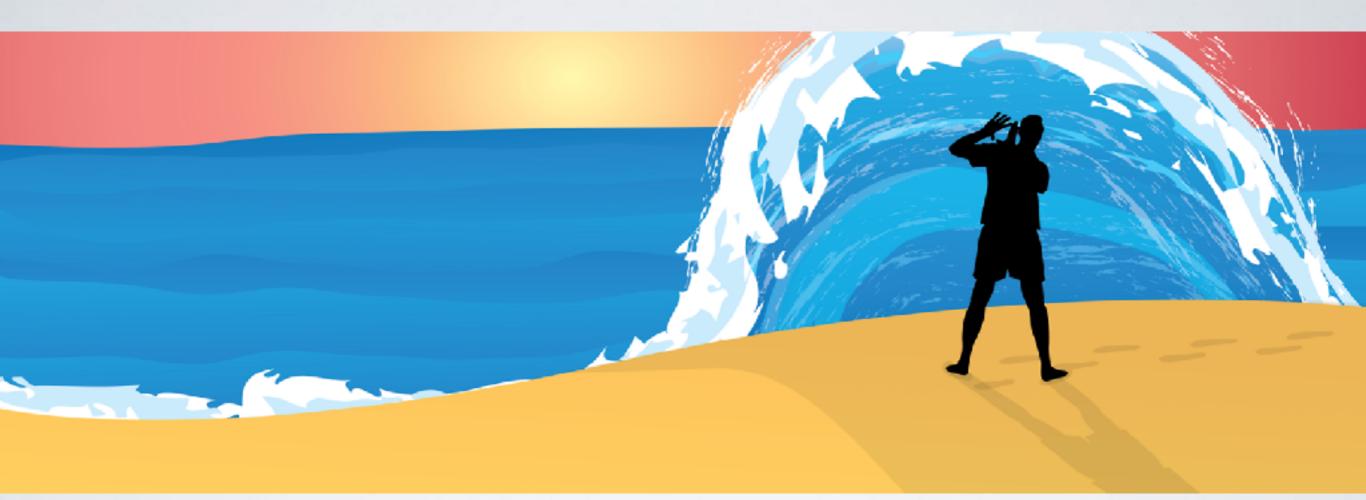
ChPT with an Isosinglet Scalar

A phenomenological extension



Martin Hansen

Kasper Langæble, Francesco Sannino

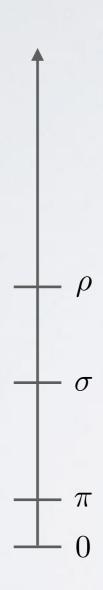
XIIIth Quark Confinement and the Hadron Spectrum I-6 August 2018, Dublin, Ireland

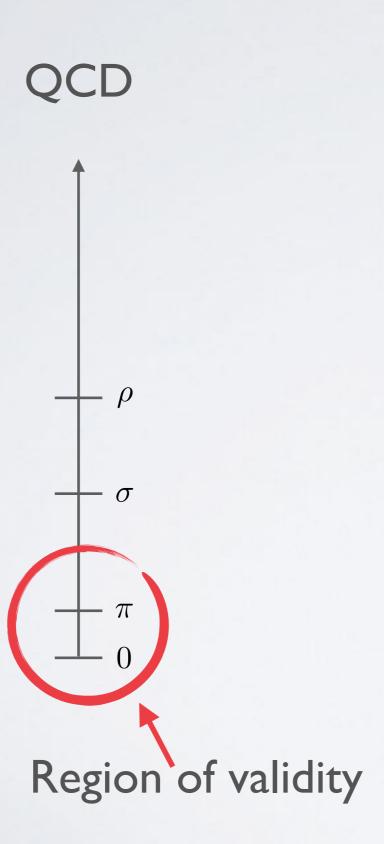
Overview

- Why -do- should we care about the scalar?
- The chiral Lagrangian
- The scalar extension
- One-loop results
- The different natures of the scalar

