momentum mode of 
the scalar field



constraint effective potential

weak coupling test in 
Higgs-Yukawa model

jk, Kieran Holland
LatHC
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can be extended to four-fermion 
operator and more general BSM 
models

can we extend the analysis to gauge theories?  

constraint effective potential



Summary:    

•   sextet model is consistent with 𝜒SB from all angles we looked at

•   general EFT approach will change the 𝜒PT analysis

•   dilaton EFT is a new fresh look

•   dilaton signatures are problematic in sextet model 

•   sources of the problem? 

•   missing dilaton terms? scale dependent γ(λ)? loop control?

•   the ε-regime (RMT) is new opportunity for general EFT signatures!

•   constraint effective potential method

•   Nf=12?


