ChPT with an Isosinglet Scalar

A phenomenological extension

Martin Hansen

Kasper Langzble, Francesco Sannino

CP3Origins
Xllth Quark Confinement and the Hadron Spectrum > e —

|-6 August 2018, Dublin, Ireland Cosmology & Particle Physics




Overview

® Why -de- should we care about the scalar?

® [he chiral Lagrangian
® [he scalar extension
® One-loop results

® [ he different natures of the scalar
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® In some BSM models, the pseudoscalar and scalar is
almost degenerate (according to lattice investigations)
® In 3-flavour QCD, the Kaons are almost degenerate with

the scalar



| essons

® In some BSM models, the pseudoscalar and scalar is
almost degenerate (according to lattice investigations)

® In 3-flavour QCD, the Kaons are almost degenerate with
the scalar

® Consequently, in some cases the scalar should

probably not be ignored



- ChPT with scalar



Approach

® Adopt a counting scheme
O(mz) ~ O(mg) ~ O(p°)

® Valid In some Iintermediate range of quark masses since
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m,. = Am, , m. = mgy + Bm,

® Sufficiently close to the chiral imit, the scalar should be
Integrated out because My > My
® Obviously, the construction only works in models with

spontaneous chiral symmetry breaking



[he chiral Lagrangian

® Non-linearly realized Lagrangian

® Let G be the flavor symmetry and let H be the stability
oroup. I he Goldstone boson manifold G/H is then
parametrized by
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® |nvariants
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[he chiral Lagrangian

® [he chiral Lagrangian reads

® Many low-energy constants (unknown beyond LO)

BO? fﬂ'v L07 L17




I'he chiral Lagrangian |

® [he LECs can be divided in contributions from various

pleces, such as heavier resonances (as done in VMD)
Li=L;+ Y Lf
R

® |f the scalar is not considered heavy, there Is a dynamical

(non-constant) contribution to the LECs



[he chiral Lagrangian

® Introduce the scalar as a non-trivial background field
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® Expansion of LO Lagrangian is sufficient at NLO

® rour addrtional low-energy constants |

® New counter terms are also needed
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[he scalar Lagrangian

® Standard @* theory
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® Expansion of kinetic term unnecessary for on-shell
quantities (related via EOM)

® Assume vanishing expectation value for scalar field

S5 > =25¢ , Sg=>0




Plon self-energy

® Standard diagrams at NLO

® New diagrams
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Plon decay constant

® Standard diagrams at NLO

® New diagrams
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Scalar selt-energy

® Standard diagrams

Yy .

® New diagrams

{}JL




Pilon mass at NLO

Polynomial Logarithms Unitarity corrections
My = My ;T(al + as L + af3<]71'071')
7
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Pilon mass at NLO

® Coefficients are largely iIndependent of the pattern of chiral

symmetry breaking
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Plon decay constant at NLO

Polynomial ogarithms Unitarity corrections
| \/?TL%\ l /\/
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Wave function renormalisation



Scalar mass at NLO

Logarithms Unitarity corrections
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Polynomial part from renormalisation / counter terms



Scalar decay wiath at NLO

® Decay channel o —

I' =

coms + csma + cymim? } 4m2
167, f2



Consistency checks

® In the chiral limit; m2 — 0
® Vanishing pilon mMass
m2 =0

® Constant decay constant

A m2 bg
= .+ —==15b bs + bg )L,
/ S I (4+(5+ 6) 327r2>

W
— f. in normal ChPT

® Results Independent of renormalisation scale



Natures of the scalar




Natures of the scalar %

® Many low-energy constants in normal ChPT

® ... even more when Including a scalar

® Different realisations of the scalar leads to different

predictions for the constants 57,234



Natures of the scalar %

® Many low-energy constants in normal ChPT

® ... even more when Including a scalar

® Different realisations of the scalar leads to different

predictions for the constants 57,234

® No guarantee that the counting scheme is appropriate for

the various conceivable limits!



Dilaton IImit

® Introduce the dilaton as the conformal compensator
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® Here y = 3 — ~" with v* the anomalous dimension of the

fermion mass



Dilaton IImit

® Introduce the dilaton as the conformal compensator
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® Here y = 3 — ~" with v* the anomalous dimension of the

fermion mass

® txpanding the exponentials lead to the matching



Dilaton IImit

® Very close to the conformal window one expects v* ~ 1

S1 =952 =253 =54 =2

® In this limit the results simplify considerably, e.g.

m

e = ma A f;’ (bm + (am — 2) L)
Mg mamg
| (LO' N J’T('O'T(') | (CLG 0 Lw)

oz f2



Other limits

® Linear sigma model without explicit breaking term

® Goldstone boson

® Scalar is invariant under at least a shift symmetry
® Only derivative couplings are allowed

® One can allow for a controllably small breaking by choosing

S; < O(1)



Conclusions

® Simple extension of ChPT to account for a dynamical scalar
® Calculated one-loop corrections to the pion mass and
decay constant and the scalar mass
® Valid for different patterns of chiral symmetry breaking
® Generic approach that allows for different limits, corresponding

to different realisations of the scalar
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