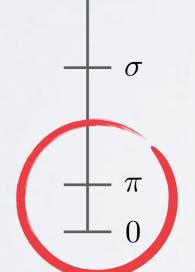
Energy scales

QCD



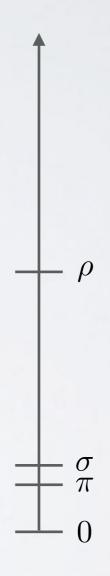


QCD



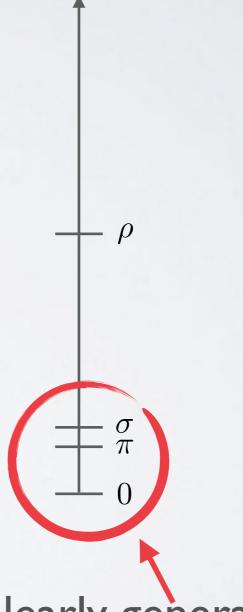
Region of validity

Near-conformal

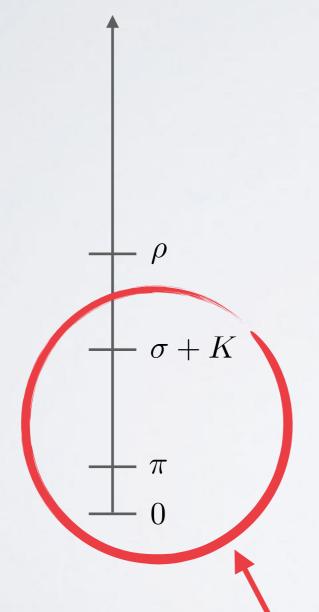


Region of validity

Near-conformal



Nearly generate states



Kaons and f₀(500) almost degenerate

Region of validity

Lessons

- In some BSM models, the pseudoscalar and scalar is almost degenerate (according to lattice investigations)
- In 3-flavour QCD, the Kaons are almost degenerate with the scalar

Lessons

- In some BSM models, the pseudoscalar and scalar is almost degenerate (according to lattice investigations)
- In 3-flavour QCD, the Kaons are almost degenerate with the scalar
- Consequently, in some cases the scalar should probably not be ignored

ChPT with scalar

Approach

Adopt a counting scheme

$$\mathcal{O}(m_\pi^2) \sim \mathcal{O}(m_\sigma^2) \sim \mathcal{O}(p^2)$$

Valid in some intermediate range of quark masses since

$$m_{\pi}^2 = A m_q \; , \qquad m_{\sigma}^2 = m_0 + B m_q$$

- ullet Sufficiently close to the chiral limit, the scalar should be integrated out because $m_\sigma\gg m_\pi$
- Obviously, the construction only works in models with spontaneous chiral symmetry breaking

- Non-linearly realized Lagrangian
- Let G be the flavor symmetry and let H be the stability group. The Goldstone boson manifold G/H is then parametrized by

$$u = \exp\left(\frac{i}{\sqrt{2}f_{\pi}}X^{a}\phi^{a}\right)$$

• Invariants

$$u_{\mu} = i(u^{\dagger}(\partial_{\mu} - ir_{\mu})u - u(\partial_{\mu} - il_{\mu})u^{\dagger})$$

$$\chi_{\pm} = u^{\dagger}\chi u^{\dagger} \pm u\chi^{\dagger}u$$

The chiral Lagrangian reads

$$\mathcal{L}_{2} = \frac{f_{\pi}^{2}}{4} \langle u_{\mu} u^{\mu} + \tilde{\chi}_{+} \rangle$$

$$\mathcal{L}_{4} = L_{0} \langle u_{\mu} u_{\nu} u^{\mu} u^{\nu} \rangle + L_{1} \langle u_{\mu} u^{\mu} \rangle \langle u_{\nu} u^{\nu} \rangle$$

$$+ L_{2} \langle u_{\mu} u_{\nu} \rangle \langle u^{\mu} u^{\nu} \rangle + \cdots$$

Many low-energy constants (unknown beyond LO)

$$B_0, f_{\pi}, L_0, L_1, \ldots$$

 The LECs can be divided in contributions from various pieces, such as heavier resonances (as done in VMD)

$$L_i = \hat{L}_i + \sum_R L_i^R$$

 If the scalar is not considered heavy, there is a dynamical (non-constant) contribution to the LECs

Introduce the scalar as a non-trivial background field

$$\mathcal{L}_{2} = \frac{f_{\pi}^{2}}{4} \left[1 + S_{1} \left(\frac{\sigma}{f_{\pi}} \right) + S_{2} \left(\frac{\sigma}{f_{\pi}} \right)^{2} + \cdots \right] \langle u_{\mu} u^{\mu} \rangle$$

$$+ \frac{f_{\pi}^{2}}{4} \left[1 + S_{3} \left(\frac{\sigma}{f_{\pi}} \right) + S_{4} \left(\frac{\sigma}{f_{\pi}} \right)^{2} + \cdots \right] \langle \tilde{\chi}_{+} \rangle$$

- Expansion of LO Lagrangian is sufficient at NLO
- Four additional low-energy constants!
- New counter terms are also needed

The scalar Lagrangian

 \odot Standard ϕ^4 theory

$$\mathcal{L}_{\sigma} = \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} \left[1 + S_{5} \left(\frac{\sigma}{f_{\pi}} \right) + S_{6} \left(\frac{\sigma}{f_{\pi}} \right)^{2} \right]$$

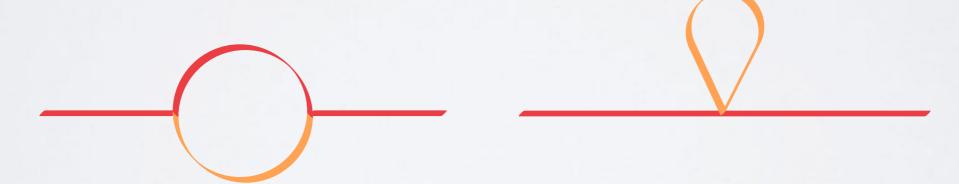
- Expansion of kinetic term unnecessary for on-shell quantities (related via EOM)
- Assume vanishing expectation value for scalar field

$$S_5 \ge -2\sqrt{S_6}$$
 , $S_6 \ge 0$

Pion self-energy

Standard diagrams at NLO

New diagrams



Pion decay constant

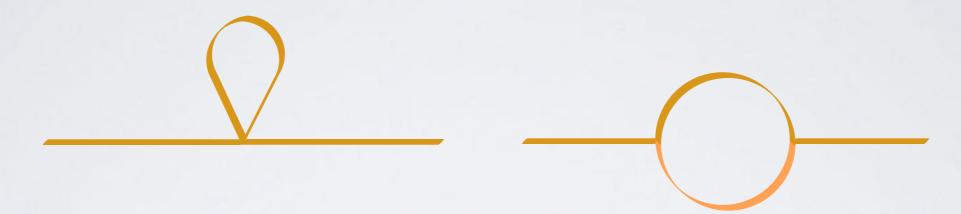
Standard diagrams at NLO

New diagrams



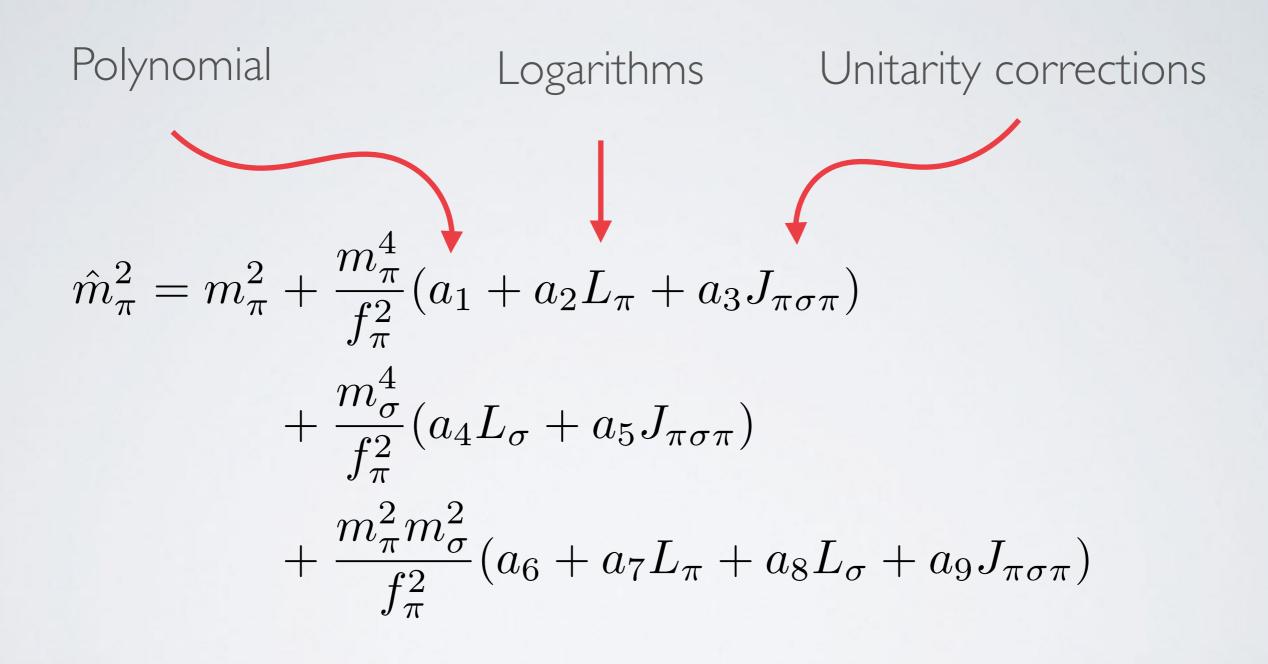
Scalar self-energy

Standard diagrams



New diagrams

Pion mass at NLO

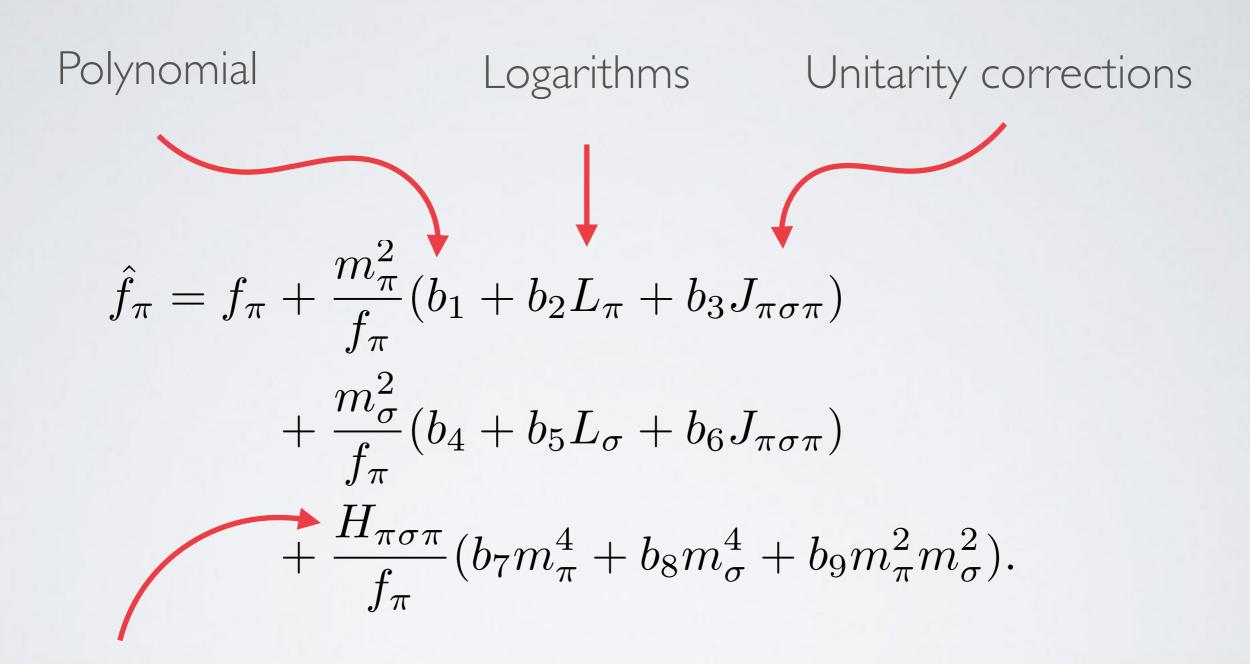


Pion mass at NLO

 Coefficients are largely independent of the pattern of chiral symmetry breaking

	a_i	b_i	C_i
1	b_M	b_F	$6S_6$
2	$a_M - \frac{1}{2}(2S_1S_3 - S_1^2)$	$a_F - \frac{3}{8}S_1^2$	$-\frac{1}{4}n_{\pi}S_{1}^{2}$
3	$-(S_1 - S_3)^2$	$-\frac{1}{2}(S_1S_3-S_1^2)$	$-9S_5^2$
4	$\frac{1}{4}S_1^2$	$-2K_1^r$	$\left 2n_{\pi}(S_1S_3 - S_1^2) + n_{\pi}(S_4 - S_2) \right $
5	$-a_4$	$\frac{1}{8}(12S_2+S_1^2)$	$-n_{\pi}(S_1-S_3)^2$
6	$4(K_2^r - K_1^r)$	$-\frac{1}{4}S_{1}^{2}$	$\frac{1}{2}n_{\pi}S_{1}^{2}$
7	$-a_4$	$-\frac{1}{2}(S_1-S_3)^2$	$n_{\pi}(S_1^2 - S_1 S_3)$
8	$S_4 - S_2 - S_1^2 + S_1 S_3$	$-\frac{1}{8}S_1^2$	_
9	$S_1^2 - S_1 S_3$	b_3	_

Pion decay constant at NLO



Wave function renormalisation

Scalar mass at NLO

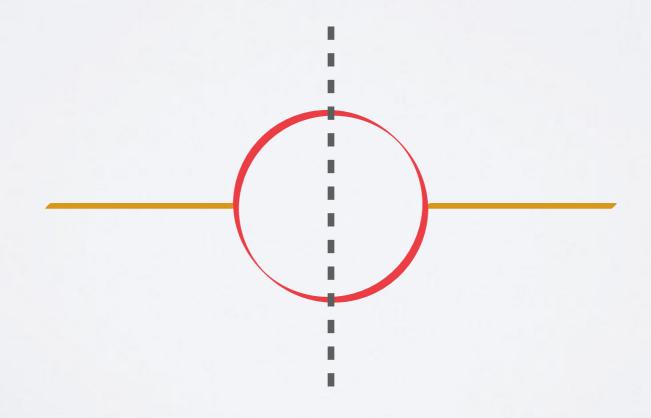
Logarithms Unitarity corrections $\hat{m}_{\sigma}^{2} = m_{\sigma}^{2} + \frac{m_{\sigma}^{4}}{f_{\pi}^{2}} (c_{1}L_{\sigma} + c_{2}J_{\pi\pi\sigma} + c_{3}J_{\sigma\sigma\sigma} - 2K_{3}^{r})$ $+\frac{m_{\pi}^4}{f^2}(c_4L_{\pi}+c_5J_{\pi\pi\sigma}-2K_5^r)$ $+\frac{m_{\pi}^2 m_{\sigma}^2}{f^2} (c_6 L_{\pi} + c_7 J_{\pi\pi\sigma} - 2K_4^r),$

Polynomial part from renormalisation / counter terms

Scalar decay width at NLO

Decay channel $\sigma \to \pi\pi$

$$\Gamma = -\frac{c_2 m_{\sigma}^4 + c_5 m_{\pi}^4 + c_7 m_{\sigma}^2 m_{\pi}^2}{16\pi m_{\sigma} f_{\pi}^2} \sqrt{1 - \frac{4m_{\pi}^2}{m_{\sigma}^2}}$$



Consistency checks

- \bullet In the chiral limit: $m_\pi^2 \to 0$
- Vanishing pion mass

$$\hat{m}_{\pi}^2 = 0$$

Constant decay constant

$$\hat{f}_{\pi} = f_{\pi} + \frac{m_{\sigma}^2}{f_{\pi}} \left(b_4 + (b_5 + b_6)L_{\sigma} - \frac{b_8}{32\pi^2} \right)$$

$$= f_{\pi} \text{ in normal ChPT}$$

Results independent of renormalisation scale

Natures of the scalar

Natures of the scalar

- Many low-energy constants in normal ChPT
- ... even more when including a scalar

ullet Different realisations of the scalar leads to different predictions for the constants $S_{1,2,3,4}$

Natures of the scalar

- Many low-energy constants in normal ChPT
- ... even more when including a scalar

ullet Different realisations of the scalar leads to different predictions for the constants $S_{1,2,3,4}$

No guarantee that the counting scheme is appropriate for the various conceivable limits!

Dilaton limit

Introduce the dilaton as the conformal compensator

$$\mathcal{L}_2 = \frac{f_\pi^2}{4} \left[\langle u_\mu u^\mu \rangle \exp\left(\frac{2\sigma}{f_\pi}\right) + \langle \chi_+ \rangle \exp\left(\frac{y\sigma}{f_\pi}\right) \right]$$

 \bullet Here $y=3-\gamma^*$ with γ^* the anomalous dimension of the fermion mass

Dilaton limit

Introduce the dilaton as the conformal compensator

$$\mathcal{L}_2 = \frac{f_{\pi}^2}{4} \left[\langle u_{\mu} u^{\mu} \rangle \exp\left(\frac{2\sigma}{f_{\pi}}\right) + \langle \chi_+ \rangle \exp\left(\frac{y\sigma}{f_{\pi}}\right) \right]$$

- ullet Here $y=3-\gamma^*$ with γ^* the anomalous dimension of the fermion mass
- Expanding the exponentials lead to the matching

$$S_1 = S_2 = 2$$
 , $S_3 = y$, $S_4 = \frac{y^2}{2}$

Dilaton limit

 \odot Very close to the conformal window one expects $\gamma^* pprox 1$

$$S_1 = S_2 = S_3 = S_4 = 2$$

In this limit the results simplify considerably, e.g.

$$\hat{m}_{\pi}^{2} = m_{\pi}^{2} + \frac{m_{\pi}^{4}}{f_{\pi}^{2}} \left(b_{M} + (a_{M} - 2) L_{\pi} \right) + \frac{m_{\sigma}^{4}}{f_{\pi}^{2}} \left(L_{\sigma} - J_{\pi\sigma\pi} \right) + \frac{m_{\pi}^{2} m_{\sigma}^{2}}{f_{\pi}^{2}} \left(a_{6} - L_{\pi} \right)$$

Other limits

Linear sigma model without explicit breaking term

$$f_{\pi} = v$$
 , $S_1 = 2$, $S_2 = 1$, $m_{\sigma}^2 = 2\lambda v^2$

- Goldstone boson
 - Scalar is invariant under at least a shift symmetry
 - Only derivative couplings are allowed
 - One can allow for a controllably small breaking by choosing

$$S_i \ll \mathcal{O}(1)$$

Conclusions

- Simple extension of ChPT to account for a dynamical scalar
- Calculated one-loop corrections to the pion mass and decay constant and the scalar mass
- Valid for different patterns of chiral symmetry breaking
- Generic approach that allows for different limits, corresponding to different realisations of the scalar

Thank you!